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Introduction
The World Health Organization (WHO) identifies antimicrobial 
resistance (AMR) as one of  the biggest threats to global health, 
leading to more hospitalized patients, longer hospital stays, high-
er medical costs, and increased mortality (1). With the rapid 
rise in antimicrobial resistance to clinically available antibiotics, 
novel antibiotic candidates are urgently needed (2). Antimicro-
bial peptides (AMPs) are promising candidates to develop into 
new clinically relevant antibiotics because they kill drug-resistant 
pathogens, modulate host immune responses, and are less likely to 
induce antimicrobial resistance (3). Several modified AMPs, such 
as daptomycin (lipopeptide), bacitracin (cyclic peptide), and gram-
icidin S (cyclic peptide), are currently in clinical use, suggesting 
that more AMPs could be identified or designed and developed to 
combat drug resistance (4).

AMPs can be designed using noncomputational (traditional) 
or computational methods (5). The traditional methods of  AMP 
design involve optimizing a single or a limited number of  peptide 

templates by truncation (6), substitution (7), sequence shuffling (8), 
motif  hybridization (9), structure-based approaches (10), and/or de 
novo combinatorial library-based strategies (11). These optimiza-
tion processes often rely on evolutionary information concerning 
natural AMPs, such as the use of  frequently occurring amino acids 
(12), motifs (13), or quantitative structure-activity–relationship 
(QSAR) models (14). A traditional approach to AMP design pre-
serves the original template properties in terms of  activity, selectiv-
ity, and stability (15, 16). However, it limits sequence optimization 
because it does not “test” all potentially favorable combinations of  
amino acids that represent a broad combinatorial sequence space 
corresponding to all known functional AMPs.

In contrast to traditional methods of  AMP design, compu-
tational methods utilize extensive sequence-space information 
from dedicated AMP databases to compute physicochemical 
parameters or identify sets of  potentially active amino acid substi-
tutions using pattern recognition methodologies. Computational 
methods include in silico approaches based on a linguistic gram-
mar-based model (17) and ab initio approaches based on a data-
base filtering technology (13). More recently, the use of  machine 
learning (ML) in antibacterial drug discovery has been shown to 
be a promising computational drug design methodology (18–20). 
However, AMP design strategies based on ML are mostly associ-
ated with developing neural networks and deep learning models 
based on genomic and proteomic sources (20, 21). Despite the 
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peptide, CIT-1, had 13 amino acid residues with 3 helical turns. 
Structurally, CIT-1 displayed a negatively charged aspartic acid 
residue at the fourth position and a neutral serine residue at the 
eleventh position on its hydrophilic face. On its hydrophobic 
face, it had a distinct nonhomogeneous surface gap lacking larger 
hydrophobic amino acids at positions 9 and 10, which were occu-
pied by valine and alanine, respectively (Supplemental Figure 1; 
supplemental material available online with this article; https://
doi.org/10.1172/JCI185430DS1).

As the initial AMP-membrane interaction is a charge-charge 
driven one (3), we postulated that substituting the fourth aspar-
tic acid and the eleventh serine positions of  CIT-1 with positive-
ly charged residues would facilitate interaction with the bacterial 
membrane’s negatively charged phospholipid head groups. To 
enhance the membrane insertion capability of  the peptide, we 
also reasoned that valine 9 and alanine 10 could be replaced with 
bulkier hydrophobic amino acid residues to ensure more effective 
interaction between the peptide-hydrophobic amino acids and the 
hydrophobic chains of  the bacterial membrane phospholipids.

Identification of  the optimal amino acid substitutions using ML and 
knowledge graphs. After using traditional AMP design principles as 
described in the previous section to shorten citropin 1.1 to CIT-
1 and to identify potential amino acid positions for amino acid 
substitutions to improve its anti-MRSA properties, we employed 
machine learning to determine which amino acids would be most 
suitable to replace the original ones at positions 4, 9, 10, and 11. 
To train the ML algorithm, we created an aggregated AMP data-
set that consisted of  14,743 unique peptide sequences with AMP 
properties after preprocessing (access date: February 9, 2024) and 
calculated the molecular weight, the 5-dimensional PCP descrip-
tors, GRAVY, hydrophobic moment, helicity, and topological 
surface area (TPSA), which are used as a quantitative means to 
identify property motifs in sequences of  protein families. The pep-
tides included in the dataset had molecular weights ranging from 
2,637.71 to 58,471.10 g/mol, GRAVY scores between –4.5 and 4.5, 
mean helicity of  0.36 (SD: 0.22) and mean hydrophobic moment of  
0.58 (SD: 0.22) (Supplemental Table 1).

The dataset we created consisted of  peptides from various 
prokaryotic and eukaryotic sources, which exhibited varied anti-
microbial activity against several Gram-positive and Gram-nega-
tive bacteria and displayed diverse secondary structures including 
α-helix, β-sheets, α + β, and non-αβ peptides. To select the most 
appropriate group of  peptides to use to identify potential substitu-
tions at positions 4, 9, 10, and 11, we used the k-means method to 
cluster the dataset into groups that exhibited distinct physicochem-
ical characteristics (Figure 2A). A silhouette analysis of  the dataset 
showed that four clusters provided the most well-defined and dis-
tinct grouping of  peptides, meaning that the peptides within each 
cluster were more similar to each other while being more different 
from those in other clusters. Cluster 1 included peptides predomi-
nantly characterized by their high GRAVY (mean: 0.53, SD: 0.73) 
and helicity (mean: 0.48, SD: 0.17) and low TPSA (Figure 2, B–E, 
and Supplemental Table 2). Cluster 2 contained peptides that had 
lower hydrophobicity, helicity and hydrophobic moment compared 
to cluster 1, but high TPSA. Peptides in Cluster 3 had even lower 
GRAVY, helicity, and hydrophobic moment compared with cluster 
1, but shared comparable TPSA. Finally, Cluster 4 was comprised 

ability of  ML algorithms to process large data sets, their use has 
been essentially limited to identification and prediction of  AMPs 
(22–24) rather than the generation of  novel AMPs. There are only 
a few attempts that have employed machine learning to design 
and optimize AMPs, such as in the design of  temporin AMPs 
from frogs (19) and the design of  lipopolysaccharide-binding pep-
tides (LBD

B) (25) by leveraging genetic algorithms combined with 
fitness matrix-based amino acid substitutions.

In this study, we combined traditional and ML-based AMP 
design strategies to preserve the original template-dependent prop-
erties typical of  traditional designs while at the same time carrying 
out sequence optimization powered by ML. We sought to demon-
strate that our approach is highly efficacious for improving AMPs. 
We used peptide sequence–space information from publicly avail-
able AMP databases, employed k-means clustering that incorpo-
rated physicochemical parameters regulating AMP properties (26), 
and derived knowledge graphs to identify the most preferred amino 
acid occurrences. We implemented our peptide design strategy on 
citropin 1.1, a natural AMP with modest activity against methicil-
lin-resistant Staphylococcus aureus (MRSA), with the goal of  develop-
ing a more potent and shorter derivative AMP that is active against 
MRSA. We describe the strategy used to optimize the anti-MRSA 
properties of  short citropin1.1 peptides and report the antistaphy-
lococcal efficacy of  a specific engineered derivative, CIT-8, in vitro 
and in vivo in a topical skin infection model. We also describe the 
cytotoxic properties of  CIT-8 as well as its mechanism of  action. 
In addition, 3 additional AMPs were also modified to substantially 
enhance their activity against MRSA, employing the same protocol 
used to design CIT-8, thereby demonstrating the generalizability 
of  our design methodology. Our findings highlight the potential of  
ML in accelerating the development of  potent AMPs while reduc-
ing the time and cost associated with traditional combinatorial 
approaches. By integrating ML with targeted sequence modifica-
tions, our approach provides a scalable and efficient framework for 
designing potent AMPs to combat antibiotic-resistant pathogens.

