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Introduction
Given the cost of  maintaining sterility across the vast surface area 
of  the skin (1), it’s no wonder that humans instead coopted ben-
eficial microbes to colonize this exterior surface. In exchange for 
host-derived nutrients, such as proteins and lipids, resident skin-as-
sociated microbes prevent transient pathogenic microbes from colo-
nizing, tune the immune system, and promote skin barrier integrity 
and wound repair (2, 3). Given the scarcity of  resources and harsh 
conditions encountered, the microbial community is rather sparse 
on the skin surface, with greater representation in more protected 
niches, such as hair follicles and sebaceous glands. Dermatologic 
disorders managed with antimicrobial agents hint at microbial dys-
biosis’ contribution to disease initiation and persistence. Here, we 
consider the skin-associated microbial composition and its interac-
tions with the host immune system in the context of  human disease 
with an eye toward future interventions.

Uncovering the compositional microbiome of 
healthy skin
Introducing the major microbial players. Attention has shifted in recent 
decades to commensal microbes as a source of  protection from 
transiently encountered pathogens. A limited repertoire of  bacteria, 
fungi, viruses, and microscopic organisms colonize human skin, as 
most microbes are inhibited from attaching to or prospering on this 
external surface. Three bacterial phyla, Actinobacteria, Firmicutes, 
and Proteobacteria, predominate on skin, particularly commensal 
species Corynebacterium tuberculostericum, Cutibacterium acnes, and 
Staphylococcus epidermidis (4) (Figure 1). C. acnes is found at higher 
levels in highly sebaceous, “oily” body sites such as the forehead, 
chest, and back, where it resides deep within pilosebaceous units 
and closer to its nutrient source of  sebum, a waxy oily substance 

that moisturizes the skin. As a facultative anaerobe, C. acnes pros-
pers in this hypoxic environment, where it benefits the host by 
expressing lipases to further break down the lipid-rich sebum and 
release fatty acids. By contrast, C. tuberculostericum and S. epidermid-
is are both able to tolerate the acidic, high-salt environment pro-
duced by sweat gland secretions as well as tune their metabolism 
to utilize the limited nutrients available when the stratum corneum 
undergoes desquamation (3). Consequently, C. tuberculostericum and 
S. epidermidis are more prominent on the surface of  moist creases 
and dry flexural skin. Malassezia species are the most abundant 
fungi on human skin, with the greatest relative abundance in seba-
ceous sites (5, 6). Greater fungal diversity is found on feet, consis-
tent with the high prevalence of  fungal-associated disorders such 
as athlete’s foot and toenail infections. Other eukaryotic organisms 
such as demodex mites reside within hair follicles and sebaceous 
glands. Finally, both prokaryotic and eukaryotic viruses are found 
across human skin, with Caudovirales phage and human papilloma 
viruses, respectively, as the most abundant species (6, 7).

Technological advances bring new biological insight. Advances 
in genomic sequencing and bioinformatic analyses have great-
ly enhanced our understanding of  the entirety of  skin microbial 
populations (Figure 2). Initial studies were performed by amplify-
ing and sequencing 16S rRNA and ITS1 marker genes of  bacteria 
and fungi, respectively. Skin shotgun metagenomic sequencing, by 
which all genomic material obtained in a clinical sample is direct-
ly sequenced, provided interkingdom and strain-level analyses as 
well as the first look at skin DNA viral populations, which lack 
a common marker gene and thus were not captured with ampli-
con sequencing (6). Moreover, combining culturing and shotgun 
metagenomic sequencing revealed that multiple strains of  S. epider-
midis and C. acnes were simultaneously present and retained over a 
period of  years (8). Taking advantage of  the topographic distribu-
tion of  facial skin, Conwill and Lieberman transferred comedome 
contents onto agar plates to interrogate the bacterial residents of  
discrete pores (9). While multiple C. acnes strains were present on 
an individual, each pore contained a single strain, demonstrating 
how anatomy can constrain the mixing and coexistence of  multiple 
subtypes. Zhou and Oh explored S. epidermidis strains and found 
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who have associated skin disorders has hinted at the selective shield 
immune surveillance provides to exogenous microbial coloniza-
tion. Specifically, patients with dedicator of  cytokinesis 8 (DOCK8) 
deficiency have increased cutaneous warts and are extensively colo-
nized by human papillomaviruses (23), whereas those with recom-
bination-activating gene (RAG) deficiency displayed increased 
nasal colonization with RNA viruses and ecological permissive-
ness. Similarly, Netherton patients with mutations affecting skin 
barrier integrity exhibit perturbed skin microbiome communities, 
colonized by strains of  Staphylococcus aureus and Staphylococcus epi-
dermidis that promote skin inflammation (24).

