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Supplemental Methods 1 
 2 
Sex as a biological variable 3 

This study examined male and female participants, as both men and women were eligible, and findings 4 

were similar for both sexes. 5 

 6 

Clinical cohort 7 

This cross-sectional, genetic association study was performed in a cohort of consecutive patients with 8 

T-cell large granular lymphocytosis (T-LGLL) diagnosed and managed at Taussig Cancer Center, 9 

Cleveland Clinic Foundation from 1998 to 2023, described elsewhere (Table 1)(1). Briefly, diagnosis 10 

of T-LGLL required the presence of >4/6 criteria: i) LGLs (>0.40 × 109/L) in blood for more than 6 11 

months; (ii) abnormal CTL expressing CD2, CD56 and CD57 and lacking CD28; (iii) preferential usage 12 

of a T-cell receptor (TCR) Vb family by flow cytometry; (iv) TCR gene rearrangement by PCR; (v) 13 

STAT3/5B mutation; (vi) T-LGL infiltration of the bone marrow(2). Cases with NK-LGLL were excluded 14 

from this study because our focus on clonal T-cell expansions, as well as because NK-LGLL constitute 15 

a less frequent and less defined clinical/molecular variant of the disease. 16 

Clinical data collected comprised patient demographics; presence of splenomegaly; associated 17 

autoimmune conditions; bone marrow failure (i.e., pure red cell aplasia [PRCA], aplastic anemia [AA]); 18 

antibody-mediated peripheral autoimmune cytopenias (i.e., autoimmune hemolytic anemia [AIHA], 19 

autoimmune neutropenia [AIN], primary immune thrombocytopenia [ITP]); personal history of solid and 20 

hematological neoplasms, and family history of immune disorders or hemato-lymphoid neoplasms. The 21 

presence of a B-cell dyscrasia was considered with the diagnosis of any of the following conditions: 22 

monoclonal B-cell lymphocytosis (MBL), chronic lymphocytic leukemia (CLL) or other chronic B-cell 23 

lymphoproliferative disorders, Hodgkin lymphoma, Non-Hodgkin B-cell lymphoma, monoclonal 24 

gammopathy of undetermined significance (MGUS), myeloma or other plasma cell dyscrasias(3). 25 

Acquired causes potentially leading to hypogammaglobulinemia, described elsewhere(4), were 26 
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screened in patient’s medical charts prior to T-LGLL diagnosis, including: history of B-cell dyscrasias; 1 

the use of therapies against B cells or plasma cells; diagnosis of myeloid neoplasms; the use of 2 

chemotherapy for hematologic or solid neoplasms; the use of other immunosuppressive therapies; 3 

history of solid transplant or hematopoietic stem cell transplant; diagnosis of common variable 4 

immunodeficiency (CVID) or other immunodeficiency syndrome; and diagnosis of thymoma/Good 5 

syndrome. Overall survival (OS) was defined as time to death from diagnosis. Event-free survival (EFS) 6 

was defined by the occurrence of treatment initiation, transfusion dependency, splenectomy, 7 

hematopoietic stem cell transplant, transformation to high-grade lymphoma or death. 8 

Laboratory data at diagnosis comprised complete blood count, LGL count, immunoglobulin (Ig) levels, 9 

and M protein assessment. Lymphocyte subset characterization by flow cytometry (in CD45Ly gated 10 

cells) routinely performed in the clinic in peripheral blood at LGL diagnosis was also collected for the 11 

study of the following populations: T cells (CD3+, normal range [NR]: 0.96 - 2.39 x109/L), CD4 T helper 12 

cells (CD3+CD4+, NR: 0.53 - 1.67 x109/L), CD8 cytotoxic T lymphocytes (CTLs, CD3+CD8+, NR: 0.28 13 

- 0.96 x109/L), NK cells (CD3-CD16/CD56+, NR: 0.10 - 0.57 x109/L) and B cells (CD19+, NR: 0.08 - 14 

0.66 x109/L). The Ig levels analyzed included the quantification of IgG (NR: 717 - 1411 mg/dL), IgA 15 

(NR: 78 - 391 mg/dL) and IgM (NR: 53 - 334 mg/dL).  16 

 17 

Targeted sequencing 18 

All patients were deep sequenced for the presence of a mutation in exon 21 of STAT3, the protein-19 

protein interaction domain as previously described(5).  20 

Targeted sequencing was performed as previously described using a custom panel for detection of 21 

hematological neoplasm gene variants from TruSeq or Nextera platforms (Illumina, San Diego, CA)(6, 22 

7). Nucleic acid extracted from the specimen was subjected to nested multiplex PCR-based target 23 

enrichment. Coding and non-coding regions of 63 genes were amplified and sequenced on an Illumina 24 

instrument with paired end, 150x2 cycle reads. A customized bioinformatic analytical pipeline was used 25 
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to map reads to human genome hg38. During internal validation, this test delivered an average of 1 

>500X coverage and >98% of targeted regions showed over 100X coverage. The test demonstrated 2 