Results
Peptide design and optimization based on traditional AMP design prin-
ciples. We hypothesized that short and potent antistaphylococcal 
AMPs could be designed by modifying nonactive or weakly active 
AMP templates using a combination of  traditional AMP design 
strategies with machine learning guidance. Our goal was to enhance 
the antimicrobial efficacy of  AMPs (denoted as templates) by pro-
ducing shorter and more potent derivatives using our approach. To 
test this hypothesis, we selected the citropin 1.1 template because of  
its modest efficacy against MRSA, aiming to sequentially perform 
truncation, structure-guided alteration, and substitution assisted by 
ML to enhance the interaction of  the peptide with the bacterial 
membrane to create highly potent AMP candidates (Figure 1).

Citropin 1.1 is a natural 16-amino-acid–long cationic (+2) 
and helical AMP secreted by Litoria citropa, an Australian blue 
mountains tree frog (Swiss Prot ID; P81835). First, we sought 
to shorten the peptide and improve its stoichiometric interaction 
with the bacterial membrane. We optimized the α-helix of  citro-
pin 1.1 by removing the nonessential helix-breaking C-terminus, 
which is comprised of  a nonamphipathic extension containing 
two glycine residues and one leucine residue (27). The resultant 
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For position 4, the knowledge graph query for the parent frag-
ments (2 or 3 cooccurring amino acid residues) of  ‘leucine-phenyl-
alanine’ (positions 2–3) (denoted as ‘LF’) showed a preferential 
substitution of  D (aspartate (present in CIT-1) with ‘K.’ This substi-
tution was based on its recurrence in parent fragments, with ‘LFK’ 
having the highest AGO instances (number of  occurrences [NOO] 
= 229) followed by LFG (NOO = 90) and then LFS (NOO = 89) 
(Figure 2F). Next, we replaced the serine at eleventh position with 
lysine, as the corresponding AGO instances for parent fragment 
‘VA’ (position 9–10) were ‘VAK’ (NOO = 293), which was greater 
than that for the native sequence ‘VAS’ (NOO = 126).

For positions 9 and 10, we used 2 consecutive leucine residues 
to fill the hydrophobic gap, as guided by the AGO patterns (Figure 
2F). More specifically, for position 9, the parent sequence ‘KK’ 
(position 7–8) was followed by ‘L’ with ‘KKL’ being the most prev-
alent AGO instance (NOO = 632) compared to ‘KKI’ (NOO = 
424), ‘KKA’ (NOO = 349) and ‘KKV’ (NOO = 349). Similarly, 
the second leucine (position 10) was justified by the AGO patterns 
of  the parent fragment ‘KL’ (position 8–9) with prevalent ‘KLL’ 
AGO with NOO = 684 compared to ‘KLA’ (NOO = 430), ‘KLF’ 
(NOO = 197) and ‘KLK’ (NOO = 192).

Finally, we sequentially substituted each amino acid at posi-
tion 4, 9, 10, and 11 on CIT-1 in a stepwise manner to gener-
ate 8 peptide candidates with different charge-to-hydrophobicity 
contents. These peptides included CIT-1 (contains the original 
negatively charged aspartic acid residue at fourth position), CIT-
2 (contains a neutral serine residue at fourth position), CIT-3 
(included a charged lysine residue at fourth position), CIT-4 (with 
lysine residues at fourth and eleventh positions), CIT-5 (CIT-
1 + hydrophobicity improved at positions 9–10), CIT-6 (CIT-2 
+ hydrophobicity improved at positions 9–10), CIT-7 (CIT-3 + 
hydrophobicity improved at positions 9–10) and CIT-8 (CIT-4 + 
hydrophobicity improved at positions 9–10) (Supplemental Fig-
ure 2). Peptides CIT-1 and CIT-8 contained the minimum and 
maximum AGO instances, respectively.

Validation of  the choice of  amino acids for substitutions. To verify 
that the amino acid substitutions in CIT-1 based on AGO patterns 
are evolutionary conserved, we examined the amino acid occur-
rences in all 13-mer helical peptides in our dataset. We calculated 
the most helical 13-mer sequence fragment for each peptide and 
generated a heatmap from the entire dataset, displaying amino 
acid frequencies at each position. This allowed us to compare and 
contrast the structural nuances of  the CIT peptides, specifically at 
the targeted positions 4, 9, 10, and 11 (Figure 2G). The heatmap 
revealed that pronounced amino acid percent occurrence (APO) 
frequencies are similar to AGO patterns directed substitutions. 
At position 4, lysine occurred at 16.4% compared with 8.2% for 
arginine. At position 9, leucine appeared at 11.6%, followed by 
isoleucine at 9%, phenylalanine at 3.5%, and tryptophan at 2.3%. 
At position 10, leucine occurred at 9.2%, compared with 8.2% for 
alanine and 7.6% for isoleucine. At position 11, lysine appeared at 
17.6%, compared with 10.8% for arginine (Figure 2G).

Antimicrobial potency and cytotoxicity. We conducted standard 
minimum inhibitory concentration (MIC) assays on peptides CIT-1 
through CIT-8 to check the antimicrobial potencies of  the CIT-de-
rived peptides. Peptides CIT-1 to CIT-5 had MICs greater than 32 
μg/mL and were ineffective in killing S. aureus strain MW2, despite 

of  peptides with lower GRAVY, similar helicity and TPSA, and 
higher hydrophobic moment compared to cluster 1 peptides.

As we were interested in designing antistaphylococcal helical 
peptides and recognized that AMPs with high GRAVY, helicity, 
and an extended hydrophobic surface are characteristic features of  
potent helical antistaphylococcal peptides (13), we selected Cluster 
1 to obtain the amino acid patterns that would guide the substitu-
tions at positions 4, 9, 10, and 11 in CIT-1. Our supposition was 
that, by taking into consideration the pattern of  the neighboring 
amino acids at these positions, we could identify the optimal evo-
lutionarily favored substitutions. We defined this pattern of  a small 
group (2–4 amino acid residues) of  selective amino acids cooc-
curring in an AMP sequence as “amino acid group occurrence” 
(AGO), which served as the foundation for our substitutions in the 
CIT-1 template. We constructed a comprehensive knowledge graph 
to identify the AGO patterns in the peptide sequences of  Cluster 1 
peptides. This graph connected fragments based on sequence con-
tainment, where a parent fragment contained the child fragment 
within its sequence, allowing for a detailed analysis of  peptide 
structure and relationships within the cluster.

Figure 1. CIT-based peptide design and optimization strategy.
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Design of  additional AMPs. To demonstrate that our machine 
learning–based peptide design approach is not limited to CIT-8, we 
generated additional peptides using three randomly selected new 
templates with weak anti-MRSA efficacy: hylaseptin P1, masto-
paran-L, and r-CAMEL. The ML-designed peptides derived from 
these templates using our AMP design strategy (described in Sup-
plemental Table 3) exhibited substantially improved MIC values 
(MIC = 2 μg/mL) against MRSA compared with their respective 
WT peptide sequences (MIC greater than 32 μg/mL) (Supplemen-
tal Table 3), suggesting that our protocol for designing AMPs is 
generalizable and not limited to CIT-8.

Furthermore, unlike traditional AMP design methods that 
involve limited sequence modifications, our hybrid approach, 
combining ML with traditional peptide design, enables a sin-
gle-step sequence optimization, efficiently transforming weakly 
active templates into highly potent and shorter AMPs. By lever-
aging traditional analysis, we first shortened the template peptide 

having net charges ranging from + 2 to + 5 and 61% hydrophobicity 
to bind the bacterial membrane effectively (Table 1). In contrast, 
CIT-6, CIT-7, and CIT-8 had MICs of  2–4 μg/mL (Table 1). These 
3 peptides had either neutral or positive substitutions at position 
4 and improved hydrophobicity by filling hydrophobic structural 
gaps at positions 9–10. The helical wheel plot showed that peptides 
CIT-6, CIT-7, and CIT-8, which were the most antimicrobial, had 
well-distributed hydropathy (Supplemental Figure 3).

To measure toxicity, we tested the hemolytic potential of  
CIT-derived peptides against human RBCs, calculating the concen-
tration of  peptide that induced 50% hemolysis (HL

50) (Supplemen-
tal Figure 4A). Compared with CIT-6 and CIT-7, CIT-8 had the 
lowest HL50 value of  68 μg/mL, 17 times greater than its MIC. 
In addition, we tested the cytotoxicity potential of  CIT-8 against 
human liver–derived HEPG2 cells. The concentration of  CIT-8 
needed to kill 50% of  HEPG2 cells (LD50) was 96 μg/mL, indicat-
ing a large therapeutic window (Supplemental Figure 4B).

