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Introduction
Acute myeloid leukemia (AML) originates in hematopoietic stem 
and progenitor cells (HSPCs) following the acquisition of  muta-
tions that result in impaired myeloid differentiation and increased 
self-renewal potential (1, 2). Our understanding of  the molecular 
and genetic factors driving adult AML has increased; however, the 
5-year survival rate remains under 20%, with only modest gains 
over the past 30 years. A combination of  chemotherapy, allogeneic 
stem cell transplantation, and/or emerging targeted therapies has 
demonstrated promising responses in clinical settings (3–5). How-
ever, durable clinical remissions are rarely achieved in nearly all 
cases, which underscores the urgency for identifying AML depen-
dencies to improve treatment strategies. Protein homeostasis (pro-
teostasis), particularly through ubiquitination, plays a role in the 
development of  many cancers. Ubiquitination is a prevalent and 

multifaceted posttranslational modification implicated in nearly 
all aspects of  eukaryotic biology (6). The ubiquitination process 
involves 3 enzymes: the E1-activating enzyme, the E2-conjugat-
ing enzyme, and the E3 ligase (Figure 1A). First, the E1-activating 
enzyme activates the ubiquitin molecule using adenosine triphos-
phate (ATP). Then, the activated ubiquitin molecule is transferred 
to the E2-conjugating enzyme. Finally, the E2-conjugating enzyme 
binds with the E3 ligase, mediating the activated ubiquitin mole-
cule to be covalently attached to a given substrate. Ubiquitin mole-
cules can be added to substrates in various forms, including mono- 
and polyubiquitination. Ubiquitin can form distinct chain-like 
configurations by utilizing different lysines on itself. Importantly, 
the specific ubiquitin linkages have diverse effects on the substrate, 
leading to various biological processes. For example, K48 and K63 
linkages are the most abundant and account for approximately 
80% of  total linkages in mammalian cells (7). However, K48- and 
K63-linked ubiquitin chains lead to different fates for substrates. 
K48-linked ubiquitin chains are the most common linkage in cells, 
usually making up more than 50% of  all ubiquitin linkage chains 
and direct target proteins to proteasomal degradation (8, 9). In 
contrast, K63-linked ubiquitin chains mediate scaffolding func-
tions and signal transduction, particularly in immune signaling 
(10, 11). The type of  ubiquitin linkage is primarily determined by 
the E2-conjugating enzymes (12–14).

Altered protein homeostasis through proteasomal degradation of ubiquitinated proteins is a hallmark of many cancers. 
Ubiquitination, coordinated by E1, E2, and E3 enzymes, involves up to 40 E2-conjugating enzymes in humans to specify 
substrates and ubiquitin linkages. In a screen for E2 dependencies in acute myeloid leukemia (AML), ubiquitin conjugating 
enzyme E2 N (UBE2N) emerged as the top candidate. To investigate UBE2N’s role in AML, we characterized an enzymatically 
defective mouse model of UBE2N, revealing UBE2N’s requirement in AML without an impact on normal hematopoiesis. 
Unlike other E2s, which mediate lysine-48 (K48) polyubiquitination and degradation of proteins, UBE2N primarily synthesizes 
K63-linked chains, stabilizing or altering protein function. Proteomic analyses and a whole-genome CRISPR-activation screen 
in pharmacologically and genetically UBE2N-inhibited AML cells unveiled a network of UBE2N-regulated proteins, many of 
which are implicated in cancer. UBE2N inhibition reduced their protein levels, leading to increased K48-linked ubiquitination 
and degradation through the immunoproteasome and revealing UBE2N activity is enriched in immunoproteasome-positive 
AML. Furthermore, an interactome screen identified tripartite motif–containing protein 21 (TRIM21) as the E3 ligase 
partnering with activated UBE2N in AML to modulate UBE2N-dependent proteostasis. In conclusion, UBE2N maintains 
proteostasis in AML by stabilizing target proteins through K63-linked ubiquitination and prevention of K48 ubiquitin–
mediated degradation by the immunoproteasome. Thus, inhibition of UBE2N catalytic function suppresses leukemic cells 
through selective degradation of critical proteins in immunoproteasome-positive AML.
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cell lines (Figure 1B and Supplemental Table 1; supplemental mate-
rial available online with this article; https://doi.org/10.1172/
JCI184665DS1). In parallel, we examined the expression of  the 
E2s in primary AML samples and further narrowed the candidate 
E2s to ones in which their expression inversely correlated with 
overall survival (Figure 1C). We focused on E2 genes depleted 
in the greatest number of  AML samples that were not essential 
across other cell types (78) and that correlated with AML survival 
outcomes (79) (Supplemental Table 2). Among the E2s, UBE2N 
emerged as a top hit, as it exhibited a high AML dependency score 
(score = –0.813) (Figure 1, B and C) and its elevated expression 
in AML correlated with worse overall survival (P = 0.019) (Sup-
plemental Figure 1A). Across human cancers, the dependency of  
UBE2N in AML is among the highest, but other cancers also show 
a UBE2N dependency (Supplemental Figure 1B). UBE2N expres-
sion is also elevated in a proportion of  AML patients compared 
with normal bone marrow (BM) mononuclear cells (Figure 1D). 
UBE2N expression is elevated in more monocytic AML subtypes 
(FAB M3-M6); however, its expression does not correlate with 
genetic subtypes or risk stratification (Supplemental Figure 1C). 
Moreover, its cofactor UBE2V1 also ranked highly in the depen-
dency map and outcome correlation for AML, underscoring the 
catalytic requirement of  UBE2N (Figure 1, B and C). UBE2N’s 
active site includes a cysteine at position 87 (Cys-87), which is crit-
ical for binding ubiquitin, facilitating its transfer, and extending 
K63-linked ubiquitin chains on substrates (65, 80) (Figure 1E). The 
ubiquitin-conjugating enzyme function of  UBE2N can be inferred 
by the thioester formation between ubiquitin and the active site 
cysteine (Ub-UBE2N) (65, 80, 81). Conversely, interfering with 
the thioester bond between ubiquitin and Cys-87, such as with the 
covalent small molecule inhibitor UC-764865, inhibits UBE2N 
function (77) (Figure 1E). In AML cell lines, UBE2N is activated 
(Ub-UBE2N) as indicated by the higher molecular weight protein, 
but not in normal CD34+ cells (Figure 1F). Moreover, activated 
UBE2N is associated with increased K63-linked ubiquitination 
in patient-derived AML (PD-AML) samples relative to normal 
CD34+ cells (Supplemental Figure 1E). To confirm that UBE2N 
is indeed activated, AML cell lines and PD-AML samples treated 
with the UBE2N inhibitor (UBE2Ni) UC-764865 showed reduc-
tion of  Ub-UBE2N (Figure 1, G and H). In contrast, the migration 
of  UBE2N protein was unaffected in healthy CD34+ cells (Fig-
ure 1H). These findings suggest that UBE2N exists in an activated 
state and is implicated in AML.

