
 1 

Collection of samples and processing 1 

We utilized PBMCs from individuals at-risk for RA (ARI, n=52) and established RA (n=67) who 2 

were enrolled in the AMP RA/SLE Network. ARI were sub-categorized based on their family 3 

history and/or the positivity of ACPA into FDR+ACPA- (n=23), FDR-ACPA+ (n=9), and 4 

FDR+ACPA+ (n=20). Similarly, RA patients were categorized into ACPA+ and ACPA-. For 5 

comparison, we collected PBMCs from healthy individuals as controls (n=48). Samples were 6 

shipped to the central AMP RA/SLE Biorepository, Oklahoma Medical Research Foundation 7 

Biorepository, until sample collection was complete. All the collected PBMC samples (n=167) 8 

with other consortium samples (Systemic lupus erythematosus (SLE), n=140) were randomly 9 

distributed based on disease status, clinical site, and sex into 23 technical batches to minimize 10 

effects from site differences and other demographics.  11 

 12 

We then applied computational integrative and association algorithms to identify unique co-13 

varying phenotypical changes across different preclinical and clinical individual groups. We 14 

applied an optimized downsampling strategy to analyze all mononuclear cells as well as specific 15 

immune cell lineages for computational efficiency. We next performed a sensitivity analysis by 16 

changing the downsampling proportions and confirmed that the immune cell clusters detected 17 

by different downsampling parameters are stable (Extended Data Fig. 1). In total, we analyzed 18 

1,640,747 cells for all mononuclear cells analysis (167 individuals), and 2,196,578 T cells (163 19 

individuals), 1,886,084 myeloid cells (161 individuals), 1,918,711 B cells (167 individuals), and 20 

2,008,997 NK cells (160 individuals) for each cell type analysis. To correct the technical batch 21 

effect and inter-individual variation, we applied a single-cell batch effect correction algorithm (1) 22 

and quantified the improvement of mixture levels across technical batches, clinical sites, and 23 

individual samples after correction (1, 2). After batch effect correction, the degree of mixing 24 

levels across batches, race, and sites was significantly increased compared to before correction 25 

(Extended Data Fig. 2). For accurate integration, we confirmed that the mixing levels for cell 26 

https://paperpile.com/c/arT3Uc/m6dT
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type, measured by LISI (Local Inverse Simpson's Index)(1, 3), as equal to 1, reflecting a correct 27 

separation of unique cell types throughout the integrative embedding. One individual with 28 

established RA whose baseline sample was not available was not included in the comparative 29 

analyses, which specifically required baseline samples (e.g., RA vs. Control comparisons at 30 

baseline).  31 

 32 

Mass cytometry antibody staining and quality control 33 

All PBMC samples from 167 individuals (established RA (n=67), ARI (n=52) and controls 34 

(n=48)) were thawed in a 37 °C water bath for 3 minutes and then mixed with 37 °C thawing 35 

media containing: RPMI Medium 1640 (Life Technologies #11875-085) supplemented with 5% 36 

heat-inactivated fetal bovine serum (Life Technologies #16000044), 1 mM GlutaMAX (Life 37 

Technologies #35050079), antibiotic-antimycotic (Life Technologies #15240062), 2 mM MEM 38 

non-essential amino acids (Life Technologies #11140050), 10 mM HEPES (Life Technologies 39 

#15630080), 2.5 x 10-5 M 2-mercaptoethanol (Sigma-Aldrich #M3148), 20 units/mL sodium 40 

heparin (Sigma-Aldrich #H3393), and 25 units/mL benzonase nuclease (Sigma-Aldrich 41 

#E1014). 100 μL aliquots of each sample post-thaw were mixed with PBS (Life Technologies 42 

#10010023) at a 1:1 ratio to be counted by flow cytometry. Between 0.5 – 1.0 x 106 cells were 43 

used for each sample. All samples were transferred to a polypropylene plate (Corning #3365) to 44 

be stained at room temperature for the rest of the experiment. 45 

  46 

The samples were spun down and aspirated. Rhodium viability staining reagent (Standard 47 