A year-long study of  healthy adults not exposed to antibiot-
ic treatments illustrated that composition of  an individual’s skin 
microbiome is relatively stable over time (8). While additional 
work is clearly needed to rigorously study a fuller range of  expo-
sures that might perturb the skin microbiomes, early studies do 
indicate that commonly prescribed oral antibiotics can have per-
sistent effects on skin microbiome composition and antimicrobial 
resistance genes (25, 26).

Another important consideration of  skin microbiome studies is 
geographic diversity, a key limitation of  the field with the majority 
of  studies focused on industrialized populations (27). One ampli-
con study of  indigenous Amerindians demonstrated a skin micro-
biome with greater bacterial and genetic diversity (28), stressing the 
importance of  additional studies to understand how genetic diver-
sity as well as social and cultural norms influence the composition 
of  skin microbiota populations.

Physiologic functions of the skin microbiome
The skin microbiome in barrier defense. As a first line of  defense 
in colonization resistance, commensal microbes occupy space 
and resources at the skin surface. Decades of  research have also 
focused on the small commensal-derived molecules and proteins 
that directly antagonize invading pathogens, as best studied for S. 
aureus (29). Early studies discovered that a subset of  commensal 
S. epidermidis strains secrete the serine protease Esp to hinder S. 
aureus nasal colonization (30). Several additional antimicrobial 
peptides produced by coagulase negative Staphylococcal species 
have been identified, including epidermin (31), lugdunin (32), 
and shA9, which is currently undergoing trials for clinical effica-
cy (33). The thiopeptide cutimycin was bioinformatically mined 
from C. acnes genomes and shown to limit S. aureus colonization 
(34). Beyond prevalent skin microbial species, additional microbes 
such as Bacillus subtilis and Roseomonas mucosa have also been test-
ed to assess whether they diminish S. aureus colonization (35, 
36). In addition to killing or reducing growth of  their neighbors, 
skin bacteria also secrete molecules that can modify behavior of  
surrounding species via quorum-sensing systems. For example, 
coagulase-negative Staphylococci (CoNS) produce autoinducing 
peptides which can inhibit activity of  the accessory gene regulator 
(agr) quorum-sensing system of  S. aureus. This agr regulation in 
turn reduces S. aureus production of  proinflammatory toxins and 
virulence factors detrimental to the skin barrier (37, 38).

Murine models have also demonstrated how skin microbes can 
enhance skin-barrier function. For example, a sphingomyelinase pro-
duced by S. epidermidis helps bacteria to acquire essential nutrients 
while also promoting keratinocyte production of ceramides, a major 

similar strain specificity at an individual scale (10). Further investi-
gations into metabolic diversity at the strain level will be essential to 
understanding host-microbe interactions and designing microbial 
therapeutics targeted to the skin (11, 12).