95.2% sensitivity and 99.9% specificity in identifying single nucleotide variants (SNVs), small insertions 3 

and deletions (indels) (<10bp) of >5% variant allele fraction (VAF). For the identification of large indels 4 

(>10bp) >5% VAF, including FLT3 ITD, the test demonstrated 87.5% sensitivity and 99.9% specificity. 5 

The limit of detection of this test is 1% for the JAK2 V617F and NPM1 W288Cfs*12 variants, and 5% 6 

for other variants. 7 

 8 

Whole exome sequencing, SNVs and CNVs calling and quality filtering 9 

Whole exome sequencing (WES) was performed by Novogene (Sacramento, CA) in genomic DNA 10 

(gDNA) extracted from peripheral blood mononuclear cells. Briefly, the gDNA was randomly sheared 11 

into short fragments (180-280 bp). The obtained fragments were end repaired, A-tailed, and further 12 

ligated with Illumina adapters. The fragments with adapters were PCR amplified, size selected, and 13 

purified. The prepped libraries were hybridized in the buffer with biotin-labeled probes, and magnetic 14 

beads with streptavidin were used to capture the exons of genes. Subsequently, non-hybridized 15 

fragments were washed out and probes were digested. The captured libraries were enriched by PCR 16 

amplification. The library was checked with Qubit and real-time PCR for quantification and bioanalyzer 17 

for size distribution detection. Quantified libraries were pooled and sequenced on Illumina platforms 18 

with PE150 strategy, according to effective library concentration and data amount required. 19 

Raw read files were first converted to FASTQ format, then aligned to human genome hg38 using the 20 

Burrows-Wheeler Aligner (BWA) (8). Aligned reads were processed using Genome Analysis Toolkit 21 

(GATK) that also extracted candidate variants/ polymorphisms to reduce sequencing errors (9).  22 

 23 

Variant annotation and variant/gene/patient filtering 24 

Variant annotation was performed by using ANNOVAR (10). A stringent categorization algorithm to 25 
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avoid false positives was devised, removing: (i) variants with minimum depth <10 or <4 reads 1 

supporting the alternate allele; (ii) synonymous SNVs; (iii) variants in repetitive genomic regions. The 2 

variant coordinates were crosschecked with the list of somatic mutations in the same patients, and any 3 

commonalities were omitted from the germline list. 4 

Errors of immunity-linked genes 5 

We screened this study cohort for the presence of rare germline variants associated with primary 6 

immunodeficiency in a panel comprised by 464 immune genes defined by the 2022 Updated 7 

Classification of Human inborn errors of immunity (IEI) of the IUIS Expert Committee (Supplemental 8 

Table 1) (11). Rare variants were defined as those with population allele frequencies below 1% 9 

obtained from the Genome Aggregation Database (gnomAD). Only variants annotated as missense, 10 

nonsense, indel, or splice site were considered for downstream analyses. Each variant was assessed 11 

according to the American College of Medical Genetics (ACMG) criteria, using ClinVar (12) and 12 

VarSome tools (13). Prediction scores for the effect of gene variants in protein function or structure 13 

SIFT (14), PROVEAN (15), LRT (16), MutationTaster (17), MutationAssessor (18), FATHMM (19), and 14 

CADD (20), were additionally conducted. For splice site variants, Mutation Taster, CADD and 15 

MaxEntScan scores (21) were used. For the purpose of this study, we selected all pathogenic/likely 16 

pathogenic (P/LP) and variants of uncertain significance (VUS) overrepresented in our cohort, i.e. with 17 

a significant corrected p-value for the comparison of observed vs. expected frequencies according to 18 

gnomAD. We performed a binomial test against the null hypothesis that the alternate allele was drawn 19 

from a binomial (n,f) distribution, where n was the allele frequency observed in our cohort and f was 20 

the expected frequency (MAF) in gnomAD. Multiple-testing correction of p-values by using Benjamini-21 

Hochberg with a false discovery rate (FDR) level of 0.05 was applied. Exclusion criteria were: i) variants 22 

with a VAF<40%, ii) variants estimated by the ACMG pathogenicity criteria to be benign or likely benign, 23 

and iii) non-overrepresented VUS, corresponding to a Benjamini-Hochberg FDR above 0.05. 24 

 25 
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T-cell lymphoid drivers 1 

We screened this genomic study cohort for the presence of somatic variants in a list of 168 recurrent 2 

T-cell lymphoid drivers (Supplemental Table 3). The selection of the genes was based on two criteria: 3 