BioTools #201103B) was diluted at 1:1000 and added for five minutes. 16% stock 48 

paraformaldehyde (Fisher Scientific #O4042-500) was diluted to 0.4% in PBS and added to the 49 

samples for five minutes. After centrifugation and aspiration, Human TruStain FcX Fc receptor 50 

blocking reagent (BioLegend #422302) was used at a 1:100 dilution in cell staining buffer (CSB) 51 

(PBS with 2.5 g bovine serum albumin [Sigma Aldrich #A3059] and 100 mg of sodium azide 52 

https://paperpile.com/c/arT3Uc/m6dT+wjaMW
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[Sigma Aldrich #71289]) for 10 minutes followed by incubation with conjugated surface 53 

antibodies (each marker was used at a 1:100 dilution in CSB, unless stated otherwise) for 30 54 

minutes. All antibodies were prepared and validated by the Harvard Medical Area CyTOF 55 

Antibody Resource and Core (Boston, MA). 56 

 57 

After centrifugation, samples were resuspended with culture media. 16% stock 58 

paraformaldehyde (Fisher Scientific #O4042-500) dissolved in PBS was used at a final 59 

concentration of 4% for 10 minutes to fix the samples before permeabilization with the 60 

FoxP3/Transcription Factor Staining Buffer Set (ThermoFisher Scientific #00-5523-00). The 61 

samples were incubated with SCN-EDTA coupled palladium barcoding reagents for 15 minutes 62 

followed by incubation with Heparin (Sigma-Aldrich #H3149-100KU) diluted 1:10 in PBS. 63 

Samples were combined and filtered in a polypropylene tube fitted with a 40µm filter cap. 64 

Conjugated intracellular antibodies were added into each tube and incubated for 30 minutes. 65 

Cells were then fixed with 4% paraformaldehyde for 10 minutes. 66 

 67 

To identify single cell events, DNA was labeled for 20 minutes with an 18.75 μM iridium 68 

intercalator solution (Standard BioTools #201192B). Samples were subsequently washed and 69 

reconstituted in Cell Acquisition Solution (CAS) (Standard BioTools #201240) in the presence of 70 

EQ Four Element Calibration beads (Standard BioTools #201078) at a final concentration of 71 

1x106 cells/mL. Samples were acquired on a Helios CyTOF Mass Cytometer (Standard 72 

BioTools). The raw FCS files were normalized to reduce signal deviation between samples over 73 

the course of multi-day batch acquisitions, utilizing the bead standard normalization method 74 

established by Fink et al (4). The normalized files were then compensated with a panel specific 75 

spillover matrix to subtract cross-contaminating signals, utilizing the CyTOF based 76 

compensation method established by Chevrier et al (5). These compensated files were then 77 

deconvoluted into individual sample files using a single cell based debarcoding algorithm 78 

https://paperpile.com/c/arT3Uc/7FbNX
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established by Zunder et al (6). Pre-analysis of CyTOF staining data included a Gaussian gating 79 

strategy (7), gating on singlet cells by residual versus DNA staining, gating on bead-negative 80 

cell events, and gating on all live cells (Rhodium-negative).  81 

 82 

Downsampling cells for all mononuclear cells, T, and myeloid panels 83 

T cells and myeloid cells consist of a large proportion of peripheral blood. In order to save time 84 

and computational resources for downstream analysis without missing important cell states, we 85 

downsampled cells by randomly selecting cells according to individuals for analyses for all 86 

mononuclear cells, T cells, and myeloid cells as follows;  87 

1. If 10% of total cells > 10,000, we will keep 10% of total cells 88 

2. If 10,000 > 10% of total cells, we will keep 10,000 cells 89 

3. If 10,000 > total cells, we will keep total cells without downsampling 90 

For sensitivity analysis, we performed consistent clustering analysis and obtained biological cell 91 

clusters according to the proportions of downsampling  (0.1%, 1%, 10%, 20%, 30%, 40%, 50%, 92 