A rarely mentioned limitation of  early shotgun metagenomic 
analyses was that the genome database used to assign reads to a 
microbial species was skewed towards pathogens versus commen-
sals and, by definition, devoid of  uncultivable microbes. A break-
through came when computational biologists developed methods 
to de novo assemble metagenomic assembled genomes (MAGs) 
directly from shotgun metagenomic data and thus characterize pre-
viously uncultured species. The MAG pipeline assembles reads into 
contiguous (contigs) fragments based on overlapping sequences and 
then bins contigs into genomes based on features such as guanine/
cytosine (GC) content, tetranucleotide frequency, and relative abun-
dance in the original sample (13). By analogy, the MAG method is 
like being handed a box containing the intermingled pieces of  a hun-
dred different puzzles and successfully assembling each puzzle from 
its pieces after realizing you can sort them by color, piece size, and 
hinge type. Skin MAG assembly revealed novel bacterial and fungal 
species present in many individuals at relatively high levels that had 
not been cultivated, as well as novel jumbo phage. Beyond providing 
a new landscape of  the human skin microbiome, MAGs offer a way 
to identify novel microbes colonizing diverse human populations 
over a lifespan, including patients with skin disease.

Beyond sequencing, other nascent methods have the poten-
tial to more directly ascertain the functional interactions of  skin 
microbes with their hosts (14). Metabolomics and metaproteomics 
would interrogate the small molecules and proteins produced and 
modified by both host and microbial cells that may modulate niche 
colonization, immune responses, and tissue remodeling (15, 16).

Skin microbiome across the lifespan and global diversity. Skin micro-
biome evolution over the course of  a human lifetime has been 
explored in the context of  healthy, developing, and aging skin, as 
well as in disorders that manifest at specific stages, ranging from 
cradle cap of  infants to acne of  teenagers to xerosis of  the elderly. 
The first sampling of  vaginally born newborns revealed coloniza-
tion with Lactobacillus, Prevotella, or Sneathia species transferred 
during passage. In infants born by cesarian section, skin commensals 
such as Staphylococcus, Streptococcus, Corynebacterium, and Cuti-
bacterium species predominate (17). While both modes of  delivery 
appear to share similar microbial profiles within a few months, there 
has been much consideration as to whether and how to purposefully 
colonize infants to maximize the health benefits provided by early 
colonizers or to restore the burgeoning population after antibiotic 
receipt (18, 19). The first year of  life is full of  microbial exposures as 
the baby transitions from being held to crawling to walking, and dra-
matic microbial shifts occur in site-specific ways (20). During puber-
ty, sex hormones drive secondary maturation of  sebaceous glands, 
which promotes sebum production and the expansion of  lipophilic 
C. acnes and Malassezia species (21). Skin microbiome sampling of  
older individuals, both community-dwelling and nursing home resi-
dents, have found that functional and taxonomic microbial features 
more strongly associate with frailty than chronological age (22).

Examination of  patients with congenital disorders has started 
to reveal some principles regarding the effects of  host genetics. For 
example, studying individuals with primary immune deficiencies 
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between commensal and more prototypically pathogenic species, the 
amount and sometimes quality of  cutaneous cytokine production 
elicited by commensals can be quite distinct, for example, with less 
IL-1 family cytokines produced in response to S. epidermidis than S. 
aureus colonization (50, 51). Although commensal microbes usually 
succeed in promoting homeostatic immunity without eliciting overt 
skin inflammation, this balance can be tipped towards pathology in 
certain contexts, for example, deficient epidermal barrier function or 
high bacterial loads (24, 52–54).

Capture of  microbial antigens by antigen-presenting cells 
(APCs) is a critical initial step toward generating bacteria-specif-
ic immune memory. Skin is replete with epidermal macrophages, 
i.e., Langerhans cells, as well as dermal macrophages and conven-
tional DCs (cDCs). While all of  these APCs are capable of  phago-
cytosing skin commensal bacteria, type 2 cDCs (cDC2s) and 
especially those that express the C-type lectin CD301b are highly 
efficient at capturing bacteria in murine and human skin as well 
as trafficking bacterial antigens to the skin-draining lymph nodes 
in mice (55). In healthy mouse skin, these CD301b cDC2s pref-
erentially support generation of  commensal-specific Tregs (55). 
By contrast, type 1 cDCs facilitate antigen-specific CD8+ T cell 
responses to S. epidermidis (56). While most microbial antigens are 
presumably sensed by classical MHC molecules on APCs, some 