Catalytically inactive UBE2N suppresses AML. Cys-87 of  UBE2N 
is conserved in humans and mice and is critical for transferring ubiq-
uitin to substrates via K63 linkages (Figure 1E). To determine the 
enzymatic requirement of  UBE2N in AML, we generated a mouse 
model in which Cys-87 is replaced by serine (C87S) to impair its cat-
alytic function (Figure 2A). This mutation leads to reduced — but 
not entirely lost — enzyme function, effectively modeling the loss 
of  UBE2N catalysis and the impact of  UBE2N inhibitors (Figure 
2B). Ubiquitin bound to serine through an oxyester bond (Ser-Ub) 
is thermodynamically more stable than the thioester bond between 
ubiquitin and cysteine (Cys-Ub) (82). Therefore, Ser-Ub hydrolysis 
and transfer of  ubiquitin from Ube2nC87S to its substrate is impaired 
compared with WT Ube2n (Figure 2B). The targeted allele was 
designed to express WT Ube2n protein via codon-optimized Ube2n 

Alterations of  ubiquitin enzymes are associated with various 
human malignancies including cancers as a result of  dysregulated 
degradation of  proteins or downstream pathways. Therefore, vari-
ous small molecules have been developed to interfere with ubiquitin 
processes by inhibiting E1, E2, and E3 ligases, their cofactors, or 
the proteasome (15–34). Targeting the first step of  ubiquitination 
by blocking E1 function has shown limited clinical benefit due to 
toxicity, while inhibiting E3 ligases has proven challenging due to 
the lack of  druggable pockets or functional redundancy of  E3 ligas-
es. More recently, targeted protein degradation approaches utilizing 
heterobifunctional molecules or molecular glues effectively induce 
the degradation of  specific proteins by promoting K48-mediated 
proteasomal degradation (35–37). These strategies have enabled 
the targeting of  challenging-to-drug proteins. However, resistance 
mechanisms and the drug-like properties of  these molecules have 
restricted their therapeutic potential.

E2 enzymes typically function as intermediaries in the ubiq-
uitin pathway, yet they also play a direct role in tumor devel-
opment by affecting processes such as DNA repair, cell-cycle 
regulation, apoptosis, and oncogenic signaling (38–60). In addi-
tion, few attempts have been reported to target specific E2-con-
jugating enzymes, most of  which remain at the preclinical stage 
(38, 61–66). Comprising 40 members, E2 enzymes facilitate 
ubiquitin-substrate conjugation, thereby regulating the stability 
and interactions of  numerous proteins in a cell-type–dependent 
manner (39). Therefore, one potential therapeutic strategy for 
AML involves interfering with specific E2 ubiquitin–conjugating 
enzymes. While ubiquitination regulates protein homeostasis and 
function, the functional contributions of  E2-dependent processes 
to leukemic transformation have not been sufficiently explored. To 
identify E2 dependencies in AML, we utilized publicly available 
CRISPR/Cas9 screens and identified the ubiquitin conjugating 
enzyme E2 N–UBE2V1 (UBE2N-UBE2V1) complex among the 
top targets in AML. UBE2N is a K63-specific ubiquitin E2-con-
jugating enzyme and its nonenzymatic cofactor, UBE2V1, adds 
K63-linked polyubiquitin chains along with select E3 ligases to 
protein substrates. Unlike K48-linked polyubiquitin chains that 
lead to protein degradation, UBE2N-mediated K63-linked poly-
ubiquitin chains result in the activation of  downstream pathways. 
UBE2N is involved in various cellular processes, including innate 
immune and inflammatory signaling, DNA damage response, 
and mitophagy (10, 67–71). Moreover, inhibiting UBE2N has 
been shown to suppress cancer cell growth in several solid cancers 
and various types of  leukemia and lymphoma (13, 16, 72–76). 
We recently reported that inhibiting UBE2N with a selective 
small molecule inhibitor can suppress myelodysplastic syndrome 
(MDS) and AML cells (77). Despite the significance of  UBE2N 
in AML, the precise mechanistic basis for its dependency in these 
leukemias has remained unknown. Herein, we demonstrate that 
the catalytic function of  UBE2N is indispensable for maintaining 
protein homeostasis within oncoprotein networks in AML by pre-
venting immunoproteasome degradation.

Results
Activated UBE2N is a dependency in human AML. To identify E2 
dependencies in AML, we analyzed the Cancer Dependency Map 
(DepMap) CRISPR data sets for all human E2s in 26 diverse AML 
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the catalytic function of  UBE2N in AML, we modeled AML in 
lineage-negative (Lin–) BM cells from Ube2nC87S;Rosa26CreERT2 or 
control mice by retroviral expression of  MLL-AF9, MN1, AML1-
ETO9a, RUNX1D171N, or FLT3-ITD AML oncogenes (Figure 2D). 
Following flow cytometric isolation of  oncogene-expressing AML 
cells, in vitro 4-OHT treatment resulted in Ube2nC87S recombination 

exons 2–4 cDNA (Figure 2A). Ube2nC87S mice were bred to an induc-
ible recombinase strain (Rosa26CreERT2), leading to expression of  
the Ube2nC87S mutant allele following in vivo tamoxifen or in vitro 
4-hydroxytamoxifen (4-OHT) treatment. 4-OHT treatment of  BM 
cells confirmed recombination of  the WT Ube2n exons 2–4 cDNA 
resulting in expression of  the mutant exon (Figure 2C). To evaluate 