60%, 70%, 80%, 90%, and 100%).  93 

 94 

Protein expression normalization and dimensionality reduction 95 

To minimize the effect of background on the measured signal, we normalized expression data 96 

by ArcSinh transformation of data using the cytofAsinh function in cytofkit R package with 97 

cofactor = 5 for each cell type.  For dimensionality reduction, we then used truncated principal 98 

component analysis (PCA) as implemented in the prcomp_irlba function from the irlba R 99 

package and calculated 20 principal components (PCs) based on the normalized mass 100 

cytometry data. During PCA, we used the most highly variable proteins by removing 10% lowest 101 

variable proteins among cells because they are uninformative. We further corrected batch 102 

effects and sample heterogeneity simultaneously with the HarmonyMatrix function from the 103 

https://paperpile.com/c/arT3Uc/P1GTz
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harmony R package to account for covariates. We next projected the cells into two dimensions 104 

with UMAP (8, 9) with default parameters. 105 

 106 

Graph-based clustering, differential protein expression, and cell type annotation  107 

After batch correction, we constructed shared nearest neighbor graphs derived from the top 20 108 

PCs and applied graph-based Louvain clustering (10) at various resolution levels (0.3, 0.5, 0.7, 109 

1.0). We selected optimized resolution values for each cell type (0.7 for T cells, 0.3 for NK cells, 110 

0.3 for myeloid cells, 0.5 for B cells) based on silhouette width and manual check of expression 111 

of key proteins in each cluster to gain the biological interpretations that made the most sense. 112 

Unreliable clusters less than 30 cells in total were removed. In the end, we identified 26 T cell 113 

clusters (2,196,578 cells, 163 individuals), 20 B cell clusters (1,918,711 cells, 167 individuals), 114 

17 NK clusters (2,008,997 cells, 160 individuals), 16 myeloid clusters (1,886,084 cells, 161 115 

individuals), for a total of 79 clusters. We allocated cluster numbers based on cluster size. For 116 

each major cell type, we identified differentially expressed surface proteins by comparing cells 117 

from one cluster with all the other cells using wilcoxauc function in presto R package. We tested 118 

all proteins that were measured in each cell type. We present cluster-specific marker proteins 119 

and relative statistics in Supplementary Table 3. We then annotated identified clusters based 120 

on differentially expressed markers and relevant literature showing their biological functions in 121 

each cell type. 122 

 123 

Identification of cell populations that are significantly associated with specific clinical 124 

subgroups 125 

We evaluated whether at-risk or RA are associated with changes in the relative abundances of 126 

cell states within all mononuclear cells (coarse) and major cell type-specific manner (fine-127 

grained). For each cell type, we applied multiple computational strategies, 1) cluster-based 128 

approach utilizing mixed effect model, Mixed-effects Association testing for Single Cells 129 

https://paperpile.com/c/arT3Uc/I0shU+zSADw
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(MASC)(11), and 2) cluster-free based approach which identifies dominant co-vary cell 130 

neighborhoods in cell type abundance across samples in one clinical group compared to the 131 

other, covarying neighborhood analysis (CNA)(12). MASC is a statistical association strategy 132 

that uses single-cell logistic mixed-effect modeling to test individual cellular populations for their 133 

association by predicting the subset membership of each cell based on fixed effects and 134 

random effects. In MASC, a null model where the subset membership of every single cell is 135 

estimated by fixed and random effects without considering the case-control status of the 136 

samples was assumed. We then measured the improvement in model fit when a fixed effect 137 

term for the case-control status of the sample was included with a likelihood ratio test. This 138 

framework allowed us to evaluate the significance and effect size of the case-control association 139 

for each cluster while controlling for inter-individual and technical variability. In our analyses, we 140 

performed MASC using the MASC() R function as follows: 141 

𝑁𝑢𝑙𝑙	𝑚𝑜𝑑𝑒𝑙:	𝑙𝑜𝑔 +
𝑌!,#

1 − 𝑌!,#
/ 	= 𝜃# + 𝛽$%&𝑋!,' + 𝛽(&)𝑋!,' + (𝜙!|𝑘)			142 

𝐹𝑢𝑙𝑙	𝑚𝑜𝑑𝑒𝑙:	𝑙𝑜𝑔 +
𝑌!,#

1 − 𝑌!,#
/ 	= 𝜃# + 𝛽$%&𝑋!,' + 𝛽(&)𝑋!,' + (𝜙!|𝑘) + 𝛽*$(&𝑋!,' 	143 

 144 

Here, Yi,j is the odds of cell i belonging to cluster j (major cell types for all mononuclear cells 145 