Figure 2. Exploration of AMP sequence space. (A) t-SNE transformed physicochemical property space, grouped by k-means clustering. (B–E) Comparison 
of the physicochemical parameters of the 4 clusters of AMPs in our dataset based on (B) GRAVY, (C) helicity, (D) TPSA, and (E) hydrophobic moment. (F) 
Graph of amino acid group occurrence patterns (AGO). Each node represents a peptide fragment sequence, while the connected nodes indicate the most 
common parental fragment sequences with corresponding NOO (number of occurrences) values annotated on the edges. (G) Heat-map showing the per-
centage of each amino acid (APO) in all 13-mer helical AMP fragments in our dataset.
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MIC) also eradicated both exponential and VRSA persister cells 
within 120 minutes of  treatment (Figure 3, C and D). Ciproflox-
acin (at 10 μg/mL) reduced exponentially growing MRSA cells 
by 1.5 logs within 120 minutes but did not have any effect on the 
MRSA persister cells. A positive control, bithionol, previously 
shown to have anti-MRSA-persister–cell activity (28), reduced 
the titers of  both exponential and MRSA persister cells by 1.8 
and 1.5 logs, respectively. Likewise, bithionol also reduced expo-
nential and VRSA persister cells by 1.0 and 1.5 logs within 120 
minutes of  exposure. However, another clinically used antibiotic 
that targets the bacterial protein synthesis linezolid (at 100 μg/
mL), only reduced the exponentially growing VRSA by 0.7 logs 
and had no impact on VRSA persister cells with in 120 min-
utes of  treatment. As a positive control, a potent AMP, melittin, 
known to disrupt bacterial membranes (29), showed rapid killing 
kinetics similar to CIT-8, eliminating approximately 1 × 108 and 
1 × 107 CFU of  both exponential and persisters cells of  MRSA 
and VRSA, respectively, within 120 minutes of  peptide exposure 
(Supplemental Figure 5, A–D).

Because biofilms are tolerant to many antibiotics, we also 
tested the activity of  CIT-8 on biofilms of  MRSA and VRSA 
grown on a solid membrane support (Figure 3, E and F). CIT-8 
(at 40 μg/mL) reduced biofilm burdens of  MRSA and VRSA by 
2.2 and 3.8 logs, respectively, while the control AMP, melittin, at 
the same concentration, achieved reductions of  1.85 and 3.9 logs 
on biofilms grown on a solid membrane (Figure 3, E and F, and 
Supplemental Figure 5, E and F).

We also tested the ability of  the CIT-8 peptide to inhibit and 
disrupt S. aureus MW2 biofilms in a biofilm disassembly assay (Fig-
ure 3, G–J). During the S. aureus MW2 biofilm formation stage, 
CIT-8 killed 50% of  the biofilm cells at 4 μg/mL and reduced the 
bacterial biomass by approximately 50% at 6 μg/mL (MBIC

50; Fig-
ure 3, G and H). Similarly, in the case of  an S. aureus MW2 biofilm 
that had been established for 24 hours, CIT-8 at 12 μg/mL killed 
50% of  the live bacterial cells (Figure 3I) and effectively disrupt-
ed 50% of  the biomass contents at 24 μg/mL (MBEC50) (Figure 
3J). Compared with CIT-8, the AMP control, melittin, effectively 
inhibited S. aureus MW2 biofilm formation and disrupted 24-hour 

and identified key amino acid positions for modification, an essen-
tial step that ML alone could not achieve. In parallel, ML-driven 
analysis eliminated the need for exhaustive combinatorial synthe-
sis, which would have traditionally required testing over 160,000 
peptide variants from a 13-mer AMP template by substituting four 
positions with all 20 amino acids (204 = 160,000). Even with a 
more constrained approach, limiting substitutions to two charged 
residues (lysine or arginine) and 6 key nonpolar hydrophobic resi-
dues (leucine, phenylalanine, isoleucine, tryptophan, proline, and 
methionine), at least 144 variants would still need to be screened 
(that is, test 2 positions with 2 amino acids and 2 positions with 6 
amino acids; 22 × 62 = 144). These findings underscore the advan-
tage of  integrating ML with traditional AMP design, providing 
a rapid, cost-effective, and targeted strategy for developing potent 
antimicrobial agents against resistant pathogens compared with 
conventional peptide design methods.

Antimicrobial robustness of  CIT-8 peptide. Once we determined 
that CIT-8 had the lowest hemolytic activity among the selected 
peptides, we investigated its potential as a potent antistaphylo-
coccal agent. We tested the robustness of  its antibacterial activity 
in the presence of  physiological salts and serum. The MIC of  
CIT-8 remained the same (4 μg/mL) even in the presence of  150 
mM NaCl, 2.5 mM CaCl

2, 8 mM ZnSO4, or 1 mM MgSO4. The 
presence of  5%–10% human serum increased the MIC by only 
2-fold (Table 2).

To further characterize the antimicrobial potency of  CIT-8, we 
tested it against various drug-resistant S. aureus strains. The MIC of  
CIT-8 was 4-8 μg/mL against various VRSA, MRSA, VISA, and S. 
aureus clinical isolates (Table 3).

Antimicrobial potency of  CIT-8 against drug-resistant S. aureus-
persister cells and biofilms. To further determine the antimicrobial 
spectrum of  CIT-8, we tested the rate of  killing of  CIT-8 against 
exponentially growing cells as well as S. aureus persister cells 
generated by growing them to a stationary phase in the presence 
of  gentamicin (20 μg/mL). At 10 × MIC, CIT-8 killed almost all 
exponentially growing MRSA cells and completely eradicated 
approximately 1 × 108 CFU MRSA persister cells within 30 min-
utes of  exposure (Figure 3, A and B). Similarly, CIT-8 (at 10 × 

Table 1. Physical parameters and minimal inhibitory concentrations of citropin 1.1-derived peptides against S. aureus MW2

Peptide SequenceA NC Hph%B Hy HmC rTD (min)
MIC (μg/mL) 

SA
CIT 1 GLFDVIKKVASVI 2 61 0.636 0.666 17.570 > 32
CIT 2 GLFSVIKKVASVI 3 61 0.692 0.611 15.711 > 32
CIT 3 GLFKVIKKVASVI 4 61 0.619 0.683 17.400 > 32
CIT 4 GLFKVIKKVAKVI 5 61 0.546 0.754 17.776 > 32
CIT 5 GLFDVIKKLLSVI 2 61 0.780 0.740 22.300 > 32
CIT 6 GLFSVIKKLLSVI 3 61 0.836 0.684 23.302 2
CIT 7 GLFKVIKKLLSVI 4 61 0.763 0.757 19.956 4
CIT 8 GLFKVIKKLLKVI 5 61 0.690 0.827 22.465 4
Van N.A. N.A. N.A. N.A. N.A. N.A. ≤ 0.125

APeptide sequences have free N-terminus and amidated at C-terminus. NC, net charge. BHph% represents the hydrophobic amino acid compositions 
(total hydrophobic ratio) in the peptide. CHm, hydrophobic moment of respective peptides calculated from HeliQuest analysis (https://heliquest.
ipmc.cnrs.fr/). DHPLC retention time (rT) in minutes on a C18 reverse-phase column. SA, S. aureus MW2; Hy, Hydrophobicity; N.A., not applicable. 
MIC, minimum inhibitory concentration.
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established biofilms with lower MBIC50 and MBEC50 values of  4.8 
and 2.3 μg/mL, respectively (Supplemental Figure 5, G–J).

We further employed confocal laser scanning microscopy to 
confirm the antibiofilm effect of  CIT-8 by staining biofilms with 
SYTO9 (for staining live cells) and propidium iodide (for staining 
dead cells). At 32 μg/mL, CIT-8 treatment resulted in a predomi-
nantly red–colored biofilm mass, indicating a high proportion of  
dead cells (Figure 3K), similar to biofilms treated with the control 
AMP, melittin, at the same concentration (Supplemental Figure 
5, K–M). In contrast, untreated biofilms appeared predominantly 
green, indicating live bacterial cells (Figure 3L).