component of lamellar structures (39). Transcriptional profiling of  
the skin of germ-free mice before and after microbial colonization 
demonstrated changes in biological functions associated with skin 
development and differentiation. While many epidermal structures 
are intact in the skin of germ-free mice, close examination showed 
the microbiota promotes epidermal differentiation and barrier integ-
rity through keratinocyte signaling of the aryl hydrocarbon receptor 
(40). New in vitro models to assess host-microbial interactions include 
growing microbes in defined human sweat media (41) at the air-liq-
uid interface (42). Clinically relevant models to assess both individual 
strains and consortium of microbiota will greatly benefit the field as 
it moves to more mechanistic studies of host-microbe interactions.

Innate immunes responses to the skin microbiome. Innate immunity 
provides an additional layer of  “molecular and cellular” protection 
to our skin’s physical barrier (Figure 3). Studies in mice have illustrat-
ed that skin microbes stimulate antimicrobial peptides production by 
keratinocytes and sebocytes (43–45). Keratinocytes respond to TLR 
stimulation, or sensing of  cell injury due to bacterial proteases and 
toxins, by secreting cytokines that can recruit and activate immune 
cells (46–48). TLR sensing of  Staphylococcus spp. has also been shown 
in mice to reactivate specific endogenous retroviruses (ERV) in kera-
tinocytes, thereby augmenting cutaneous cGas/STING signaling 
and type 1 interferon production (49). Despite conserved epitopes 

Figure 1. Schematic of skin histology including appendages and microorganisms. Endogenous and exogenous factors contributing to variation in 
the human skin microbiome.
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Healthy skin contains many T cells but fewer B cells. Thus, 
most studies have focused on commensal tuning of  T cell respons-
es. However, recent work has illuminated that the skin, like the 
gut, is a site for initiation of  humoral antibody-mediated immu-
nity to commensal microbes. Topical association of  mice with S. 
epidermidis was sufficient to expand antigen-specific B cells in both 
the skin-draining lymph nodes and newly formed cutaneous ter-
tiary lymphoid organs (TLOs), a process critically supported by 
Langerhans cells. In turn, B cells in the cutaneous TLOs preferen-
tially secreted an S. epidermis–specific antibody of  the IgG2b iso-
form, which helped limit the total S. epi load on the skin surface 
(63). Whether this mechanism contributes to microbe-immune 
homeostasis in healthy human skin remains to be seen, but it is 
interesting to consider in the context of  skin diseases where sig-
nificant B cell infiltrates can be seen, i.e., cutaneous lupus and 
hidradenitis suppurativa (HS) (64, 65).

Neuronal, adnexal, and stromal interplay. Neurons, fibroblasts, 
and adnexal structures are also instrumental players in tis-
sue immunity, and we are starting to understand their roles in 
modulating immune-microbe crosstalk in skin. For example, S. 
aureus can directly elicit neuronal pain and itch in murine models  

bearing N-formylated methionine are recognized by nonclassical 
MHC-I molecules. These include fMet peptides produced by a 
small clade of  S. epidermidis that elicit skin CD8+ T cell responses 
in mice and nonhuman primates (57).

Microbial tuning of  adaptive immunity. Over a decade ago, a 
pivotal study comparing germ-free versus S. epidermidis mono-col-
onized mice, illustrated the key adjuvant role that commensal bac-
teria play in cutaneous adaptive immunity, increasing the number 
of  skin T cells and their cytokine production, thereby bolstering 
defense against infectious threats (46, 58). Since then, a body of  
work largely in mouse models has started to uncover the molecu-
lar basis of  distinct adaptive immune responses elicited by different 
microbes, e.g., S. epidermidis and other CoNS (56, 57), Corynebac-
terium spp (59), and fungal symbionts (60, 61). One shared feature 
of  these interactions is that superficial colonization of  skin tends 
to elicit a type 17 immune response, as compared to the more type 
1– or Th1-dominant response seen after intradermal skin injection 
(56, 60). These IL-17–producing, commensal-specific CD4+ and 
CD8+ T cells augment cutaneous defense against pathogens, while 
simultaneously they are capable of  producing type 2 cytokines and 
contributing to reepithelialization following skin injury (57, 62).