analysis and fine-grained cell types for each cell type analysis, respectively), θj is the intercept 146 

for cluster j, βage and βsex indicate the fixed-effect of age and sex for cell i from kth sample, 147 

respectively; (ϕi |k) is the random effect for cell i from kth sample, βcase indicates the effect of kth 148 

sample’s case-control status. We presented our results from MASC by odds ratio with an error 149 

bar indicating 95% confidence intervals for each cluster. The statistics are summarized in 150 

Supplementary Table 4. 151 

 152 

It is noted that, for clusters with small cell numbers, statistics of MASC tend to have a wide 153 

range of confidence intervals and are unreliable, making it necessary to use the cluster-free 154 

https://paperpile.com/c/arT3Uc/X3t1h
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method such as CNA (12) in combination. We use CNA to define small cell neighborhoods in 155 

the batch-corrected harmonized low-dimensional embeddings and calculate that fractional 156 

abundance of cells from each sample in each neighborhood in a neighborhood abundance 157 

matrix (NAM). By decomposing the NAM with principal component analysis (PCA), CNA defines 158 

NAM-PCs within each cell type that capture axes of heterogeneity defined by groups of 159 

neighborhoods whose abundances vary in a coordinated manner. Next, we use CNA to perform 160 

two tests: associations between ARI vs control, and RA vs control, respectively. In practice, we 161 

used the association() function in the rcna R package with default parameters, while controlling 162 

for the “age” and “sex” as covariates. As CNA utilizes a permutation test, we obtained a 163 

significant association based on a global permutation p < 0.05. For visualization of local 164 

associations, we indicate the particular neighborhoods driving a global significant association. In 165 

the violin plots and UMAP plots, we colored neighborhood correlations, with red and blue 166 

indicating a positive and negative correlation, respectively. To highlight important cell 167 

neighborhoods from important cell states, we put transparent parameters according to the 168 

absolute value of correlation for each cell (from 0 [completely transparent] to 1 [no transparent]). 169 

The statistics of CNA results are in Supplementary Table 5. 170 

 171 

Reference mapping of independent mass cytometry T cells to the original T cell reference 172 

We analyzed independent mass cytometry data obtained from blood of ARI (n=57), RA (n=20), 173 

and controls (n=23) enrolled from two clinical sites (University of Colorado and Brigham 174 

Women's Hospital). Samples were shipped to the same central biorepository site until sample 175 

collection was complete. They were then transited to the central pipeline site, the same lab with 176 

the original sample processing, where samples were thawed and processed in 5 batches. After 177 

removing beads and dead cells by DNA gating, we gated T cells by CD3+CD20-CD56-CD14- 178 

and downsampled in the same way as the original T cell panel. To validate our findings in the 179 

original data, we then projected 1,022,630 T cells  to the original T cell reference using the 180 

https://paperpile.com/c/arT3Uc/7HUka
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mapQuery() function based on 29 common proteins from the Symphony package. For reference 181 

building from the Harmony objects, we used the buildReferenceFromHarmonyObj() function. 182 

We predicted cell states for the query cells based on the 30 nearest cell neighbors using the 183 

knnPredict() function with k=30.  184 

 185 

Single-cell CITE-seq antibody staining, RNA library preparation, and sequencing 186 

PBMC samples suspended in Cryostor CS-10 and stored in liquid nitrogen were transferred on 187 

dry ice to the lab and thawed in batches of 4 at a time (up to 16 samples total) in a 37 degrees 188 

C water bath with constant swirling until ice disappeared (~1.75 min). Each sample was diluted 189 

in thawing media containing RPMI 1640 without glutamine (Gibco) supplemented with 0.5% 190 

BSA (Miltenyi Biotec), 1X Glutamax (Gibco), and 10 mM HEPES (Corning), then filtered through 191 

a 40 um strainer (pluriSelect). The filter was rinsed with an additional thawing buffer to dilute the 192 

cryopreservation media. Processing continued in batches of 16. Cells were pelleted by 193 

centrifugation (350g) and incubated for 20 minutes on ice with a Fc blocking reagent (Miltenyi 194 