Mechanism of  action of  CIT-8 peptide in vitro. We conducted 
peptide-membrane interaction studies employing circular dichro-
ism, NMR, and Molecular Dynamics (MD) studies to elucidate 
the mode of  action (MOA) of  CIT-8. First, we performed circular 
dichroism spectroscopy of  CIT-8 in the presence of  SDS micelles to 
determine the conformational changes in the secondary structure 
of  CIT-8 upon its interactions with bacterial membrane mimics 
(Supplemental Figure 6). Importantly, the CD spectrum of  CIT-8 
showed 2 apparent dips, at 208 and 222 nm, indicating that the pep-
tide developed helicity upon exposure to SDS, confirming a real-
time membrane interaction (Supplemental Figure 6).

Next, to gain additional details on CIT-8 membrane interactions 
at the molecular level, we used NMR to determine the 3D structure 
of  CIT-8 in SDS (Figure 4, A–E). Figure 4, A and B show homo- and 
heteronuclear 2D NMR spectra. All residues of  the NMR structure 
ensemble fell in the 100% favorable regions of  the Ramachandran 
plot, and there were no distance violations greater than 0.15 Å (Fig-
ure 4C). CIT-8 adopted a helical structure (Figure 4D) with an even 
distribution of  hydrophilic and hydrophobic residues on opposite fac-
es (Figure 4E). Supplemental Table 4 summarizes the NMR struc-
tural calculation statistics. CIT-8 had a well-defined hydrophilic face 
comprising the lysine residues at positions 4, 7, 8, and 11 and a hydro-
phobic face comprising leucine 2, isoleucine 6, leucine 9, leucine 10, 
and isoleucine 13. The peptide-membrane interface was composed 
of  glycine 1, phenylalanine 3, and valine 5. The spatial arrangement 
of  the hydrophobic amino acids imparted a broad hydrophobic sur-
face that interacted with SDS membranes (Figure 4E).

To explore changes in the membrane architecture upon CIT-8 
interactions with bacterial membranes, we performed MD simu-
lations of  CIT-8 in the presence of  a DOPC:DOPG (7:3) model 
membrane mimicking Gram-positive bacterial membranes (30). 
CIT-8 bound to the membrane within the first 37 nanoseconds (ns), 
with the N-terminus protruding into the membrane surface (Figure 
4F). The key residues that formed hydrogen bonds were lysine 7, 
which interacted with DOPC with 31% occupancy, and lysine 11, 

which interacted with DOPG with 56% occupancy (Supplemental 
Table 5). CIT-8 remained bound to the outer leaflet of  the bilayer 
for the rest of  the simulation (500 ns) and remained amphipathic 
inside the membrane (Figure 4F). The partial density plot of  the sys-
tem confirmed the position of  CIT-8 inside the membrane during 
the simulation time period. We observed an incremental change in 
water density (indicated in green) and a simultaneous decrease in 
lipid density (indicated in blue) at around 5 nm, indicating water 
perturbation in the membrane upon CIT-8 insertion (Figure 4G). 
The CIT-8 peptide was located predominantly at about 1.75 nm 
inside the outer membrane leaflet (Figure 4G). Interestingly, CIT-8 
binding resulted in membrane thinning (Figure 4H) and an increase 
in the membrane surface area per lipid ratio (Supplemental Figure 
7), indicating destabilization of  the model membrane upon CIT-
8 interaction, which likely facilitates membrane permeabilization.

MOA of  CIT-8 peptide in live S. aureus MW2 bacterial cells. We 
conducted additional biophysical experiments to observe the effect 
of  CIT-8 on live S. aureus cells. We monitored the change in trans-
membrane potential induced by CIT-8 on S. aureus MW2 cells using 
a DIBAC

4(3) fluorescence-based dye assay. Upon interaction with 
S. aureus MW2 cells, CIT-8 caused a rapid increase in DIBAC4(3) 
fluorescence, although the intensity was lower than with Triton-X 
100 (Figure 5A). To confirm membrane disruption, we performed 
a fluorescence-based dye permeation assay using propidium iodide 
dye. S. aureus MW2 cells treated with CIT-8 exhibited increased 
fluorescence compared with untreated controls. This increase 
in fluorescence was due to the entry of  membrane-impermeable 
propidium iodide into the cells where it bound to DNA, indicating 
that CIT-8 compromised the bacterial membrane (Figure 5B). Van-
comycin, which targets the cell wall rather than the membrane, did 
not induce fluorescence, while melittin, which disrupts the bacterial 
membrane, resulted in elevated fluorescence levels.

Results from another membrane-impervious dye, SYTOX 
Green, were consistent with the membrane-disrupting hypothesis 
for CIT-8. As shown in Figure 5C, S. aureus MW2 cells treated 
with CIT-8 at concentrations of  4–32 μg/mL for 1 hour exhib-
ited significantly increased fluorescence levels, attributed to the 
formation of  SYTOX:DNA complexes.

In order to evaluate whether the ML-designed peptides from 
three additional templates have improved membrane disrupting 
properties, we conducted membrane permeation experiments 
using both propidium iodide (Supplemental Figure 8A) and 
SYTOX green (Supplemental Figure 8B) dyes. The ML-designed 
hylaseptin P1, mastoparan-L and r-CAMEL–derived peptides 
showed increased fluorescence levels when coincubated with S. 
aureus MW2, indicating compromised bacterial membranes in all 

Table 2. Minimum inhibitory concentrations of CIT-8 peptide against S. aureus MW2 in the presence of physiological salt and serum 
concentration

Peptide
MIC (μg/mL)

Medium only + NaCl (150 mM) + CaCl2 (2.5 mM) + ZnSO4 (8 μM) + MgSO4 (1 mM) + human serum (5%) + human serum (10%)
CIT-8 4 4 4 4 4 8 8
Vanc 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1

Vanc, Vancomycin. MIC, minimum inhibitory concentration.
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three cases in the presence of  the ML-designed peptides, whereas 
the WT peptides templates did not increase the propidium iodide or 
SYTOX fluorescence (Supplemental Figure 8).

We also measured ATP leakage from S. aureus MW2 cells in 
the presence of  CIT-8 (Figure 5D) using a luminescence-based ATP 
assay. Treatment with CIT-8 increased luminescence levels com-
pared with untreated controls, suggesting ATP leakage (Figure 5D).

To obtain visual representation of  the membrane impact 
caused by CIT-8, we performed cryo-transmission and scanning 
electron microscopy (Figures 5, E–H). Cryo-EM showed that 
CIT-8 treatment of  S. aureus MW2 cells caused membrane dis-
ruption and perturbation (Figure 5F), compared with untreated 
cells (Figure 5E), which had intact cytoplasmic membranes. In 
addition, the “transparency” exhibited by CIT-8-treated cells also 
suggested leakage of  cytoplasmic materials through the damaged 
cell membrane (Figure 5F). In agreement with the cryo-EM 
observations, SEM images of  the CIT-8–treated S. aureus MW2 
cells showed a heterogenous, rough membrane surface (Figure 
5H). The damaged bacterial cells also showed blebbing, vacuoles, 
and invaginations (Figure 5H).

Finally, we tested the susceptibility to CIT-8 of  an S. aureus 
mprF transposon mutant from the Nebraska Transposon Mutant 
Library (NTML) (31), which lacks the capability to transfer a lysyl 
group on the bacterial membrane surface. Deletion of  mprF gene 
in S. aureus decreases the net negative charge of  the bacterial mem-
brane, thereby reducing the electrostatic interactions with cation-
ic AMPs (32). We observed a 2-fold reduction in MIC of  CIT-8 
against mprF transposon mutant compared with the S. aureus JE2 
background (Supplemental Table 6). The increased antimicrobial 
potency of  CIT-8 in the mprF transposon mutant, which has an 
increased net negative charge, is consistent with the conclusion that 
CIT-8 targets the cell membrane of  the bacteria.