Figure 1. Activated UBE2N is a dependency in human AML. (A) Schematic of ubiquitination. E1 activates a ubiquitin molecule and transfers to E2. E2 and E3 
ligase transfer ubiquitin to substrates. (B) CRISPR/Cas9 screen (DepMap) to identify E2 dependencies in AML cell lines. Green dots represent E2s involved in 
ubiquitination. Each dot in the graph represents an individual cell line. (C) AML dependency score from DepMap for each E2 enzyme versus P value of the survival 
in AML patients. Top 20% and bottom 20% expression levels were used for each E2 (BEAT-AML). (D) mRNA expression of UBE2N in AML patients and healthy 
BM mononuclear cells (MNCs) (BEAT-AML). Student’s t test (unpaired, 2-tailed) was used to determine significance. Error bars represent the SEM. **P < 0.01. (E) 
UBE2N binding with ubiquitin at cysteine 87 (C87). UBE2Ni (UC-764865) binds C87 and blocks the binding of ubiquitin. (F) Activated UBE2N (Ub-UBE2N) and total 
UBE2N protein expression in AML and healthy CD34+ cells. Densitometric values were calculated based on the expression of Ub-UBE2N relative to total UBE2N. (G) 
Immunoblots of UBE2Ni-treated MOLM13 and MV4;11 cells. Densitometric values were calculated based on the expression of Ub-UBE2N relative to total UBE2N. 
Cells were treated with 1, 5, and 10 μM for 12 hours. (H) Immunoblots of UBE2Ni-treated PD-AML and healthy CD34+ cells. AML (5 μM) and CD34+ cells (2.5, 5, and 
10 μM) were treated with UBE2Ni for 12 hours. Densitometric values were calculated based on the expression of Ub-UBE2N relative to total UBE2N. 
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of  the Ube2nC87S mutant allele in Lin– BM cells was confirmed (Sup-
plemental Figure 2H). Ube2nC87S expression in healthy BM did not 
affect the overall survival of  recipient mice, BM HSPC proportions, 
or blood counts (Figure 2, K–M). These findings demonstrate that 
UBE2N’s catalytic activity is not essential for normal adult hema-
topoiesis, while underscoring its critical role in AML.

Regulation of  proteostasis in AML by UBE2N. To uncover the key 
signaling pathways and gene-expression alterations resulting from 
suppression of  the catalytic activity of  UBE2N in AML cells, we 
performed RNA-Seq on Ube2nC87S and Ube2nWT MLL-AF9 AML 
cells. Expression of  Ube2nC87S resulted in significantly differentially 
expressed genes as compared with WT MLL-AF9 AML cells (Fig-
ure 3A). 593 Genes exhibited a 2-fold decrease in expression, while 
509 genes showed a 2-fold increase in expression (Figure 3B and 
Supplemental Table 3). Pathway analysis of  downregulated genes 
in Ube2nC87S compared with Ube2nWT AML cells revealed reduced 
enrichment of  hematopoietic stem cell– and cancer-related path-
ways (Figure 3C). Ube2nC87S AML cells showed a reduction in genes 
associated with Ras, MAPK, apoptosis, and ErbB signaling (Figure 
3C). Prior studies have primarily linked UBE2N to the regulation 
of  immune and inflammatory signaling, making its widespread 
impact on multiple cancer-related pathways unexpected.

Since UBE2N regulates protein ubiquitination, we also per-
formed global quantitative ubiquitin capture proteomics in MV4;11 
AML cells expressing nontargeting shRNA (shControl) or shU-
BE2N (Figure 3D and Supplemental Table 10). Ubiquitinated pep-
tides immunoprecipitated from nontargeting shRNA (shControl) 
or shUBE2N-MV4;11 cells were analyzed by mass spectrometry. 
Since a proteasome inhibitor was not used to enrich for K48-linked 
ubiquitinated proteins, most ubiquitinated proteins captured would 
represent K63 ubiquitin linkages. The proteomic analysis identified 
277 peptides corresponding to 217 proteins that exhibited reduced 
ubiquitination following knockdown of  UBE2N (fold change 
>|0.5|; P < 0.05) (Supplemental Table 4). As expected, UBE2N 
regulates the ubiquitination of  proteins involved in immune sig-
naling as well as other pathways, such as cholesterol biosynthesis, 
HSF1 activation, and fatty acyl-CoA biosynthesis, that have not 
been previously implicated in UBE2N-dependent function (Figure 
3E and Supplemental Figure 3A). Differential K63-linked ubiquiti-
nation can also impact protein stability and expression; we there-
fore investigated the change in total protein levels upon suppression 
of  UBE2N. For this, we performed global quantitative proteomics 
in MV4;11 AML cells treated with the UBE2Ni followed by mass 
spectrometry (Figure 3F). The proteomic analysis identified 1,159 
proteins that showed reduced expression following inhibition of  
UBE2N (fold change >|0.5|; P < 0.05) (Supplemental Table 5). 
Of  these targets, 104 were also implicated in UBE2N-dependent 
ubiquitination, representing approximately 50% of  the ubiquitinat-
ed substrates (Figure 3G and Supplemental Table 4). Therefore, 
UBE2N regulates the ubiquitination and protein expression of  a 
network of  cancer-related targets in AML.

To understand which cellular processes lead to the loss of  
AML cells when UBE2N is inhibited, we performed a whole-ge-
nome CRISPR activation (CRISPRa) screen to identify genes that 
could rescue the growth potential of  UBE2N-inhibited AML cells. 
MOLM13 cells expressing dCas9-VP64 were transduced with 
a CRISPRa library consisting of  sgRNA activating 18,000 cod-

and protein expression, as indicated by the thermodynamically sta-
ble version of  Ube2n (Ub-Ube2n inactive) (Figure 2E and Supple-
mental Figure 2, A, and B). To confirm the hypomorphic activity 
of  Ube2nC87S, cells were stimulated with IL-1β, and the expression 
of  Ube2nC87S was shown to suppress activation of  NF-κB signaling 
(Supplemental Figure 2C). Expression of  Ube2nC87S resulted in sup-
pression of  leukemic progenitor cell function in methylcellulose 
colony assays (Figure 2F). In addition, expression of  Ube2nC87S 
resulted in reduced proliferation of  AML cells in vitro (Figure 2G 
and Supplemental Figure 2D). In contrast, Ube2nC87S expression did 
not impact WT progenitor cell function, proliferation, or viability 
(Figure 2, F and G). These findings indicate that UBE2N catalytic 
function is necessary for murine AML cells.