(i) previously described in LGLL according to two seminal publications (22, 23); (ii) alternatively, not 4 

described in LGLL but identified as recurrent genes in either mature T-cell neoplasms and/or lymphoid 5 

clonal hemopoiesis (L-CHIP)(24–27). For the latter case, the lists of mutated genes in mature T-cell 6 

lymphoid neoplasms and of L-CHIP genes were cross-matched, and we incorporated into the final 7 

panel all recurrent (>1 study) genes in the first dataset and positive matches between T-cell 8 

lymphoma/leukemia and L-CHIP genes from the second dataset -therefore, CHIP genes restricted to 9 

myeloid or B-cell lymphoid neoplasms were excluded. In-parallel run targeted sequencing for a 10 

hematological cancer NGS panel (TruSeq or Nextera platforms, Illumina, San Diego, CA) that was also 11 

interrogated for the overlapping genes to increase diagnostic yield. Detected variants were filtered out 12 

using the following exclusion criteria: (i) minimum depth below of 10 reads or less than 4 reads 13 

supporting the alternate allele; (ii) synonymous variants, (iii) polymorphisms (global population 14 

frequency >1%), and potential germline variants. Missense, nonsense, frameshift, and indels variants 15 

fulfilling the selection criteria were further filtered by pathogenicity criteria according to COSMIC, 16 

ClinVar and VarSome with somatic filters. Only P/LP variants registered in COSMIC as 17 

canonical/recurrent and ever reported as somatic were selected to increase stringency in terms of 18 

clinical consequences. 19 

Gene-level somatic copy number variants (CNVs) were primarily called using CNVkit(28). Values were 20 

calculated by mapping genes onto the segment level calls and computing a weighted average along 21 

the genomic coordinates. Normalized read depths (log2), b-allele frequency (BAF), and CN estimates 22 

for ref/alt alleles given the VAF data we extracted. CNVs in hypervariable chromosomic regions 23 

(Supplemental Table 11), or CNVs observed in general population datasets (DECIPHER, Database 24 

of Genomic Variants [DGV])(29, 30) were excluded. 25 
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Variant analysis plan 1 

To determine the burden of the rare variants of potential clinical interest in IEI-linked genes, we 2 

estimated for the P/LP and VUS variants found to be overrepresented in our cohort: (i) the individual 3 

IEI mutational burden, defined as the number of IEI variants of per patient; (ii) the combined IEI 4 

mutational burden in the cohort, calculated as the proportion (%) of subjects with at least one of the IEI 5 

variants; and (iii) the simplified expected probability of finding any of the IEI variants in our cohort, 6 

estimated as the sum of fi, where fi was the allelic frequency expected for each variant according to 7 

gnomAD (used here as a comparator extrapolated from the general population). 8 

As a control population for statistical comparisons, we estimated the combined mutational burden of 9 

the variants found in a cohort of healthy subjects in All of US (31). This is a National Institutes of Health 10 

(NIH) research program aiming to enroll more than one million of US residents aged ≥18 years to create 11 

a nationwide population study cohort. Demographics, surveys, clinical information, and bio-specimens 12 

are donated. The All of Us program stores diagnosis codes harmonized into the SNOMED clinical terms 13 

vocabulary. To date, short-read whole genome sequencing is available from 245,368 individuals. As 14 

healthy control population to test the presence of the variants found, we considered cases with: (i) none 15 

of the 36,920 SNOMED terms coding any clinical condition, and (ii) single-nucleotide/indel variant 16 

information available from short-read sequencing. 17 

The IEI-linked variants included in this work were further clustered and analyzed according to: (i) 18 

pathogenicity, (ii) immune functional-phenotypic implications and/or (iii) pattern of inheritance according 19 

to 2022 IUIS Classification of IEI (Supplemental Table 1) (11), and (iv) the presumed age period of 20 

onset of the associated IEI (i.e., early- vs. adult-onset disease) (11, 32). To establish correlations 21 

between genomic and biological or clinical data, we further defined a category of high-confidence 22 

deleterious (hcD) variants, considered more likely to predispose to immune misbalance in a carrier, as 23 

those being either: (i) P/LP variants, (ii) heterozygous VUS for dominant traits, or (iii) 24 

homozygous/compound heterozygous P/LP/VUS for recessive diseases. Clinical variables, survival 25 
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outcomes, and laboratory and biological parameters of carriers vs. non-carriers of these high-risk 1 

variants were compared.   2 

 3 

TCR immunosequencing and analysis 4 

Sequencing of the complementarity determining regions (CDR3) regions of human T-cell receptor 5 

(TCR) beta gene was performed using the ImmunoSEQ Assay (Adaptive Biotechnologies), as 6 

previously described (33, 34). Briefly, gDNA extracted from peripheral blood mononuclear cells was 7 

amplified in a bias-controlled multiplex PCR, with a first PCR consisting of forward and reverse primers 8 

specific for every V and J gene segment allowing the amplification of the hypervariable CDR3 region, 9 

and a second PCR by which a proprietary barcode sequence and Illumina adapters were added. CDR3 10 

libraries were sequenced on Illumina platforms. Deep TCR sequencing data of 145 healthy controls 11 

originated from Emerson and DeWitt (original publication and ImmuneACCESS) (35, 36). The 12 

immunoSEQ Analyzer 3.0 software (Adaptive Biotechnologies) was used for sample data export, 13 

preliminary statistics and quality control steps.  Annotation was in accordance with the IMGT database 14 