Extended effects of  CIT-8 in bacterial physiology. To identify 
potential CIT-8 targets in S. aureus MW2, we carried out RNA-
seq analysis. At 0.5× MIC, CIT-8 affected the expression of  
several genes involved in membrane regulation, the vitamin B6 
pathway, and purine and aminoacyl tRNA biosynthesis (Supple-
mental Tables 7 and 8). Treatment with CIT-8 upregulated 179 
genes by more than 2-fold (P < 0.05) (Figure 5I and Supplemen-
tal Table 7). Several essential genes involved in the DXP-inde-
pendent pathway for vitamin B6 production were upregulated, 
including pdxT (5.9-fold) and pdxS (5.3-fold). CIT-8 treatment 
also caused an upregulation of  key enzymes in purine biosyn-
thesis, namely purL, purS, purQ, and purH, by 5.2-, 5.0-, 5.0-, and 
3.6-fold, respectively. CIT-8 downregulated 267 genes by at least 
2-fold or more (P < 0.05, Supplemental Table 8). Notably, several 
downregulated genes are involved in aminoacyl tRNA biosyn-
thesis, including tRNAGln (8.5-fold), tRNAser (8.4-fold), tRNAarg 
(7.7-fold), tRNAcys (6.8-fold), and other aminoacyl tRNA genes 
(Supplemental Figure 9 and Supplemental Table 8).

Next, we performed targeted metabolomics to complement 
the RNA-seq data. We measured the change in primary metab-
olite levels in CIT-8–treated S. aureus MW2 cells using LC-MS/
MS. From PLSDA plots, we found that CIT-8 at 8 μg/mL caused 
substantial metabolic alterations in S. aureus MW2 when compared 
with untreated controls (Supplemental Figure 10). In the CIT-8–
treated S. aureus MW2 cells, ten primary metabolites were signifi-
cantly altered (P value < 0.05) (Supplemental Figure 11). Pathway 
impact analysis showed that CIT-8 affected amino acid synthesis 
(e.g., phenylalanine, tyrosine, and tryptophan), aminoacyl tRNA 
biosynthesis, glycolysis, the TCA cycle, metabolism of  glutamine, 
glycerophospholipid synthesis, and pyrimidine biosynthesis (Figure 
5J). Our targeted metabolomics also revealed a downregulation of  
erythrose-4-phosphate, a key component of  the DXP-independent 
pathway for vitamin B6 biosynthesis (33).

To determine whether the effects of  CIT-8 on genes involved 
in vitamin B6 biosynthesis is a consequence of  these genes being a 
direct target of  CIT-8 or an indirect stress response by the bacteria, 
we tested whether a pdxS-transposon mutant (pyridoxal 5’-phos-
phate synthase subunit PdxS) was more susceptible or resistant to 
CIT. However, CIT-8 had the same MIC for the pdx-transposon 
mutant and the parent S. aureus strain JE2, even in the presence 
of  100 μM supplemental external vitamin B6 (Supplemental Table 
9), suggesting that CIT-8 is not directly targeting the vitamin B6 
biosynthetic pathway.

In vivo therapeutic efficacy of  CIT-8 peptides. We tested the in 
vivo efficacy of  CIT-8 using an abraded skin infection model 
where mice were infected with 1 × 107 CFU of  S. aureus MW2 
(Figure 6). We formulated a CIT-8 peptide ointment (1% and 
2% w/w) using white petroleum jelly as a base and applied it to 
treat S. aureus MW2 wound infections in a prophylactic (acute) 
and an established infection model (Figure 6A). A single treat-
ment of  CIT-8 (2% w/w) applied after 10 minutes of  bacterial 
inoculation (representing a prophylactic/acute model) reduced 
S. aureus MW2 burden by 2.3 log (P < 0.0001) compared with 
the vehicle-treated animal group. The CIT-8 (1% w/w) formu-
lation lowered the burden by 1.7 log (P < 0.0001) (Figure 6B). 
For comparison, we included mupirocin (2% w/w) ointment 
as a positive control, which reduced the bacterial burden by 2.8 

Table 3. MIC (μg/mL) of CIT-8 peptide against S. aureus isolates

Sl no. S. aureus strains Description MIC (μg/mL)
CIT-8 Vanc

1 VRS1 VRSA 4 > 4
2 JE2 MRSA 4 1
3 AR0215 VISA 4 2
4 AR0216 VISA 8 4
5 AR0217 VISA 4 2
6 AR0219 VISA 8 > 4
7 AR0225 VISA 4 2
8 BF1 Clinical isolate 4 0.5
9 BF2 Clinical isolate 8 2
10 BF3 Clinical isolate 8 1
11 BF4 Clinical isolate 4 2
12 BF5 Clinical isolate 4 1
13 BF6 Clinical isolate 4 1
14 BF7 Clinical isolate 4 1
15 BF8 Clinical isolate 4 2
16 BF9 Clinical isolate 4 0.5
17 BF10 Clinical isolate 4 2
18 BF11 Clinical isolate 4 2

Vanc, Vancomycin. MIC, minimum inhibitory concentration.
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A repeat of  the experiment testing the efficacy of  CIT-8 in 
the prophylactic (acute) skin abrasion model using n = 8 animals 
(Supplemental Figure 12) showed that treatment with CIT-8 (2% 
w/w) reduced the S. aureus MW2 bacterial burden by 2.1 log (P < 
0.0034) and that 1% w/w CIT-8 reduced it by 1.4 log (P < 0.0045) 
(Supplemental Figure 12). In this experiment we also carried out 
histopathology analysis of  skin tissues using H&E and Gram stains 
(Supplemental Figure 13). Abraded skin with vehicle control (no 
peptide) showed several key features: (a) a disorganized epidermal 
layer (broken epidermis at some points), (b) sloughing of  the keratin 
layer with the presence of  a dense population of  poly mononuclear  

log (P < 0.0001). Similarly, in an established infection model, a 
single dose of  CIT-8 applied after 24 hours of  S. aureus MW2 
inoculation reduced 0.85 log (P < 0.0208) (at 1% w/w) and 1.8 
log (P < 0.0088) (at 2% w/w) of  S. aureus MW2 compared with 
the vehicle-treated animals (Figure 6C). The antibiotic control 
mupirocin (2% w/w) ointment decreased the bacterial load of  S. 
aureus MW2 by 2.4 log (P < 0.0078). The CIT-8 peptide–treated 
(2% w/w) skin in the prophylactic model also displayed reduced 
levels of  proinflammatory cytokines and chemokines, including 
TNFA (2.5-fold, P = 0.019), IL6 (5-fold, P = 0.039), and MCP1 
(5-fold, P = 0.006) (Figure 6, D–F).

Figure 3. Antibiofilm and antipersister activity of CIT-8. (A and B) Killing kinetics of CIT-8 against S. aureus MW2 in (A) exponential phase and (B) genta-
micin-induced persister cells at concentrations of 4 and 40 μg/mL, compared with untreated bacterial (BC) control, colony forming units (CFU) counts were 
monitored for 120 minutes (n = 2, replicated thrice). (C and D) Killing kinetics of CIT-8 against S. aureus strain VRS1 in (C) exponential phase and (D) genta-
micin-induced persister cells at 4 and 40 μg/mL, CFU counts were monitored for 120 minutes (n = 2, replicated thrice). We included ciprofloxacin (cipro) (at 
10 μg/mL) and linezolid (at 100 μg/mL) as antibiotic controls and bithionol (at 10 μg/mL) as a positive control. (E and F) Disruption of 24 hour established 
biofilms of (E) MRSA (S. aureus MW2), and (F) VRSA (S. aureus VRS1) by CIT-8, measured as log reductions in bacterial loads on solid membranes treated 
with 4 and 40 μg/mL of CIT-8 (n = 6, *P < 0.05 by 1-way ANOVA followed by Dunnett’s multiple comparison test). We included 10 μg/mL vancomycin 
(Vanc) as control. (G and H) Inhibition of S. aureus MW2 biofilm formation by CIT-8 at concentrations ranging from 4–32 μg/mL after 24 hours of treat-
ment, assessed using (G) live-cell viability (XTT assay), and (H) biomass quantification (crystal violet staining) (n = 3, replicated twice). (I and J) Disruption 
of 24 hours S. aureus MW2 established biofilms by CIT-8 at 4–32 μg/mL, evaluated by (I) reductions in live-cell viability (XTT assay) and (J) biomass loss 
(crystal violet staining) (n = 3, replicated twice). (K and L) Fluorescence microscopy images (10×) of 24 hour-established S. aureus MW2 biofilms stained 
with live/dead staining, (K) untreated control, and (L) biofilms treated with 32 μg/ml of CIT-8. Scale bars: 0.05 mm.
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Discussion
Addressing the world-wide rise in the antimicrobial resistance 
requires the development of  a next generation of  antimicrobi-
al agents (34). AMPs represent a class of  antiinfective molecules 
with the potential to act as new antibiotics (3). Here, we present 
an AMP design strategy to accelerate AMP therapeutic discovery. 
Our method combines noncomputational, traditional strategies 
(template-based design), including truncation (6), substitution 
(7), and structure-based approaches (10) with ML-guided peptide  