We next determined the role of  UBE2N on AML development 
in vivo. Lin– BM cells from Ube2nC87S or WT Rosa26CreERT2 mice 
(Ube2nWT) were transduced with MLL-AF9 or MN1 and transplant-
ed into lethally irradiated mice (Figure 2D). Three to four weeks 
after transplantation, recipient mice were injected with tamoxifen 
intraperitoneally to induce recombination of  Ube2nC87S. Mice trans-
planted with Ube2nWT MLL-AF9 or MN1 AML cells showed signs 
of  leukemia, including myeloid blasts in the BM and peripheral 
blood (Supplemental Figure 2E). In contrast, mice engrafted with 
Ube2nC87S MLL-AF9 or MN1 AML cells had fewer circulating leu-
kemic cells (Figure 2H and Supplemental Figure 2F). Moreover, 
recipient mice engrafted with Ube2nC87S AML cells had prolonged 
survival as compared with mice engrafted with Ube2nWT AML cells 
(Figure 2I and Supplemental Figure 2G). To determine whether the 
catalytic function of  UBE2N is essential for normal hematopoiesis, 
Ube2nC87S and Ube2nWT BM cells were transplanted into lethally irra-
diated WT recipient mice. Following engraftment (4 weeks), recip-
ient mice were injected with tamoxifen intraperitoneally to induce 
recombination of  Ube2nC87S (Figure 2J). Cre-mediated expression 

Figure 2. A catalytic inactive mutant of UBE2N suppresses AML. (A) 
UBE2N mouse model to substitute cysteine-87 to serine (C87S). WT 
UBE2N cDNA cassette is excised by tamoxifen and replaced by mutant 
(C87S) exon 2. (B) UBE2NC87S mutation inhibits the transfer of ubiquitin 
to its substrates. (C) DNA-Seq confirmed recombination from cysteine 
(TGT) to serine (TCT) in MLL-AF9 cells. (D) AML models were developed 
by retroviral expression of leukemia oncogenes in Ube2nWT or Ube2nC87S 
HSPCs. (E) Immunoblots of MLL-AF9 Ube2nWT and Ube2nC87S cells. (F) 
Colony formation of normal HSPCs (n = 3) or MLL-AF9– (n = 3), MN1- (n = 
4), AML1-ETO9a– (n = 5), RUNX1D171N- (n = 4), and FLT3-ITD–transduced (n 
= 4) Ube2nWT and Ube2nC87S cells. (G) Cell proliferation of normal HSPCs or 
MLL-AF9 Ube2nWT and Ube2nC87S cells (n = 3). (H) Flow cytometry analysis 
of GFP+ BM, spleen, and peripheral blood cells. (I) Kaplan-Meier survival 
of Ube2nWT and Ube2nC87S MLL-AF9 cells transplanted into irradiated BoyJ 
mice (n = 9 per group). Tamoxifen was injected at weeks 4 and 6. Man-
tel-Cox test was used to determine significance. (J) Total BM transplant 
to assess hematopoiesis. BM cells from Ube2nWT (n = 10) or Ube2nC87S 
mice (n = 8) were transplanted to lethally irradiated mice. (K) Peripheral 
blood counts of white blood cells, red blood cells, and platelets (PLT) from 
Ube2nWT and Ube2nC87S mice before and 15 weeks after tamoxifen. (L and 
M) HSPC frequency in BM was analyzed by flow cytometry at week 15 after 
tamoxifen administration. LK, lineage– cKit+; LSK, lineage–Sca1+cKit+; CMP, 
common myeloid progenitor; GMP, granulocyte-monocyte progenitor, MEP, 
megakaryocyte erythroid progenitor. Two-way ANOVA (F, G, and K–M) or 
Student’s t test (unpaired, 2-tailed) (H) was used to determine signifi-
cance. Error bars represent the SEM. *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001.
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ing isoforms (Figure 3H). Transduced cells were treated with the 
UBE2Ni for 7 days and the sgRNA libraries were deep sequenced. 
MAGeCK (version 0.5.9, https://sourceforge.net/p/mageck/
wiki/Home/) was then performed to identify candidate genes 
enriched in UBE2Ni-treated cells relative to control cells (Figure 
3H and Supplemental Table 6). The top enriched genes (top 20%) 
in UBE2Ni-treated cells included USP51 (rank #1, P = 2.03 × 10-

9) and GPATCH2L (rank #2, P = 1.73 × 10-8). USP51 is a deu-
biquitinase implicated in the progression and metastasis of  several 
cancers (83–87). In contrast, not much is reported on GPATCH2L. 
Several top-ranking candidate genes enriched in UBE2Ni-treated 
cells mediate cancer cell properties, such as CBX1 (88), CUL3 (89, 
90), and HOXA10 (91–95) (Figure 3I). This analysis revealed that 
UBE2N inhibition can be rescued by reactivation of  cancer-related 
signaling programs. To identify the mechanistic basis for UBE2N 
dependency in AML, we prioritized the top targets from the ubiq-
uitin-enrichment screen (Figure 3D), the total proteome analysis 
(Figure 3F), and the CRISPRa screen (Figure 3H). The objective of  
this approach is to identify targets of  UBE2N, which would exhibit 
decreased ubiquitination and expression upon UBE2N suppression 
(either through knockdown or inhibition), but could restore leu-
kemic cell function when overexpressed in UBE2Ni-treated AML 
cells (Figure 3J). Based on this strategy, we focused on candidates 
that appeared in at least 2 of  the orthogonal screens or are putative 
ubiquitinated substrates of  UBE2N, which included several key reg-
ulators of  cancer cells, such as TIMM13 (96, 97), STAT3 (98–104), 
BTK (105–107), IRAK4 (108–113), NPM1 (114–116), IKKβ (117, 
118), and SYNCRIP (119, 120) (Figure 3J). These findings suggest 
that UBE2N positively regulates critical oncoprotein networks via 
ubiquitination in AML.

UBE2N maintains oncoproteins by preventing immunoproteasome- 
mediated degradation. UBE2N-mediated K63-linked ubiquitination of  
substrates does not lead to protein degradation, but rather influences 
protein activation, localization, recycling, or stability. To increase pro-

tein stability, K63-linked ubiquitination can interfere with K48-linked 
ubiquitin on the same protein substrate (121). Thus, K63 linkages can 
modulate the recognition and processing of K48-linked ubiquitinated 
proteins by the proteasome, thereby stabilizing the protein. Therefore, 
we first wanted to determine whether UBE2N inhibition impacts the 
expression of the identified target proteins. UBE2Ni-treated AML 
cells resulted in a reduction in nearly all the target proteins (Fig-
ure 4A), which was observed within 6 hours of UBE2Ni treatment 
(Supplemental Figure 3B). We next examined target protein stabil-
ity in PD-AML samples that are sensitive (UBE2NiSens) or resistant 
(UBE2NiRes) to UBE2Ni treatment. The UBE2NiSens AML samples 
treated with the UBE2Ni exhibited a reduction in the target proteins 
(Figure 4B). In contrast, the expression of these proteins in UBE2NiRes  
AML samples or healthy CD34+ cells was not affected by the UBE2Ni 
(Figure 4, B and C). Moreover, the target protein levels were reduced 
in Ube2nC87S MLL-AF9 and MN1 mouse AML cells as compared 
with WT AML cells (Figure 4D). Importantly, the reduction in target 
protein levels was not due to changes in mRNA expression (Supple-
mental Figure 3, C–E). These data suggest that UBE2N maintains 
the expression of cancer-associated proteins, such as STAT3, IRAK4, 
IKKγ, BTK, VAV1, and NPM1 in AML (Figure 4E).