(https://www.imgt.org).   15 

Downstream analysis of the TCR repertoire was performed exclusively in productive rearrangements 16 

(i.e., translating a functional amino acid sequence, intended as reads that were in-frame and did not 17 

contain a stop codon in their sequence). Down-sampling, a normalization procedure of resampling the 18 

TCR repertoire for all the specimens to the optimally minimal depth of the samples sequenced, was 19 

done to overcome the issue related to inter-sample differences in depth. An optimal repertoire size 20 

threshold of 5420 clones was used for down-sampling in both cohorts. The diversity metrics calculated 21 

per sample included: the number of unique clonotypes, unique clone size, and the inverse Simpson 22 

index, ISI = (∑T
i=1 p2

i)-1, where pi is the proportional abundance of each unique clonotype and T is the 23 

total number of unique clonotypes (the lowest value for this index is 1 and the highest value is equal to 24 

the number of species). The expansion status of the clones within a repertoire was defined according 25 

https://www.imgt.org/
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to the number of templates and the clonotypic distribution in healthy control as: (i) non-expanded (1 1 

template), (ii) normally expanded (2-5 templates), (iii) pathologically expanded (>5 templates), and 2 

hyperexpanded clonotypes (>10 templates). Condition-related known specificities of the identified 3 

clonotypes were annotated according to the dataset from Pagliuca et al. (80,220 references, 4 

Supplemental Table 10), which included, among others, human TCR beta sequences from the public 5 

databases VDJDB (https://vdjdb.cdr3.net/search), McPAS-TCR 6 

(http://friedmanlab.weizmann.ac.il/McPAS-TCR/), and PIRD TBAdb (https://db.cngb.org/pird/tbadb/) 7 

(34). 8 

 9 

Single-cell RNA+TCRαβ-seq from T-LGLL and healthy control samples 10 

Preprocessed Seurat objects of scRNA+TCRαβ-seq of flow cytometry-sorted CD45+ blood 11 

mononuclear cells from T-LGLL (n=11) and healthy control (n=6) samples, independently repurposed 12 

from study by Huuhtanen and Bhattacharya et al., available at https://zenodo.org/records/4739231, 13 

were utilized (37). Clinical characteristics of the samples used are summarized in Supplemental Table 14 

8. Extensive methodological description of this dataset is available in the published paper (37). We 15 

focused our analysis on hyperexpanded T-cell clonotypes (>10 TCR templates). Batch-corrected latent 16 

embeddings from scVI (v.0.5.0) were used for graph-based clustering and uniform manifold 17 

approximation and projection (UMAP) dimensionality reduction implemented in Seurat (v.3.0.0) with 18 

RunUMAP function, and scaled with 3,000 most highly variable genes with the FindVariable function 19 

and ScaleData functions with default parameters (38, 39). 20 

 21 

Genomics and transcriptomics from mature T-cell cancer cell lines 22 

Genomic data from 26 mature T-cell neoplasm cell lines was gathered from The Cancer Dependency 23 

Map Project (https://depmap.org, DepMap, Broad Institute) (40). Briefly, DepMap Data Release is a 24 

publicly available comprehensive omics resource for understanding cancer biology and identifying 25 

potential therapeutic targets. We selected all cell lines matching with the context “Mature T NK cell 26 

https://vdjdb.cdr3.net/search
http://friedmanlab.weizmann.ac.il/McPAS-TCR/
https://db.cngb.org/pird/tbadb/
https://zenodo.org/records/4739231
https://depmap.org/
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neoplasms”. Gene-level damaging-supporting SNVs and CN normalized read datasets were analyzed. 1 

Bulk RNA-seq was available for 22 of the 26 cell lines. Read count data from RSEM (unstranded mode) 2 

was normalized with the Trimmed Mean of M-values (TMM) method in edgeR default option(41). A 3 

summary of main biological characteristics, and RNA-seq data used in this study is provided in 4 

Supplemental Table 9. 5 

 6 

Gene expression levels and differential gene expression analysis 7 

Single-cell and bulk RNA-seq mean gene expression levels were compared using t-test and Wilcoxon 8 

tests, respectively (42). Differential expression analyses were performed using DESeq2  with default 9 

parameters, based on the Wald test with Bonferroni correction of p-values (43). In scRNAseq T-LGLL 10 

samples, we compared STAT3mt vs. STAT3wt cells. In cell lines with RNA-seq, we compared STAT3mt 11 

vs. fusion-matched STAT3wt cell lines, based on the oncogene fusion present in the STAT3mt cells. 12 

Three cell lines had amplification of STAT3: SMZ1 and SUDHL1, with rearrangements in TP63 and 13 

ALK, and OCILY12, without a driver oncogene fusion. Therefore, three sets of DE analysis were set: i) 14 

SMZ1 vs. TP63-rearranged, STAT3wt cells; ii) SUDHL1 vs. ALK-rearranged, STAT3wt cells; iii) 15 