cells (PMN), and (c) mononuclear cells (MN) in both the epidermis 
and dermis, indicating enhanced inflammation (Supplemental Fig-
ure 13 Panel A). The untreated skin also showed bacterial biofilms, 
as demonstrated by Gram staining (Supplemental Figure 13 Panel 
B). CIT-8 treatment (2% w/w formulation) resulted in a more intact 
epidermis, reduced numbers of  PMN and MN (less inflammation), 
and no bacterial biofilm patches in contrast with vehicle-treated 
mice (Supplemental Figure 13), suggesting that CIT-8 may have 
protective activity against S. aureus on the skin.

Figure 4. Structural insights to membrane targeting by CIT-8. (A) Natural abundance 2D- 13C-HSQC spectrum of CIT-8. (B) 2D-NOESY spectrum and summary of 
important NOESY distance restraints used in the CIT-8 structure calculation. (C) CIT-8 NMR solution structure ensemble. (D) Ribbon representation of the first 
conformer in the ensemble. (E) Two surface representations obtained by 180º rotation along the x-axis showing the distribution of hydrophobic (yellow) and 
charged (blue) residues. All structure figures were prepared in Pymol using the YRB script. (F) Snapshot of an all-atom MD simulation of peptide CIT-8 in the 
presence of DOPC:DOPG (7:3) mimetic membrane model showing complete peptide insertion at 500 ns. Blue, charged residues; brown, hydrophobic residues. (G) 
Changes in membrane lipid density upon CIT-8-induced water perturbation. (H) Changes in membrane thickness upon CIT-8 interaction with model membrane.
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and was effective at reducing MRSA burden in an established infec-
tion model using skin-abraded mice. CIT-8 also suppressed the lev-
els of  proinflammatory cytokines.

In our study, we truncated citropin 1.1 to stabilize the amphip-
athic α-helix by deleting the glycine expansion on the C-terminus. 
Citropin 1.1 includes an α-helical structure along the entire back-
bone from residue 1–12 in presence of  SDS micelles (35). The pres-
ence of  glycine and prolines destabilizes the α-helix (36). Because 

optimization, in a single comprehensive AMP design strategy. 
Using this methodology and starting from a natural AMP with min-
imal antistaphylococcal activity, we developed CIT-8, a short (13-
mer) citropin-1.1–derived peptide. Leveraging the entire sequence 
space information present in AMP databases further refined our 
approach. Importantly, as proof  of  concept, CIT-8 demonstrated 
extensive antistaphylococcal activity, killed MRSA and VRSA per-
sisters, inhibited biofilm formation, disrupted established biofilms, 

Figure 5. Mechanism of action of CIT-8 and associated stress response by MRSA. (A) Fluorescence-based, DIBAC4(3)-assisted S. aureus MW2 membrane 
depolarization caused by CIT-8 peptide (at 32 μg/mL) monitored for 40 minutes after peptide exposure (n = 3). (B and C) Fluorescence-based membrane 
permeability of S. aureus MW2 treated with CIT-8 (4–32 μg/mL), untreated bacteria (UT), vancomycin (Vanc), and melittin (Mel) at 32 μg/mL after 60 
minutes, assessed using (B) PI and (C) SYTOX Green fluorescence (n = 4, ****P < 0.0001 by 1-way ANOVA followed by Dunnett’s multiple comparison 
test). (D) ATP release from S. aureus MW2 upon CIT-8 (at 32 μg/mL) interaction for 30 minutes (* denotes P < 0.05 by Student’s t-test, unpaired 2-tailed). 
(E) Cryo-EM image of control S. aureus MW2. (F) Cryo-EM image of S. aureus MW2 treated with CIT-8 at 80 μg/mL for 60 minutes (green arrows indicate 
membrane perturbation). (G) SEM image of control S. aureus MW2. (H) SEM image of S. aureus MW2 treated with CIT-8 at 40 μg/mL for 60 minutes (white 
arrows indicate membrane blebbing). (I) RNA-seq–derived differential gene expression (DGE) of significantly upregulated genes (n = 2 samples, P < 0.05, 
calculated using DESeq2 (76) in S. aureus MW2 by CIT-8 (at 2 μg/mL) treated for 30 minutes. (J) Pathway analysis of the targeted metabolome of S. aureus 
MW2 treated with peptide CIT-8 at 4 μg/mL for 30 minutes, revealing significant alterations in key stress and metabolic pathways (n = 3, significant 
metabolite in pathways were determined by their P < 0.05 obtained by Student’s t test, unpaired, 2-tailed). (K) Stress responsive vitamin B6 pathway in S. 
aureus MW2, indicating key regulatory genes (pdxT and pdxS revelated by our RNA-seq analysis) and metabolite (Erythrose 4-phosphate, identified by our 
targeted metabolomics analysis) positions in the pathway. Scale bars: 100 nm (E and F); 400 nm (G and H).
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ML with QSAR to identify evolutionarily favored amino acids to 
optimize amino acid substitutions.

To select the optimal amino acid candidates for the substitu-
tions, we used unsupervised ML to explore the physicochemical 
space of  more than 14,000 functional AMPs. ML-based approach-
es in drug discovery are widely used to identify or create new anti-
microbial candidates and typically involve training a model on a 
dataset to either predict the antimicrobial activity of  a given set of  
peptides or generate new potential AMP candidates (18, 20, 21, 
39). ML-based models for de novo AMP design include AMP-
GAN (40), which utilizes a generative adversarial network, and 
CFPS (41), which uses deep generative variational autoencoders. 
To predict antimicrobial activity, models such as CalcAMP (42) 
and iAMPCN (43) leverage convolutional neural networks. Unlike 
these models, the approach described in our work does not rely on 
prediction or sequence generation for new candidates but instead 
utilizes ML algorithms to understand the inherent characteristics 

positively charged residues of  the peptides interact with the nega-
tively charged phospholipid head groups for effective peptide-mem-
brane binding (37), we substituted the negatively charged aspartic 
acid and the neutral serine on the hydrophilic face to improve pep-
tide-membrane ionic interaction. We also filled a hydrophobic sur-
face gap with bulkier amino acids on the template peptide to further 
improve membrane binding on the hydrophobic face.