Biotec) and a cocktail of fluorescent antibodies (BD Biosciences) targeting CD15 (clone: W6D3; 195 

conjugated to AF700) and CD45 (for each sample; clone:HI30; conjugated to one of the 196 

following: BB515, PE, PE/Cy7, BUV395) in autoMACS Running Buffer (Miltenyi Biotec). The 197 

samples were then washed and counted using a Cellometer Counter (Nexcelom). Pools of 4 198 

samples were then created containing 150,000 live cells from each sample such that the CD45 199 

fluorochrome was unique for each sample with the pool (600,000 live cells per pool). For oligo 200 

barcode-tagged surface protein detection, each pool was incubated with Totalseq-A Human 201 

Universal Cocktail V1.0 (Biolegend; 25% of manufacturer’s recommendation) prepared in Cell 202 

Staining Buffer (Biolegend) for 30 minutes at 4 degrees C in a total volume of 50 uL according 203 

to manufacturer’s instructions. Following incubation, pools were washed twice, resuspended in 204 

autoMACS Running Buffer containing 1 ug/mL DAPI (Biolegend), and filtered through a 35 um 205 

strainer. Equal numbers of live CD15 negative cells from each sample were then FACS sorted 206 
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(BD FACSAria) using the CD45 fluorochrome to distinguish the individual samples in each pool 207 

(15,000 cells per sample) into loading media containing RPMI 1640 without glutamine (Gibco) 208 

supplemented with 0.04% BSA, 1X Glutamax, and 10mM HEPES. After sorting, all 16 samples 209 

in the batch were pooled in one tube and 32,000 cells were loaded in each of 3 Chromium chips 210 

(10x Genomics) to generate single cell RNAseq and surface protein libraries using 211 

manufacturer’s protocols. Completed RNA and ADT libraries were pooled at a 3 RNA:1 ADT 212 

molar ratio (75% RNA:25% ADT). Two “master” pools were then made, each containing 19 213 

libraries (RNA+ADT), for 38 total libraries, and sequenced across 3 individual S4 flow cells on a 214 

Novaseq (Illumina) to a 5,092 reads per cell. 215 

 216 

Single-cell CITE-seq gene expression and protein expression quantification 217 

mRNA and antibody-derived tag (ADT) unique molecular identifier (UMI) counts were quantified 218 

using Cell Ranger v3.1.0. Raw BCL files were demultiplexed using cellranger mkfastq with 219 

default parameters to generate FASTQ files. These FASTQ files were then aligned to the 220 

GRCh38 human reference genome using Cell Ranger v3.1.0, with gene and ADT reads 221 

quantified simultaneously using cellranger count. 222 

 223 

Quality control of single-cell CITE-seq data 224 

Analyses for quality control, normalization, and scaling were performed following the steps 225 

outlined in Zhang., et al (13). Cells identified as doublets by scDblFinder (14) and expressing 226 

fewer than 500 genes or containing more than 20% of their total UMIs mapping to mitochondrial 227 

genes were removed, resulting in 502,799 cells. Sample-level QC was then performed, 228 

removing samples with a small number of cells (< 300). The final dataset contained 488,540 229 

cells from 140 samples for downstream analysis. mRNA features were normalized, selected, 230 

and scaled both globally and by cell type. Global normalization involved log transformation and 231 

scaling by total UMIs per cell, followed by selection of the top 2,000 most highly variable genes 232 

https://paperpile.com/c/arT3Uc/B4o7E
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per sample based on a variance stabilizing transformation. These genes were then pooled 233 

across all samples for a cell type, and z-score scaling was applied. Cell type-specific 234 

normalization and scaling followed the same steps but were performed only on cells of each 235 

given cell type. Protein features were normalized using centered-log ratio (CLR) transformation 236 

and corrected for antibody background staining using a Gaussian mixture model. Cell type-237 

specific protein normalization was performed in the same manner, with additional scaling steps 238 

for each cell type. 239 

 240 

For global analysis and cell-type-specific analysis, a multi-modal dimensionality reduction 241 

strategy was used to integrate mRNA and surface protein expression. Canonical correlation 242 

analysis (CCA) was performed on scaled mRNA and protein data, followed by selection of the 243 

top 20 canonical variates, batch effect correction with Harmony, and projection into two 244 

dimensions with UMAP. To integrate and compare CITE-seq data and two mass cytometry 245 

datasets (original and validation), we employed a reference mapping approach using the 246 