OCILY12 vs. non-rearranged STAT3wt cells. Enrichment Gene Ontology (GO) pathway analysis was 16 

performed with the list of dysregulated genes (abs(log2FC)>0.2; padj<0.05) using the enrichGO 17 

function implemented in ClusterProfiler with Benjamini–Yekutieli correction and FDR<0.10 (44). Gene 18 

expression scores in scRNA-seq were calculated with the Seurat AddModuleScore function (45). The 19 

TCR score was calculated with 15 genes (TRAC, TRDC, CD2, CD3D, CD3E, CD3G, CD247, CD4, 20 

CD5, CD6, CD8A, SYK, ZAP70, LCK, LAT), including components of the TCR complex (GO:0042101) 21 

and the TCR signalosome (GO:0036398). A score with the same set of genes was also calculated in 22 

bulk-RNA seq from the T-cell cancer cell lines as geometric means(37). A STAT3 score, indicative of 23 

STAT3 activation, was also calculated for scRNA-seq with 9 genes (STAT3, TNFSF9, CCL3, GSTP1, 24 

PECAM1, CTSD, NKG7, BCL3, MYADM). The genes were selected by interrogating the set of genes 25 
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upregulated in STAT3mt vs. STAT3wt T-LGL clones and selecting those genes matching with either a 1 

list of upregulated genes in human cells expressing STAT3 off-a-viral-vector gathered from MSigDB 2 

(DAUER_STAT3_TARGETS_UP)(46), or with the lists of upregulated genes in STAT3mt vs. STAT3wt 3 

T-cell neoplasm lines from DepMap generated here. To visualize gene expression in scRNA-seq, 4 

scaled expressions were used with the Seurat FeaturePlot function(39). Gene expression scores were 5 

visualized in scRNA-seq in a similar fashion. Thresholds corresponding to the 90th percentiles of the 6 

gene expression scores were set to identify and quantify the proportion of cells with high TCR/STAT3 7 

signaling scores. 8 

 9 

Statistics 10 

Categorical variables were presented as percentages and compared using Pearson's chi-squared and 11 

Fisher’s exact tests. Continuous variables were presented as mean and SD if normally distributed, and 12 

as median and IQR if non-normally distributed.  13 

Differential analysis of categorical variables included Pearson’s χ2 or Fisher’s exact tests; comparison 14 

of continuous variables included Student’s t test or nonparametric Mann-Whitney U test. Differences 15 

with a 2-tailed p-values less than 0.05 were considered statistically significant. Survival analysis 16 

between groups was done with Log-Rank test. Associations between clinical data and survival 17 

outcomes were assessed with unadjusted (univariable) and adjusted (multivariable) Cox regression. 18 

Overall survival Estimations were presented with 95% confidence intervals (95%CI). 19 

Mutation gene pathway analysis was performed with using GeneMANIA (University of Toronto, 20 

Canada)(47) and Cytoscape (NIH, Bethesda, MD) (48). 21 

Statistical analysis and graphic representation was performed using GraphPad Prism v.9.4 (GraphPad 22 

Software Inc., San Diego, CA), STATA v.16 (StataCorp LLC, College Station, TX), or R (R Core Team, 23 

Vienna, Austria)(49). The R packages and functions used for SNVs, CNVs and scRNA-seq and bulk-24 

RNA-seq analyses are indicated as per their mention throughout this section. 25 
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Supplemental Tables 1 

 2 

Supplemental Table 1 (Excel File). Panel of genes associated with IEI screened in this study. 3 

The list of 464 genes is adapted from 2022 IUIS Classification of IEI adapted from: Bousfiha AM et al. 4 

J Clin Immunol. 2022 Oct;42(7):1473-1507. Disease name, pattern of inheritance and OMIM# are 5 

provided. Abbreviations: AD: autosomal dominant, AR: autosomal recessive, DN: dominant-negative, 6 

GOF: gain of function, LOF: loss of function, XL: X-linked. 7 

 8 

Supplemental Table 2 (Excel File). List of gene variants associated with IEI identified in this 9 

study. Information regarding OMIM#, gene variant chromosome and genomic position (hg19), 10 

nucleotide and amino acid change, gnomAD population frequency, pathogenicity prediction according 11 

to SIFT, PROVEAN, LRT, MutationTaster, MutationAssessor, FATHMM and CADD and classification 12 

according to American College of Medical Genetics (ACMG) criteria is provided. Abbreviations: B: 13 

benign, BM: benign moderate, BS: benign supporting/strong, LB: likely benign, LP: likely pathogenic, 14 

U: uncertain, P: pathogenic, PM: pathogenic moderate, PS: pathogenic supporting/strong. VUS: variant 15 

of uncertain significance. 16 

 17 

Supplemental Table 3 (Excel File). Survival analysis - multivariate Cox regression. †Defined as 18 

the initiation of therapy, need of transfusions, splenectomy, transplant, transformation to high-grade 19 

lymphoma, or death. hcD: high-confidence deleterious variants in IEI-linked genes. HR: hazard ratio. 20 