Similar to our AMP design approach, in a previous study, 
the substitution of  charged amino acid residues for noncharged 
polar residues on the polar face of  Aristicluthys nobilia IFN-I and 
Alyteserin 1c–derived peptides was shown to increase antimicro-
bial activity (38). Additionally, Wang et al. developed a potent 
anti-MRSA peptide, 17BIPHE2, by filling the hydrophobic gaps in 
GF-17d3 using bulkier biphenyl residues (16). However, in these 
aforementioned studies, the amino acid substitutions were guid-
ed solely by QSAR, which lacks the capability to guide the selec-
tion of  the most appropriate amino acids. Our report integrates  

Figure 6. In vivo efficacy of CIT-8 in a skin-abraded murine infection model infected with S. aureus MW2. (A) Schematic representation of the 
skin-abraded murine model representing both prophylactic and established models. (B) Quantified bacterial load from skin specimens collected from mice 
infected with exponential phase S. aureus MW2 and treated after 10 minutes (representing a prophylactic model) with CIT-8 (2% w/w), CIT-8 (1% w/w), 
and mupirocin (2% w/w) ointments compared with vehicle control (n = 12, ****P < 0.0001, **P < 0.01, *P < 0.05 calculated by 1-way ANOVA followed by 
Dunnett’s multiple comparison test). (C) Quantified bacterial load from skin specimens collected from mice infected with exponential phase S. aureus 
MW2 and treated after 24 hours (representing an established infection model) with CIT-8 (2% w/w), CIT-8 (1% w/w), and mupirocin (2% w/w) ointments 
compared with vehicle control (n = 8, **P < 0.01, *P < 0.05 calculated by 1-way ANOVA followed by Dunnett’s multiple comparison test). Cytokine estima-
tions for (D) TNFA, (E) IL6, and (F) MCP1 (n = 6, *P < 0.05, calculated by Student’s t test, unpaired, 2-tailed) in murine skin treated with CIT-8 (2% w/w) 
after 10 minutes of bacterial infection in a prophylactic model.
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surface, similar to DFTamP1 (13) and DFT503 (32). In general, 
amphipathicity enables α-helical AMPs to bind effectively to anionic 
bacterial membranes and exert their antimicrobial effects (3, 57). In 
addition, our MD studies showed that CIT-8 positions itself  inside the 
outer leaflet, parallel to the phospholipid bilayer in a DOPC:DOPG 
(7:3) model membrane. Because CIT-8 does not have the horizontal 
length to form a toroidal pore, it cannot align perpendicularly to the 
lipid membrane, as longer peptides such as magainin 2 (58) or melittin 
can (59). SEM and cryo-TEM imaging suggest that CIT-8 created large 
membrane defects on the S. aureus membrane. CIT-8 might adopt an 
alternate membrane deforming strategy that makes large membrane 
deformations similar to a carpet model (60).

Apart from targeting the bacterial membrane, CIT-8 also 
impacts other bacterial physiological functions. Our RNA 
sequencing of  S. aureus MW2 suggests that CIT-8 treatment 
altered genes involved in vitamin B6 biosynthesis, purine biosyn-
thesis, and aminoacyl tRNA biosynthesis. Vitamin B6 is known 
to serve as a cofactor for many enzymes related to amino acid 
metabolism in Bacillus subtilis (61). Purine metabolism is linked to 
peptide-induced stress signals, as observed in LfcinB and Bactene-
cin 7 peptides (62). In addition, the aminoacyl tRNA biosynthesis 
pathways are associated with the bacterial response to reduced 
protein synthesis due to amino acid stress (63). To validate our 
RNA-seq–based finding regarding the impact of  CIT-8 on the 
vitamin B6 biosynthetic pathway, we conducted targeted metab-
olomics. Our results revealed a downregulation of  erythrose-4–
phosphate, a key component of  the DXP-independent pathway 
for vitamin B6 biosynthesis (33). This simultaneous downregu-
lation of  erythrose-4–phosphate and upregulation of  pdx genes 
(from RNA-seq analysis) may suggest a compensatory feedback 
mechanism. The reduction in erythrose-4–phosphate levels may 
indicate a disruption in the DXP-independent pathway, trigger-
ing an adaptive response in which the cell upregulates pdx gene 
expression to sustain vitamin B6 production. Given the concur-
rence between RNA-seq and metabolomics data regarding alter-
ations in the vitamin B6 pathway, we sought to confirm whether 
this pathway contributes to additional MOA of  CIT-8 against S. 
aureus (Figure 5K). However, our evaluation of  the NTML pdxS 
transposon mutant (31), which did not exhibit any susceptibility 
changes to CIT-8, is consistent with the conclusion that CIT-8 
primarily targets the bacterial membrane for bacterial killing and 
the impact on the vitamin B6 pathway is most likely a compo-
nent of  an indirect stress response. Nevertheless, further studies 
are needed to elucidate the regulatory mechanisms of  the vitamin 
B6 biosynthetic pathway and its potential involvement in bacterial 
adaptation to CIT-8 exposure.

Importantly, CIT-8 (2% w/w) in petroleum-based formula-
tion was effective in reducing MRSA bacterial burden, protected 
the skin, resulted in fewer epidermal and dermal deformities, and 
prevented biofilm formation in a murine model of  S. aureus wound 
infection (15). Wound injuries represent over 4% of  all emergen-
cy department visits in the United States (64) and are often linked 
with biofilm infections (65). Unlike traditional antibiotics, AMPs 
offer promising potential for wound care due to their broad anti-
microbial spectrum resulting from their membrane-targeting abil-
ities (3), which also mitigate the risk of  resistance development 
(3). While several AMPs, including SAAP-148 (15), 17BIPHE2 

of  existing AMPs. Using k-means clustering, we selected peptide 
sequences that had similar properties to known helical antistaph-
ylococcal peptides (13, 44) and constructed a knowledge graph to 
derive the AGO and APO patterns that guided the substitutions 
(45, 46). By transforming complex peptide sequence data into inter-
pretable patterns, our method incorporates the extraction of  evolu-
tionary knowledge that informs the rational design of  peptides (19, 
21, 25, 47). In fact, our hybrid approach identified the most prom-
ising peptides across the four templates, citropin 1.1, hylaseptin P1, 
mastoparan-L, and r-CAMEL, in a single-step method, selecting 
those with the highest number of  AGO instances.

In MRSA, antimicrobial resistance is linked to life-threatening 
infections, such as pneumonia, sepsis, and endocarditis (48). The 
situation is further complicated by the presence of  S. aureus bac-
teria in alternative physiological states such as biofilms and per-
sister cells, which are often neglected in early antimicrobial drug 
discovery stages even though they contribute substantially to chron-
ic, relapsing infections (49). Interestingly, the citropin 1.1 template 
demonstrated weak anti-MRSA activity (MIC of  32 μg/mL against 
S. aureus JE2, a virulent community acquired S. aureus USA300 
isolate) (50). However, CIT-8, which we derived from citropin 1.1, 
exhibited potent antistaphylococcal activity against a wide range of  
antibiotic-resistant S. aureus.

Moreover, CIT-8 eradicated MRSA and VRSA persisters that 
survived in extremely high doses of  gentamicin (20 μg/mL). Giv-
en that persister cell membranes are more robust than those of  
growing cells, and even minor structural changes in small mole-
cules can alter their antipersister abilities (51), our design strategy 
of  informed structural modifications increased the efficacy of  the 
derivative peptide CIT-8 against the bacterial membrane, resulting 
in a peptide, CIT-8, with antipersister properties. CIT-8 also inhib-
ited biofilm formation and disrupted established MRSA biofilms 
that resulted in lower bacterial cell density and a higher prevalence 
of  dead cells, similar to a lactoferrin and cathelicidin hybrid AMP, 
Lf-KR-12, which reportedly weakens the biofilm matrix by forming 
pores within lipid components (52).

Notably, CIT-8 demonstrated potent antistaphylococcal activ-
ity even in the presence of  physiological salts and serum concen-
trations. Salt ions compete with AMPs for bacterial membranes, 
decreasing AMP-membrane binding effectiveness (52), as seen in 
AMPs such as human defensins, linear and tetrameric LfcinB6, 
and gramicidin S (52, 53). Similarly, the presence of  serum influ-
ences the antimicrobial potencies of  several AMPs because of  
AMP binding to serum proteins such as albumin and apolipopro-
teins (54). However, AMPs with high cationic charges and hydro-
phobicity such as the arginine-rich decamer peptides D5 and D6, 
cecropin-4–derived C18 peptides, human cathelicidin-derived 
peptides 106 and 110, and SAAP-148, are known to mask the salt 
and serum effects (15, 55, 56). Our approach of  enhancing CIT-8 
binding to the bacterial membrane ultimately increased the charge 
and hydrophobicity of  the peptide, which appear to be key factors 
for its serum and salt resistance.