Since UBE2N activity correlates with increased protein expres-
sion of  specific targets in AML, we hypothesized that UBE2N-me-
diated K63-linked ubiquitin chains prevent degradation of  its tar-
gets by K48-linked ubiquitination and subsequent proteasomal 
degradation (Figure 5A). Degradation of  K48-linked ubiquitinated 
proteins primarily occurs via the 26S proteasome. However, consti-
tutive proteasome inhibitors (MG132) failed to restore expression 
of  UBE2N-regulated proteins (Figure 5B). To investigate whether 
these proteins were being degraded by lysosomes, we also employed 
a lysosomal inhibitor (bafilomycin A1). However, bafilomycin A1 
did not restore expression of  the UBE2N-regulated proteins (Figure 
5B). In hematopoietic cells and under inflammatory or oxidative 
stress, an alternative form of  the proteasome, the immunoprotea-
some, is utilized to degrade proteins (Figure 5A). The immunopro-
teasome consists of  the 20S core and 19S regulatory subunits similar 
to the constitutive proteasome. However, the 3 subunits of  the 20S 
core (PSMB6/β1, PSM7/β2, and PSMB5/β5) are substituted in the 
immunoproteasome with PSMB9/β1i, PSMB10/β2i, and PSMB8/
β5i (122–124). Previous studies have demonstrated that AML cells 
express the immunoproteasome to prevent accumulation of  protein 
aggregates and damaged proteins (122, 125–128). Therefore, we next 
investigated whether UBE2N stabilizes the target proteins by pre-
venting immunoproteasome degradation. The immunoproteasome 
inhibitor ONX-0914 (129) restored the expression of  the target pro-
teins, including BTK, IRAK4, IRF4, NPM1, VAV1, and STAT3, in 
UBE2Ni-treated AML cells (Figure 5C). Additionally, ONX-0914 
restored the expression of  the oncoproteins in Ube2nC87S MLL-AF9 
AML cells (Figure 5D). Upon UBE2N inhibition, K48-mediated 
ubiquitination of  NPM1 and STAT3 was increased in AML cells 
treated with ONX-0914, suggesting that loss of  UBE2N results in 
increased K48-linked ubiquitination and degradation of  oncopro-
teins via the immunoproteasome (Figure 5E). Moreover, immuno-
proteasome inhibition with ONX-0914 rescued the functional defect 
of  AML cells treated with UBE2Ni (Figure 5F). These data reveal 
that UBE2N protects target proteins from degradation to maintain 
leukemic cell function via the immunoproteasome in AML.

Figure 3. Proteostasis regulation in AML by UBE2N. (A) Gene-expression 
analysis of MLL-AF9–transduced Ube2nWT and Ube2nC87S cells. The cells were 
treated with 4-OHT for 48 hours and RNA was collected for sequencing. 
(B) Volcano plots of differentially expressed genes. (C) Pathway enrich-
ment analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG) of 
the significantly downregulated genes in Ube2nC87S cells (>2-fold change; 
P < 0.05). The enrichment score and corresponding P value is shown. (D) 
Ubiquitin-enriched proteomic of MV4;11 cells transduced with nontargeting 
shRNA (shControl) or shUBE2N. After selection, these cells were lysed and 
digested by trypsin, followed by the enrichment of the ubiquitin-bound 
peptides using K-e-GG magnetic beads and analysis by liquid chromatog-
raphy–tandem mass spectrometry (LC-MS/MS). (E) Pathway enrichment 
analysis using KEGG of the significantly reduced ubiquitinated substrates 
in UBE2N-deficient condition. The enrichment score and corresponding P 
value are shown. (F) Total proteomics analysis of MV4;11 cells treated with 
UBE2Ni (UC-65, 5 μM) or vehicle for 24 hours and then lysed and digested 
by trypsin, followed by LC-MS/MS. (G) Pathway enrichment analysis using 
KEGG of the significantly reduced proteins in UBE2N-inhibited conditions. 
The enrichment score and corresponding P value are shown. (H) Overview of 
the CRISPRa screen in MOLM13 cells expressing dCas9-VP64 and lentiviral 
sgRNA pooled library. After selection, the cells were treated with DMSO or 
2.5 μM UBE2Ni for 7 days, and deep sequencing was performed. (I) The FDR 
and the corresponding P value of top hits from CRISPRa screen. (J) Venn 
diagram of the commonly identified hits from UBE2N-dependent substrates 
from MS and enriched genes from CRISPRa screen.
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diverse genetics (n = 11), followed by in 
vitro treatment with increasing concen-
trations of  the UBE2Ni for cell-viability 
analysis (Figure 5G). Immunoprotea-
some activity using a fluorometric assay 
was assessed in parallel on a subset of  
samples. Among these, 6 AML samples 
exhibited sensitivity to UBE2Ni treat-
ment, showing more than 50% cell death 
at 5 μM, while 5 samples displayed resis-
tance to treatment (Figure 5H). Notably, 
the AML samples sensitive to UBE2Ni 
treatment showed an increase in immu-
noproteasome gene expression (P = 0.03, 
Figure 5I) and activity (P = 0.019, Figure 
5J) compared with the resistant samples. 
Furthermore, we utilized a UBE2N-de-
pendency gene signature that correlated 
with the response of  PD-AMLs to increas-
ing concentrations of  the UBE2Ni. This 
allowed us to correlate immunoprotea-
some gene expression with UBE2N activ-
ity in an independent cohort of  primary 
AML samples from BEAT-AML (http://
vizome.org/aml2/) (79). The UBE2N-de-
pendency signature was most significantly 
enriched in AML subtypes (M4 and M5) 
with the highest expression of  immuno-
proteasome genes (Supplemental Figure 
4C). These findings suggest that UBE2N 

activity is preferentially required in AML subtypes that have devel-
oped a dependency on the immunoproteasome.