EFS: progression free survival. OS: overall survival. 95%CI: 95% confidence interval. 21 

 22 

Supplemental Table 4 (Excel File). Panel of putative lymphoid driver genes screened in this 23 

study. The list includes genes reported as recurrently mutated in LGLL, mature T-cell lymphoid 24 

neoplasms, and lymphoid clonal hemopoiesis (L-CHIP). Ensembl annotations are provided. 25 



14 
 

 1 

Supplemental Table 5 (Excel File). List of mutations in T-cell lymphoid drivers in the WES cohort. 2 

Information regarding variant cDNA and protein changes (human genome hg38), and VAF is provided. 3 

Abbreviations: VAF: variant allele frequency. 4 

 5 

Supplemental Table 6 (Excel File). Summary of mature T-cell neoplasm cell lines gathered from 6 

DepMap. Full information on this dataset is available in: https://depmap.org/portal/. Neoplasia subtype, 7 

ploidy, oncogenic fusions, availability of WES and RNA-seq, STAT3 amplification status estimated as 8 

described in Supplementary Methods, and Set# for differential expression analysis are provided. 9 

Abbreviations: ALCL: Anaplastic large cell lymphoma. CTCL: cutaneous T cell lymphoma. ATLL: adult 10 

T-cell leukemia/lymphoma. HSTCL: hepatosplenic T-cell lymphoma. T-LGLL: T-cell large granular 11 

lymphocytic leukemia. PTCL: peripheral T cell lymphoma. Ploidy is abbreviated as 2n: near-diploid, 12 

2n+: hyperdiploid, 3n: triploid, 4n: tetraploid.  13 

  14 

Supplemental Table 7 (Excel File). Copy number variants (CNVs) in T-LGLL patients with WES 15 

data. Chromosome position (human genome hg38), chromosomic band, gene(s) involved and CNV 16 

type are provided. 17 

 18 

Supplemental Table 8 (Excel File). Summary results of gene pathway analysis for the high-19 

confidence deleterious variants (hcD) in IEI genes and genes dysregulated in T-LGLL. The 20 

enriched pathways are listed in three columns: (i) only in IEI network, (ii) only in T-LGLL network and 21 

(iii) common pathways. GO annotation is used. Abbreviations: hcD: high-confidence deleterious 22 

variants, IEI: inborn errors of immunity, GO: gene ontology, T-LGLL: T-cell large granular lymphocytic 23 

leukemia. 24 
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Supplemental Table 9 (Excel File). Summary of clinical characteristics of scRNA-seq T-LGLL 1 

and healthy control samples. Full information on this dataset is available in: Huuhtanen J et al. Nat 2 

Commun. 2022. 13:1981. PMID: 35411050. Abbreviations: Pt: patient. HC: healthy control. 3 

 4 

Supplemental Table 10 (Excel File). Differentially expressed genes between STAT3mt and 5 

STAT3wt hyperexpanded T-cells from T-LGLL samples (n=11). Average log2FoldChange 6 

(avg_logFC) values > 0 correspond to genes upregulated in STAT3mt (i.e. downregulated in STAT3wt) 7 

T-LGL clones; avg_logFC < 0 correspond to genes downregulated in STAT3mt (upregulated in 8 

STAT3wt) T-LGL clones. Full information on this dataset is available in: Huuhtanen J et al. Nat 9 

Commun. 2022. 13:1981. PMID: 35411050. 10 

 11 

Supplemental Table 11 (Excel File). Differentially expressed genes between STAT3mt and 12 

STAT3wt fusion-matched T-cell cancer cell lines from DepMap. Three fusion-matched comparison 13 

sets were defined, based on the oncogene fusion present in the STAT3mt cells (see Supplemental 14 

Table 6).  Average log2FoldChange (avg_logFC) values > 0 correspond to genes upregulated in 15 

STAT3mt (i.e. downregulated in STAT3wt) cell lines; avg_logFC < 0 correspond to genes 16 

downregulated in STAT3mt (upregulated in STAT3wt) cell lines.      17 

           18 

Supplemental Table 12 (Excel File). Meta-analytic dataset of CDR3 sequences. Modified from 19 

Pagliuca S et al. JCI Insight. 2021 Jul 8;6(13):e149080. 20 

 21 

Supplemental Table 13 (Excel File). Coordinates of hypervariable chromosomic regions. 22 

Reference human genome hg38. 23 

 24 
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Supplementary Figures 1 

Supplemental Figure 1. Mutations in genes with hcD variants identified in T-LGLL patients (1): 

AIRE, ATAD3A, BACH2, BLK, CARD14, CTC1. Annotation of the domains of the proteins coded by 

the canonical transcripts was extracted from Ensembl and UniProt .json files. The mutations labelled in 

red with the amino acid change are the ones found in our study. The plot additionally displays rare 