StabMap (15). For the CITE-seq dataset, we selected the surface proteins corresponding to the 247 

genes present in the mass cytometry datasets. Similarly, for the mass cytometry datasets (from 248 

our study and an external dataset), we selected the surface proteins with corresponding genes 249 

in the CITE-seq dataset. The preprocessed datasets were used as input, specifying the original 250 

mass cytometry dataset as the reference and the CITE-seq as a query dataset. This step 251 

generated a low-dimensional embedding of the cells from all datasets, with the query datasets 252 

aligned to the reference dataset. To assign cell type labels to the query datasets, we trained a k-253 

nearest neighbors (k-NN) classifier on the reference dataset using the knn function of class R 254 

package (16). The k-NN classifier was then used to predict cell type labels for the cells in the 255 

query datasets based on their proximity to the annotated cells in the reference dataset. The k-256 

NN classifier was run with k = 5 and the probability of each cell type assignment was calculated. 257 

https://paperpile.com/c/arT3Uc/ikDdH
https://paperpile.com/c/arT3Uc/Fiu7m
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Cell type-specific reference mapping followed the same steps but were performed only on cells 258 

of each given cell type. 259 

 260 

The signature scores for Th22, Th17, and Tph cells were calculated using the addmodulescore 261 

function from the Seurat R package. The gene signature lists were derived from previous 262 

studies (17–19). 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 
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Extended Data Figures 

 
Extended Data Fig. 1: Downsampling strategy for large-scale mass cytometry dataset. A. 
Optimized downsampling schema developed for large-scale mass cytometry dataset to 
efficiently conduct downstream analysis without losing robustness, B. Sensitivity analysis for 
downsampling strategy. X-axis represents the proportion of downsampling cells. Y-axis 
represents the number of identified biologically meaningful cell clusters in each cell type using 
graph-based clustering.   



 
Extended Data Fig. 2: Analytical pipeline applied to large-scale mass cytometry data. A. 
Representative example of batch effect correction using myeloid panel. B. LISI scores in 
myeloid panel to measure mixture levels on race, clinical site, batch, and samples. After batch 



effect correction, the mixture level of clinical sites (median LISI = 4.45), technical batches 
(median LISI = 7.16) are significantly reduced compared to before correction (median LISI = 
4.31 for clinical sites, median LISI = 5.53 for technical batchers (Wilcoxon test p < 0.01), C. 
Distribution of samples (top) and cell types (bottom) by batch, D. Analytical pipeline from 
expression data to cell embeddings in low-dimensional space using dimensionality reduction, E. 
Density plot using all mononuclear cells by batch. Cells from different batches but the same cell 
types are clustered together, F. Gating strategy for mass cytometry data to determine selected 
immune cell populations. 



 
 

Extended Data Fig. 3: Expression of measured proteins in T cell panel. 



 
 

Extended Data Fig. 4: Expression of measured proteins in myeloid cell panel.  



 
 

Extended Data Fig. 5: Expression of measured proteins in B cell panel.  



 
 

Extended Data Fig. 6: Expression of measured proteins in NK cell panel. 



 
Extended Data Fig. 7: Correlation of abundance in blood between 79 cell types. 
Correlation plot between cell type abundances. Cells are colored in red (positive) or green 
(negative) if their false discovery rate is less than 0.05. 