In our peptide design, the replacement of neutral amino acids 
with charged ones on the hydrophilic face and the incorporation of  
hydrophobic substitutions on the nonpolar face substantially enhanced 
the amphipathicity in CIT-8. Our NMR studies suggest that CIT-8 
is amphipathic and has a broad hydrophobic-membrane–interacting  
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captures the hierarchical relationship between peptides and peptide 

fragments. We defined our data model using the OWL 2 Web Ontology 

Language (https://www.w3.org/TR/owl2-overview/) and the ontolo-

gy was constructed using the OWLReady2 Python library (codes are 

represented below) (75).

with onto:

class Fragment(Thing):

pass

class hasSequence(DatatypeProperty, FunctionalProperty):

domain = [Fragment]

range = [str]

class numberOfOccurrences(DatatypeProperty, FunctionalProperty):

domain = [Fragment]

range = [int]

class length(DatatypeProperty, FunctionalProperty):

domain = [Fragment]

range = [int]

class hasParent(ObjectProperty):

domain = [Fragment]

range = [Fragment]

class hasChild(ObjectProperty):

domain = [Fragment]

range = [Fragment]

inverse_property = hasParent

The ‘Fragment’ class serves as the class of  the peptide sequences 

and their fragments. Each ‘Fragment’ is characterized by its amino acid 

sequence, its length, and the frequency with which the fragment occurs 

in the dataset. To model the hierarchical structure inherent to peptides 

and their fragments, we introduced the ‘hasParent’ object property and 

its inverse object property ‘hasChild.’ The ‘hasParent’ and ‘hasChild’ 

properties linked ‘Fragment’ instances to their immediate larger (par-

ent) and smaller fragment (child), respectively, allowing for the tracing 

of  a fragment’s lineage within a peptide sequence.

To populate the ontology, we generated all possible fragments of  

lengths 1–4 amino acids from the peptide sequences included in the 

dataset. For each fragment, we recorded its sequence, counted its occur-

rences across the dataset, and calculated its length. We then established 

the hasParent and hasChild relationships to interconnect fragments 

based on sequence containment.

Identification of  common parent sequences and peptide modification pro-

tocol. To engineer peptide sequences with potentially enhanced func-

tional properties, we instituted a protocol that leverages the ontology 

of  peptide fragments to guide the substitution of  amino acids at specif-

ic positions within the peptide chains. This methodological adaptation 

was driven by the hypothesis that the most common parental fragment 

sequences represent evolutionarily conserved and functionally relevant 

amino acid occurrence patterns. We termed these preferential occur-

rences of  specific groups of  amino acids predominantly in natural 

AMPs as amino acid group occurrences (AGOs). We also quantitated 

the number of  instances these AGOs occurred as the number of  occur-

rences (NOO) and the most pronounced amino acid percent occur-

rence (APO) at specific position of  an AMP.

We constructed a SPARQL query to retrieve parent fragments of  a 

given sequence along with their occurrence frequencies (source code is 

represented below).

(16), P60.4Ac (66), D-IK-8 (67), WR-12 (67), and piscidin 3 (68) 
have demonstrated potent topical antistaphylococcal effects, we 
believe that our approach to designing shorter, potent, peptides 
holds substantial potential.

In summary, by integrating traditional peptide design methods 
with unsupervised ML techniques, we developed an AMP design 
strategy that enabled us to make informed modifications to a pep-
tide template, resulting in the creation of  a short and potent AMP. 
Our approach, which involved reducing nonessential regions of  
the peptide template and selectively substituting amino acids at 
strategic positions, not only fine tuned the desired antimicrobial 
characteristics but also minimized the number of  peptide candi-
dates to be chemically synthesized. Furthermore, in a proof-of-
concept study, we successfully enhanced citropin 1.1 to develop 
CIT-8, demonstrating the practical utility of  our computational 
approach. Because CIT-8 exhibited potent antimicrobial activity 
against MRSA in vitro as well as in a localized mouse model of  
MRSA infection, development of  CIT-8 as an antistaphylococcal 
agent looks promising. Moreover, utilizing our strategy to develop 
short-length AMP candidates can reduce chemical synthesis costs 
and help make the commercial development of  AMPs easier, faster, 
and more targeted.

Methods
Sex as a biological variable. Only female mice were used in this study. Sex 

was not considered as a biological variable in the experimental design 

or analysis. No specific rationale guided the selection of  female mice, 

and given the immunological nature of  the model, we did not anticipate 

sex-based differences in the outcomes.

Data collection and processing. We downloaded all the peptide 

sequences that had documented antimicrobial activity against any 

Gram-positive or Gram-negative bacteria from the Antimicrobial Pep-

tide Database (APD) (https://aps.unmc.edu/) (69), the Database of  

Antimicrobial Activity and Structure of  Peptides (DBAASP) (https://

dbaasp.org/home) (70), and the Database for Antimicrobial Peptides 

(dbAMP) (https://awi.cuhk.edu.cn/dbAMP/) (71). Details of  data 

collection and processing are provided in the Supplemental Materials.

Data visualization and clustering. To visualize the peptides in a 

2-dimensional plane, we employed the t-distributed Stochastic 

Neighbor Embedding (t-SNE) technique (72) and transformed the 

5-dimensional PCP descriptors. We selected this nonlinear dimen-

sionality reduction method because of  its effectiveness in preserv-

ing local data structures and revealing patterns in high-dimensional 

datasets (72). Using matplotlib and seaborn for plotting, we created 

scatter plots to display the t-SNE–transformed data points. A differ-

ent color was used for each antimicrobial activity classification to 

explore potential clusters or patterns.

We used k-means clustering, an unsupervised ML algorithm, to 

categorize the peptide sequences into distinct groups based on their 

physicochemical properties (73). We used this approach to uncover 

inherent patterns within our dataset, facilitating the identification of  

peptides with similar characteristics that might correlate with their anti-

microbial activities or structural features. We utilized silhouette anal-

ysis to visualize the separation distance between the resulting clusters 

and to determine the number of  clusters for k-means clustering (74).

Knowledge graph and ontology. To aid in the systematic analysis of  

peptide sequences and their fragments, we developed an ontology that 
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protocol IS00008451 at the Houston Methodist Research Institute 

(Houston, Texas, USA).

Data availability. Values for all data points in graphs are reported 

in the Supporting Data Values file. Data are available upon request. 

The RNA-Seq data is freely available under the National Center for 

Biotechnology Information (NCBI) Sequence Read Archive (SRA) 

accession number PRJNA1243451.
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PREFIX: <http://example.org/fragment_onto.owl#>

SELECT ?fragment ?parentFragmentSequence ?numberOfOccur-

rences

WHERE {

?fragment a:Fragment.

?fragment:hasSequence ?fragmentSequence.

FILTER(?fragmentSequence IN (“[fragment of  interest]”))

?fragment:hasParent ?parentFragment.

?parentFragment:numberOfOccurrences ?numberOfOccurrences.

?parentFragment:hasSequence ?parentFragmentSequence.

}RDER BY DESC(?numberOfOccurrences)

To improve peptide-membrane interactions, we specifically target-

ed sequence modifications that were necessary, including the initial ion-

ic charge-charge attachment of  peptides to phospholipid head groups, 

followed by a hydrophobic interaction between the peptide hydropho-

bic amino acid side chains and membrane lipid tails to alter membrane 

conformation. The SPARQL query was then executed to provide the 

most common peptide sequences in which this fragment appeared as a 

subsequence. The amino acid at the target position was substituted with 

the amino acid from the most prevalent parent sequence, which extend-

ed the original fragment by one residue at the position of  interest.

Wet lab validation of  the designed Citropin 1.1 peptides. Supplemental 

Materials, Information, and Methods describes in detail the materials 

and procedures used in this study, bacterial strains (Supplemental Table 

10) and growth conditions, peptide synthesis and characterization, fol-

lowed by the in vitro and in vivo assays.

Statistics. All values are represented as mean ± SD. All statistical 

analyses for in vitro and in vivo experiments were performed using 

GraphPad Prism (version 10.3.0). Specific statistical methods are 

described in the figure legends. One-way ANOVA followed by Dun-

nett’s multiple comparisons test was used for comparisons among 

multiple groups, while unpaired 2-tailed Student’s t test was applied 

for comparisons between 2 groups. Differences were considered statisti-

cally significant at P < 0.05.

Study approval. All animal experiments were approved by the 

Institutional Animal Care and Use Committee (IACUC) under 
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