(MAF<1%) deleterious variants previously reported in these genes using gnomAD genomic browser 

v4.1.0, integrating pathogenicity predictors and variant frequency (number of variants reported in 

gnomAD). GOF: Gain-of-function. LOF/pLOF: Loss of function/predicted LOF. NOS: region/domain not 

otherwise specified. 
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Suppl. Fig.1
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Supplemental Figure 2. Mutations in genes with hcD variants identified in T-LGLL patients (2): 

GFI1, SEC61A1, SEMAE, SH3BP2, STK4, VAV1. Annotation of the domains of the proteins coded 

by the canonical transcripts was extracted from Ensembl and UniProt .json files. The mutations 

labelled in red with the amino acid change are the ones found in our study. The plot additionally 

displays rare (MAF<1%) deleterious variants previously reported in these genes using gnomAD 

genomic browser v4.1.0, integrating pathogenicity predictors and variant frequency (number of 

variants reported in gnomAD). GOF: Gain-of-function. LOF/pLOF: Loss of function/predicted LOF. 

NOS: region/domain not otherwise specified. 
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Suppl. Fig.2
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Supplemental Figure 3. Mutations in IEI genes with hcD variants identified in T-LGLL patients 

(3): TCIRG1. Annotation of the domains of the proteins coded by the canonical transcripts was 

extracted from Ensembl and UniProt .json files. Exon-protein correlations for both the canonical 

TCIRG1 and alternative TIRC7 transcripts are shown. The mutations labelled in red with the amino acid 

change are the ones found in our study. The plot additionally displays rare (MAF<1%) deleterious 

variants previously reported in these genes using gnomAD genomic browser v4.1.0, integrating 

pathogenicity predictors and variant frequency (number of variants reported in gnomAD). GOF: Gain-

of-function. LOF/pLOF: Loss of function/predicted LOF. NOS: region/domain not otherwise specified. 
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Suppl. Fig.3 
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Supplemental Figure 4.  Clinical, laboratory and genetic characterization of patients with high-

confidence deleterious (hcD) variants associated with dominant IEI. A) Clinical and laboratory 

features of the carriers of hcD variants (hcD, red) vs. non-carriers (NC, gray). *: p<0.05, **: p<0.01, ***: 

p<0.001. Exact p values are shown for marginally significant p-values (0.05 < p <0.10). Abbreviations: 

ALC: absolute lymphocyte count. ANC: absolute neutrophil count. WBC: white blood cells. Hb: 

Hemoglobin. LGLs: large granular lymphocyte count. 
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Suppl. Fig.4 
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Supplemental Figure 5.  Survival outcomes for carriers of high-confidence deleterious variants 

(hcD). A) Kaplan Meier curves showing the EFS stratified by the presence of hcD variants. Log-rank 

P-value=0.18. B) Kaplan Meier curves showing the OS stratified by the presence of hcD variants. Log-

rank P-value=0.11. EFS: event-free survival. OS: overall survival. 
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Suppl. Fig.5  
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Supplemental Figure 6. CNLog2 of STAT3-related genes and TP53 inferred from our WES cohort. 

The reference lines represent the thresholds to define CN gains (upper line, red) and CN losses (lower 

line, blue). Each dot represents a patient sample. 
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Suppl. Fig.6 
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Supplemental Figure 7. CNLog2 of STAT3-related genes and TP53 from 26 Mature T NK 

Neoplasms as part of the DepMap Data Release. The reference lines represent the thresholds to 

define CN gains (upper line, red) and CN losses (lower line, blue). Cell lines with CNVs are labeled. 

The T-LGLL cell line MOTN1 is labelled in all columns regardless the gene CN status. 
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Suppl. Fig.7 
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Supplemental Figure 8. Mutational plot with coupled damaging SNV and CNV data from 26 

mature T neoplasms as part of the DepMap Data Release. The plot represents the mutational status 

of top mutated T-cell lymphoid drivers assessed in our WES patient cohort. Heatmap clustering was 

performed with Ward’s linkage. Values are scaled for each column. Amp: amplification. SNV: single 

nucleotide variant. CNV: copy number variant. ALCL: Anaplastic large cell lymphoma. CTCL: 

cutaneous T cell lymphoma. ATLL: adult T-cell leukemia/lymphoma. HSTCL: hepatosplenic T-cell 

lymphoma. T-LGLL: T-cell large granular lymphocytic leukemia. PTCL: peripheral T cell lymphoma. 