UBE2N utilizes TRIM21 for immunoproteasome-dependent degra-
dation of  oncoproteins. Although we demonstrate that UBE2N is 
essential to protect target proteins from degradation via the immu-
noproteasome in AML, the relevant E3 ligases in this process 
remain unknown. To identify the UBE2N-dependent E3 ligases 
in AML, we performed proximity labeling of  proteins with bio-
tin using APEX2 followed by mass spectrometry (130) (Figure 

UBE2N dependency is predominant in immunoproteasome-positive 
AML. The immunoproteasome genes are overexpressed in more 
than 50% of  AML patients and are correlated with adverse risk and 
myelomonocytic subtypes (125) (Supplemental Figure 4, A and B). 
To determine whether UBE2N activity is preferentially required in 
AML cells with elevated immunoproteasome expression, we exam-
ined the correlation between UBE2Ni sensitivity and the expression 
of  immunoproteasome subunit genes (Figure 5G and Supplemen-
tal Table 7). RNA-Seq was performed on PD-AML samples with 

Figure 4. UBE2N maintains oncoprotein 
expression by preventing immunoprote-
asome-mediated degradation. (A) Immu-
noblots of identified targets in MOLM13, 
MV;411, and HL60 cells treated with UBE2Ni 
(UC-65, UBE2Ni) for 24 hours (5 μM). (B) 
UBE2Ni-sensitive (2017-94 and 2017-78) or 
-resistant AML PD-AML cells (2016-1) were 
treated with UBE2Ni (5 μM) for 12 hours and 
immunoblotted for the indicated proteins. 
(C) Healthy CD34+ cells were treated with 
UBE2Ni (0, 2.5, 5, 10 μM) for 12 hours and 
immunoblotted for the indicated proteins. (D) 
Ube2nWT or Ube2nC87 MLL-AF9 and MN1 cells 
were treated with 4-OHT for 24 hours and 
immunoblotted for the indicated proteins. 
(E) Schematic figure of signaling pathways of 
UBE2N substrates.
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pendent AML. TRIM21 overexpression in AML cells deficient for 
UBE2N or treated with the UBE2Ni rescued the leukemic cell col-
ony–forming defect (Supplemental Figure 6, E–G). These findings 
suggest that TRIM21 activity is required for UBE2N-dependent 
AML cells and that its loss phenocopies inhibition of  UBE2N.

To delineate the target proteins of  the UBE2N/TRIM21 axis 
in AML, we conducted quantitative ubiquitin capture proteomics 
(Figure 6J). Ubiquitinated peptides from shControl or shTRIM21 
MV4;11 cells were identified and analyzed by mass spectrome-
try. The proteomic analysis identified 657 peptides corresponding 
to 445 proteins that exhibited reduced ubiquitination following 
knockdown of  TRIM21 (fold change >|0.5|; P < 0.05) (Supple-
mental Table 9). We then compared the ubiquitination substrates 
reduced upon knockdown of  TRIM21 to the substrates reduced 
upon UBE2N knockdown (Figure 6J). Among substrates ubiquiti-
nated by both TRIM21 and UBE2N, we identified STAT3, NPM1, 
IRF4, BTK, and VAV1 (Figure 6K). We focused on the regulation 
of  STAT3 by UBE2N/TRIM21, as STAT3 has been implicated in 
AML and leukemic stem cells (98–104). Thus, we hypothesized 
that UBE2N/TRIM21 stabilizes STAT3 by adding K63-linked 
ubiquitin chains and preventing K48 polyubiquitination and immu-
noproteasome degradation. To test this, we coexpressed UBE2N 
and TRIM21 and measured K48- and K63-linked ubiquitination 
of  STAT3. In the absence of  UBE2N, STAT3 undergoes both K48- 
and K63-linked ubiquitination (Figure 6L). However, expression 
of  UBE2N resulted in reduction of  K48-linked STAT3 ubiquitina-
tion, thereby increasing the ratio of  K63-linked versus K48-linked 
ubiquitination of  STAT3 (Figure 6L). This is consistent with the 
reduced expression of  STAT3 protein and increased K48-linked 
ubiquitination in UBE2N-inhibited AML cells (see Figure 5, C–E). 
Moreover, deletion or knockdown of  TRIM21 in leukemic cells 
resulted in 30%–50% reduced protein levels of  STAT3 (Figure 6M). 
Lastly, we determined whether the reexpression of  STAT3 can 
restore leukemic cell function following UBE2N inhibition (Sup-
plemental Figure 6H). Overexpression of  an active STAT3 partially 
rescued the leukemic colony formation in AML cells treated with 
the UBE2Ni (Figure 6N). These data show that UBE2N utilizes 
the E3 ubiquitin ligase TRIM21 for immunoproteasome-dependent 
degradation of  oncoproteins, such as STAT3, in AML.

Discussion
We uncovered a critical function of  UBE2N in AML through the 
modulation of  oncoprotein proteostasis. Unlike other E2 enzymes 
that facilitate the degradation of  proteins via K48-linked ubiquiti-
nation, UBE2N generates K63-linked polyubiquitin chains. This 
can prevent K48-linked ubiquitination, thereby leading to the sta-
bilization of  proteins critical for leukemic cells. Inhibiting UBE2N 
reduced target protein levels, such as STAT3, BTK, NPM1, and 
IRAK4, leading to K48-linked ubiquitination and their degrada-
tion. UBE2N is involved in various processes, including innate 
immune and inflammatory signaling, DNA damage response, and 
mitophagy (10, 67–69). However, we revealed UBE2N regulates 
oncoproteins that are susceptible to immunoproteasome degrada-
tion in AML. Cancer cells exhibit adaptability to disruptions in 
protein homeostasis, employing mechanisms such as altered pro-
tein translational rates, increased proteolytic activity, improved 
protein repair functions, and/or increased protein recycling (136–

6A and Supplemental Figure 5). We identified 90 proteins prox-
imal to UBE2N (P < 0.05) (Figure 6B and Supplemental Table 
8). Several proteins associated with canonical UBE2N signaling 
were identified, such as IKBKG/IKKγ, NFKB1, and MAPK14 
(Figure 6B). To identify UBE2N-signaling networks in AML, we 
performed an ontology pathway analysis on the list of  proteins 
associated with UBE2N. Proximal UBE2N proteins include effec-
tors of  RIG-I, TLR, NF-κB, TCR, MAPK, and HIF-1 signaling 
(Figure 6C). We next focused on UBE2N proximal proteins that 
exhibit E3 ligase function. Tripartite motif–containing protein 21 
(TRIM21) emerged as the top candidate (Figure 6B). TRIM21 is 
a RING finger E3 ubiquitin ligase that is implicated in a variety 
of  cancer mechanisms (131–135). Coimmunoprecipitations con-
firmed the interaction of  UBE2N and TRIM21 in HEK293T cells 
(Figure 6D). Moreover, TRIM21 RNA and protein expression 
are increased in AML compared with healthy CD34+ cells (Fig-
ure 6E and Supplemental Figure 6A). Although TRIM21 expres-
sion in AML ranks high compared with other human cancers, its 
dependency score in DepMap across human cancers is relatively 
low when compared with UBE2N (Supplemental Figure 6, B and 
C) To investigate whether TRIM21 is required for AML cells, we 
targeted TRIM21 using RNAi or CRISPR/Cas9 approaches in 
human AML cell lines and patient-derived samples (Supplemental 
Figure 6D and Supplemental Table 10). In all TRIM21-deficient 
AML samples, we observed a reduction (>75% reduction) in the 
number of  leukemic colonies compared with the control cells (Fig-
ure 6, F and G). In contrast, knockdown of  TRIM21 in normal 
CD34+ cells only had a modest effect (~25% reduction) on col-
ony formation (Figure 6G). Additionally, we conducted a xeno-
graft using isogenic TRIM21WT or TRIM21KO MV4;11 AML cells 
in immunocompromised mice. Deletion of  TRIM21 in MV4;11 
cells resulted in a reduction in leukemic cell engraftment in the BM 
and an extension of  overall survival (Figure 6, H and I). We next 
investigated whether TRIM21 is a critical E3 ligase in UBE2N-de-