Correlation between cell clusters [colored only adjusted p<0.05]
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Extended Data Fig. 8: Paired clusters after reference mapping using independent mass 
cytometry data for T cells. We mapped T cells in the validation dataset onto the corresponding 
T cell reference from the original T cell panel to determine correspondent cell cluster 
annotations. A. Blue-red color scale in the heatmap indicates the log (OR) for a given pair of 
states (OR is the ratio of odds of mapping a cell cluster in the validation dataset to a given 
cluster of the original T cell panel compared to odds of mapping other cells in the validation 
dataset onto the same cluster of the original T cell panel), with higher values indicating greater 
correspondence. B. LISI scores of T cells from the validation data to measure mixture levels on 
clinical site, batch, and samples. After batch effect correction, the mixture level of clinical sites 
(median LISI = 1.85) and technical batches (median LISI = 3.56) are significantly increased 
compared to before correction (Wilcoxon test p < 0.01) suggesting the well mixture of cells in 
each T cell clusters, C. Cell count after assigning predicted cell clusters based on the original T 
cell panel, D. Average expression distributions of variable key proteins in each cluster across 
samples, scaled within each cell cluster. 
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Extended Data Fig. 9: Expression of CCR2 mRNA in the synovium of RA patients. A. T 
cell clusters identified in the synovium of RA patients in the UMAP space. The annotations of 
CCR2-expressing clusters are labeled.  B. CCR2-expressing cells in the UMAP. Expressing 
cells are colored in blue. 
 
 



 
Extended Data Fig. 10: ACPA-status specific analysis reveals unique populations for 
different disease statuses. Heatmap shows association with each subgroup upon ACPA 
status in ARI and RA (vs controls) for each cell type. Only clusters with p < 0.05 are shown. 
Circles represent p < 0.05 and squares represent adjusted p < 0.05. Adjusted p-values were 
calculated by the Benjamini and Hochberg method. Cell types are colored in red (expanded) or 
blue (depleted). Error bars on selected cell populations represent 95% confidence intervals. All 
the results in this analysis are adjusted for age and sex.



 



Extended Data Fig. 11: Sensitivity analysis for different control groups from multi-clinical 
sites. A. Density plot by family history and ACPA status according to cell types, B. Correlation 
plot of odds ratios comparing ARI subgroups with FDR−ACPA− controls (y-axis, n=8) from the 
SERA cohort (y-axis) or healthy controls from other clinical sites (x-axis, n=40). Dots are colored 
by immune cell types. Of total association tests, 77 cell clusters were included; outliers of the 
odds ratio (top 99%ile and bottom 1%ile) or size of clusters are lower than 25%ile among all 
clusters, and results with infinite confidence intervals for the odds ratio were excluded. 
Statistical results are adjusted for age and sex. Correlation coefficients and p-values were 
obtained by Spearman’s correlation test. 



 
Extended Data Fig. 12. Quality control and processing step for CITE-seq data. A, 
Distribution of the number of detected genes per cell. The red vertical line represents the 
threshold used for filtering out low-quality cells based on gene count. B, Distribution of the 
percentage of mitochondrial genes per cell. The red vertical line indicates the threshold used to 
filter out cells with high mitochondrial content, which is indicative of poor cell quality or stress. C, 
Quality control (QC) steps and their impact on cell count. The bar graph shows the number of 
cells remaining after each QC step: before QC, after filtering by gene count and mitochondrial 



content, after doublet removal, and after sample-level QC to retain samples with a minimum 
number of cells. D, Cell counts per sample after QC steps. Each bar represents the number of 
cells retained from each sample after quality control. E, Integration of transcriptomic and surface 
protein data using canonical correlation analysis (CCA). UMAP plots show the separate 
clustering of transcriptomic (left) and surface protein (right) data before integration. The bottom 
plot shows the integrated dataset with combined clustering of transcriptomic and proteomic 
data. F, Mapping of CITE-seq T cell clusters to mass cytometry reference data. The right UMAP 
plot shows the reference mapping of CITE-seq T cells using mass cytometry reference data, 
with clusters annotated according to known T cell subsets. The inset shows the reference mass 
cytometry data used for mapping. G, Scatter plot showing the correlation between odds ratios 
for patients with RA association for various T cell subsets. Selected cell clusters are labeled. H, 
Scatter plot showing the correlation between ARI association obtained from CNA in Fig. 7H and 
signature scores in Fig. 7G. I, Scatter plot showing the correlation between odds ratios for ARI 
association with various T cell clusters. Significantly associated clusters in the mass cytometry 
analysis are labeled. 
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