Ploidy is abbreviated as 2n: near-diploid, 2n+: hyperdiploid, 3n: triploid, 4n: tetraploid. 
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Suppl. Fig.8 

 



32 
 

Supplemental Figure 9. Co-mutation analysis of T-cell lymphoid drivers in patients with T-LGLL 

according to the IEI hcD variant status. A) Gene pathway analysis of the genes with hcD variants 

(red) and T-LGLL dysregulated pathways (gray) using GeneMANIA and Cytoscape. The Venn diagram 

summarizes the number of gene pathways enriched and shared by the networks, which are further 

detailed in Supplementary Table 7. A) Correlation plot represents positive and negative associations of 

mutations in T-cell lymphoid drivers and IEI hcD variants, grouped at the bottom of the plot as immune 

dysregulation (hyperactive responses) and immunodeficiency (defective responses). Only correlations 

with p-values p<0.10 are shown. B) Enrichment analysis of the HALLMARK pathways involved by the 

T-cell lymphoid drivers associated with patients with IEI hcD variants. Top 5 pathways enriched (q-

value < 0.10) in patients with immune dysregulation (normalized enrichment score [NES] > 0, right) and 

immunodeficient (NES < 0) hcD variants are shown.  
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Suppl. Fig.9 
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Supplemental Figure 10. Single-cell RNA+TCRαβ-seq in T-LGLL and healthy control samples. 

A) Focused UMAP of the hyperexpanded T cells (>10 templates) and inferred STAT3mt status from T-

LGLL and healthy control samples. The admixed barplot represents the proportion of the cells according 

to the STAT3mt status per sample. B) Focused UMAP of the hyperexpanded T-cells and inferred T-

cells subtypes from T-LGLL and healthy control samples. The admixed barplot represents the 

proportion of the cells according to the STAT3mt status per sample. C) Fraction of cells (%) expressing 

common T-cell markers. TCM: T central memory cells. TEM: T effector memory cells. CLP: common 

lymphoid progenitor. Tregs: T regulatory cells. The category “rare” aggregates infrequent CD8+ T cell 

populations.  
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Suppl. Fig. 10. 
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Supplemental Figure 11. Single-cell RNA+TCRαβ-seq analysis of STAT3-related genes in T-

LGLL and healthy control samples. A) Fraction of cells (%) expressing STAT3 and STAT3-related 

positive/negative regulators. B) Scaled expression of STAT3-related genes between T-LGLL clusters 

highlighted in the same UMAP representation (upper panels) and expression levels between STAT3mt 

vs. STAT3 wt T-LGLL and healthy controls (t-test p-values). 
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Suppl. Fig. 11. 
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Supplemental Figure 12. Single-cell RNA+TCRαβ-seq analysis of STAT3-related genes in T-

LGLL and healthy control samples. A) Fraction of the cells expressing TCR-related genes. B) Scaled 

expression of TCR-related genes between groups highlighted in the same UMAP representation. C) 

Expression levels between STAT3mt vs. STAT3 wt T-LGLL and healthy controls (t-test P-values). *: 

p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. 
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Suppl. Fig.12 
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Supplemental Figure 13. Bulk-RNA-seq analysis of STAT3- and TCR-related genes in mature T-

cell lymphoma/leukemia cell lines from DepMap. A) Normalized mRNA expression levels of STAT3 

and related genes in T-cell lymphoma/leukemia cell lines according to the STAT3 amplification status 

(Wilcoxon test P-values). Normalized mRNA expression levels of TCR-related genes in T-cell 

lymphoma/leukemia cell lines according to the STAT3 amplification status (Wilcoxon test P-values). 

AMP: STAT3 amplification. WT: STAT3 neutral CN. *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. 

Exact p-values marginally significant (0.05 < p < 0.10) are shown. 
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Suppl. Fig.13
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Supplemental Figure 14. Bulk-RNA-seq differential gene expression analysis between 

STAT3amp and STAT3wt T-cell lymphoma/leukemia lines from DepMap. The STAT3amp and 

fusion-matched-STAT3wt pairs of cell lines were defined based on the presence/absence of a specific 

oncogene fusion in the STAT3amp line, as follows: A) Set1: TP63-rearranged ; B) Set2: ALK-

rearranged; C) Set3) No gene fusion. The upper plots represent differentially expressed genes 

(Bonferroni corrected padj < 0.05 two-sided Wilcoxon test). Top 50 genes are labeled. The x-axis 

denotes the average log2 fold-change between the two conditions and y-axis the padj in a -log10 

transformed scale. The lower plots show top upregulated and downregulated GO-pathways (q-value < 

0.15, padj < 0.05, Benjamini-Hochberg corrected Fisher’s exact test on differentially expressed genes) 

in STAT3amp vs. STAT3wt lines. AMP: STAT3 amplification. WT: STAT3 neutral CN. 
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Suppl. Fig.14 
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Supplemental Figure 15. TCR signalosome score in STAT3mt vs. STAT3wt cells. A) scRNA-seq 

from T-LGLL and healthy control samples. The violin and ridge plots show the TCR score in STAT3mt, 

STAT3wt T-LGL clones and in HC hyperexpanded T-cells. B) Bulk RNA seq from T-cell 

lymphoma/leukemia cell lines from DepMap. The violin and ridge plots show the TCR score in 

STAT3amp vs. STAT3wt cell lines. Wilcoxon test p<0.10 are shown. *: p <0.05, **: p<0.01, ***: p<0.001, 

****: p < 0.0001. Exact p-values marginally significant (0.05 < p < 0.10) are shown. 
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Suppl. Fig.15 
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