Figure 5. UBE2N dependency is predominant in immunoproteasome-pos-
itive AML. (A) Proposed model. (B) Immunoblots of MV4;11 cells cotreated 
with DMSO or UBE2Ni (5 μM) and the constitutive proteasome inhibitor 
MG132 (5 μM, 6 hours) or the lysosomal inhibitor bafilomycin A (100 nM, 
20 hours). (C) Immunoblots of MV4;11 cells treated with DMSO or UBE2Ni 
(5 μM) and the immunoproteasome inhibitor ONX-0914 (10 nM or 200 
nM) for 24 hours. (D) Immunoblots of Ube2nWT or Ube2nC87S MLL-AF9 cells 
cotreated with 4-OHT (0.5 μM) and ONX-0914 (10, 100, or 200 nM) for 24 
hours. (E) Coimmunoprecipitation in MV4;11 cells treated with DMSO or 
UBE2Ni (5 μM) and ONX-0914 (200 nM) for 24 hours. NPM1 and STAT3 
were immunoprecipitated and immunoblotted for K48-linked polyubiq-
uitination. Densitometric values were calculated based on the expression 
of K48-ubiquitinated NPM1 (left) or STAT3 (right) relative to immunopre-
cipitated NPM1 or STAT3. (F) Cell viability of MV4;11 cells (n = 3 per group) 
48 hours after treatment with UBE2Ni (2.5 μM) and ONX-0914 (100 nM 
and 200 nM). Two-way ANOVA was used to determine significance. (G) 
Overview of experiments using PD-AML. PD-AML cells were (a) treated 
with UBE2Ni and MTS assay was conducted or (b) analyzed by RNA-Seq. 
(H) Heatmap of percentage of viability of UBE2Ni-treated PD-AML cells 
determined by MTS assay. PD-AMLs were classified as UBE2Ni resistant or 
sensitive. (I) The mRNA expression levels of immunoproteasome genes in 
UBE2Ni-sensitive (n = 5) and -resistant (n = 6) PD-AML. (J) Immunoprote-
asome activity was measured in UBE2Ni-sensitive and -resistant PD-AML. 
Student’s t test (unpaired, 2-tailed) was used to determine significance (I 
and J). Error bars represent the SEM. *P < 0.05; **P < 0.01.
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uitination (e.g., monoubiquitination, K48-, and K63-linked poly-
ubiquitin chains) (146–149). TRIM21 is essential in antiviral immu-
nity, acting by sensing antibody-coated viruses that have evaded 
extracellular neutralization and breached the cell membrane (132). 
Upon engagement of  antibody, TRIM21 is monoubiquitinated by 
UBE2W, which leads to ubiquitin chain extension via K63 link-
ages via UBE2N/UBE2V2 (150). TRIM21 is also implicated in 
cancer. Multiple proteins involved in cancer metabolism, immuni-
ty, and inflammation-associated tumorigenesis are ubiquitination 
substrates of  TRIM21 (135). For example, TRIM21 is involved in 
degradation of  cyclin-dependent kinase 2 (CDK2) and ATG5 in 
AML and multiple myeloma cells (151, 152). TRIM21 is implicat-
ed in both cancer progression and suppression, primarily through 
K48-linked proteasomal degradation. For instance, it degrades 
phosphorylated p27 to promote cell-cycle progression and regulates 
p53 stability (153, 154), supporting tumor progression. Converse-
ly, it suppresses tumorigenesis by degrading mutant p53, HIF-1α, 
and acetylated FASN (84, 155–157). TRIM21 also mediates K63-
linked ubiquitination in cancer cells (134, 158). While TRIM21 
has UBE2N-independent roles, our findings suggest the UBE2N/
TRIM21 axis plays a critical role in leukemic function, including 
stabilization of  STAT3 by UBE2N/TRIM21 in AML. STAT3, a 
well-studied gene supporting AML cell proliferation, preventing 
apoptosis, and sustaining leukemic stem cells, is a target of  exten-
sive research as a therapeutic target (98–104). Although we pro-
vide a link between UBE2N and STAT3 in AML, both UBE2N 
and STAT3 are known to cooperatively regulate normal immune 
and hematopoietic cell function. STAT3 transcriptional activity 
is required to repress UBE2N expression, thereby influencing the 
levels of  UBE2N in hematopoietic cells to restrain inflammatory 
signaling (159, 160). Nevertheless, understanding the intricate reg-
ulation of  STAT3 by various factors, including UBE2N, provides 
insights into potential therapeutic strategies for AML.

The immunoproteasome is a cell- and context-dependent 
alternative to the constitutive proteasome, acting by mediating the 
degradation of  proteins with unique amino acid sequences. The 
immunoproteasome is primarily expressed in hematopoietic cells, 
in particular antigen-presenting cells, and induced upon oxidative 
stress and proinflammatory cytokine stimulation (122, 161). The 
immunoproteasome yields unique peptides, thus allowing for opti-
mal MHC class I antigen presentation during immune responses 
(124, 162). Thus, immunoproteasome expression in solid tumors 
can increase antigen presentation and immunogenicity (163). 
Immunoproteasome genes can be either upregulated or downreg-
ulated in various cancers and contribute to both pro- and antitu-
morigenesis. In our study, as well as in studies conducted by other 
groups, immunoproteasome genes are found to be elevated in AML 
(125, 128). Notably, the assembly of  immunoproteasomes occurs 
4 times faster than that of  constitutive proteasomes (164, 165), 
highlighting a potential dependency of  AML cells on immunopro-
teasome activity. In AML, particularly in the M5 subtype or with 
KMT2A rearrangements, immunoproteasomes are important for 
alleviating proteolytic stress and regulating critical pathways (125). 
In these studies, the genetic and pharmacologic inactivation of  the 
immunoproteasome via PSMB8 resulted in impaired proliferation 
of  murine and human leukemic cells, while normal hematopoietic 
cells remained unaffected (128). Given the increase in immunopro-

140). In normal hematopoiesis, distinct levels of  proteostasis reg-
ulation are observed between hematopoietic stem cells (HSCs) 
and progenitor cells (141, 142). Within HSCs, there is evidence 
of  lower rates of  protein synthesis, even when these cells are not 
in a quiescent state. Despite having lower proteasome activity 
compared with progenitor cells, HSCs exhibit fewer unfolded or 
misfolded proteins. Yet when HSCs sense the accumulation of  
misfolded proteins, there is an increase in c-Myc, which could 
lead to proliferation and self-renewal (141, 142). These adaptive 
responses are evident in AML as well, where unfolded protein 
responses (UPR) are elevated, promoting cell proliferation and 
metabolic functions (139, 143). Additionally, elevated ROS in leu-
kemic cells further induce the UPR. Dysregulation or mutations 
within the ubiquitin proteolysis system also play a role in can-
cer by impacting the stability of  tumor suppressors or oncopro-
teins (15, 16, 144). For example, it was recently reported that the 
resistance mechanism of  KRAS inhibitors is due to dysregulated 
proteostasis, leading to the stabilization of  the UPR-regulating 
protein IRE1a (137). Therapeutic strategies targeting the ubiqui-
tin proteasome system, such as bortezomib, have shown promise 
in some hematologic malignancies (145). Combined inhibition of  
autophagy and proteasome activity has demonstrated efficacy in 
disrupting protein homeostasis and reducing cell viability in AML 
cells, highlighting the therapeutic potential of  targeting protein 
homeostasis pathways.

Our study revealed TRIM21 as an E3 ligase partnering with 
UBE2N to regulate proteostasis in AML. TRIM21 interacts with 
multiple E2 conjugating enzymes, including UBE2N/UBE2V2, 
UBE2W, UBE2E1, and CDC34, to mediate various types of  ubiq-

Figure 6. UBE2N utilizes TRIM21 for immunoproteasome-dependent 
degradation of oncoproteins. (A) Proximity assay using doxycycline-in-
ducible UBE2N-V5-APEX2. Cells were treated with biotin phenol to 
activate APEX2 for biotin labeling and quenched by hydrogen peroxide. 
Biotinylated proteins were pulled down and analyzed by LC-MS/MS. (B) 
Enriched proximal proteins compared with control (DOX-untreated sam-
ple) (1.7 > fold change, P < 0.05). (C) KEGG pathway enrichment of the 
hits. The enrichment score and P value are shown. (D) Coimmunoprecip-
itation in HEK293T cells expressing empty vector, FLAG-UBE2N, or GFP-
TRIM21. FLAG was immunoprecipitated and GFP was immunoblotted. 
(E) Immunoblots in AML and healthy CD34+ cells. (F) Colony formation 
of TRIM21-deleted cells (n = 3 per group). (G) Colony formation assay of 
TRIM21-deficient MDSL, PD-AML (patient ID 17-14) cells (n = 5 per group), 
and healthy CD34+ cells (n = 3 per group). (H) Kaplan-Meier survival 
analysis of xenografted mice (n = 7 per group). Mantel-Cox test was used 
to determine significance. (I) Engraftment of hCD45+hCD33+ cells in BM 
at time of death. (J) Ubiquitin enrichment of cells expressing shControl, 
shUBE2N, or shTRIM21. After selection, protein lysates were digested by 
trypsin, followed by enrichment of ubiquitinated peptides using K-e-GG 
magnetic beads and analysis by LC-MS/MS. (K) Venn diagram of signifi-
cantly reduced substrates in UBE2N- and TRIM21-deficient cells from the 
ubiquitin-enriched analysis. (L) Coimmunoprecipitation in HEK293T cells 
expressing FLAG-UBE2N, TRIM21, myc-STAT3 and HA-Ub (WT, K48-spe-
cific, or K63-specific). Myc was immunoprecipitated and HA-ubiquitin 
was immunoblotted. (M) Immunoblots of MV4;11 and MDSL cells. (N) 
Colony formation of MV4;11 cells (n = 5) expressing empty vector or active 
STAT3 (STAT3CA) and treated with UBE2Ni (5 μM). Two-way ANOVA was 
used to determine significance. Student’s t test (unpaired, 2-tailed) was 
used to determine significance (F, G, and I). Error bars represent the SEM. 
*P < 0.05; **P < 0.01; ***P < 0.001.
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teasome activity and dependency in AML and the resulting broader 
degradation of  critical proteins, our data suggest that coactivation 
of  UBE2N is required in these leukemias to regulate proteostasis 
of  oncogenic pathways by stabilizing critical proteins. Given the 
critical role of  UBE2N in regulating protein turnover and ubiquitin 
signaling, uncovering specific deubiquitinating enzymes involved in 
this pathway could provide valuable insights into how UBE2N-de-
pendent processes contribute to immunoproteasome-positive AML 
pathogenesis. In summary, UBE2N maintains proteostasis in AML 
by stabilizing multiple target proteins and preventing their deg-
radation through the immunoproteasome. Moreover, inhibiting 
UBE2N’s catalytic activity suppressed leukemic stem and progen-
itor cell functions by destabilizing these critical proteins in AML, 
which represents a potential therapeutic strategy for immunoprote-
asome-dependent cancers.

Methods
Sex as a biological variable. Our study used both female and male mice. 

For further information, see Supplemental Methods.

Data availability. The RNA-Seq data have been deposited in the 

NCBI’s Gene Expression Omnibus database (GEO GSE286041). 

Publicly available RNA-Seq data were downloaded from The Cancer 

Genome Atlas (cbioportal.org) (GEO GSE68833) and BEAT-AML 

(http://www.vizome.org/aml/). Cell lines and mouse models used in 

these studies are publicly available through commercial sources or may 

be made available from the authors upon written request and material 

transfer agreement approval. Plasmids and antibodies used in the study 

are included in Supplemental Tables 10–13.Values for all data points in 

graphs are reported in the Supporting Data Values file.

Statistics. Statistical analyses were performed as indicated in the fig-

ure legends and in the Supplemental Methods section.

Study approval. All work was approved by the Institutional Review 

Board (ID # 2008-0021) and Institutional Animal Care and Use Commit-

tee at Cincinnati Children’s Hospital (IACUC 2019-0072, 2022-0054). For 

further information, see Supplemental Methods.
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