Figure 2. Methods to interrogate skin microbiome and avenues of downstream analysis. Swabbing the skin surface with a mild detergent to lift off 
the outer dead layers of skin and release the associated microbes has become the accepted best method to sample the microbiome (171). While some 
microbes have deeper reservoirs within the skin tissue, for example, within deeply embedded pilosebaceous units, swabs are much more tolerable to 
research subjects than biopsies for repeatedly sampling of the skin microbiota. After extracting DNA directly from the clinical sample, bacterial and fungal 
members of a skin community are identified by amplifying and sequencing 16S rRNA and ITS1 marker genes, respectively. 16S rRNA primers used to char-
acterize the gut bacteria community failed to amplify Cutibacterium, a stumbling block rectifiable by amplifying the more 5′ region of the 16S rRNA (171, 
172). Methods to make a sequencing library from the low biomass of a skin swab DNA opened up the possibility to perform skin shotgun metagenomic 
sequencing. After subtracting the human reads, shotgun metagenomic sequencing provides multikingdom (bacteria, fungi, virus) as well as strain-level 
analyses (6). The skin’s low microbial biomass created some challenges associated with air and reagent contaminants that could be monitored and con-
trolled for with appropriate negative controls. Culturing isolates and performing whole-genome sequencing provides validation for strain level predictions 
and importantly provides resources for performing functional studies. Skin surface-associated bacteria persist by lowering their replication rate and 
perhaps even appearing as “quiescent” (173). Finding C. acnes in both cultures and shotgun metagenomic samples obtained by swabbing oily skin surfaces 
suggests that these microbes transit to the skin surface with terminally differentiating keratinocytes.



The Journal of Clinical Investigation   R E V I E W  S E R I E S :  M I C R O B I O M E  I N  H E A LT H  A N D  D I S E A S E

5J Clin Invest. 2025;135(3):e184315  https://doi.org/10.1172/JCI184315

localization of  skin T cells (73). Neonatal colonization of  hair fol-
licles by commensal microbes can augment this cytokine produc-
tion and by extension facilitate recruitment of  Tregs into developing 
mouse skin (74). Activity of  sebaceous glands, found most often 
in conjunction with hair follicles as part of  the pilosebaceous unit, 
sustains survival of  lipotrophic skin bacteria by providing essential 
nutrients (75). Growth of  sebaceous glands is itself  regulated by per-
ifollicular skin-resident innate lymphocytes that rely on cytokine sig-
nals produced by hair follicles (76). Although germ-free mice demon-
strated reduced sebaceous gland activity, microbial association  
was insufficient to immediately rescue this phenotype. Instead, res-
cue required transgenerational effects, illustrating the complexity of  
host-microbe crosstalk at the skin barrier (77).

Early life interactions. Neonatal life represents a dynamic period 
for both host immune development and assembly of  commensal 
communities (20, 78). It is also a critical window for establishment 
of  adaptive immune tolerance (79). As such, early life perturba-
tions of  immune-microbe interactions can have longstanding con-
sequences for the host (80), and it should come as little surprise 

through the respective effects of  its pore-forming toxins and 
proteases on peripheral neurons (66–68). S. epidermidis–specific 
IL-17+CD8+ T cells in murine skin have been observed to localize 
near nerve endings and to preferentially express Ramp1, a receptor 
for the neuropeptide CGRP. Indeed, T cell–intrinsic sensing of  
neuron-derived CGRP in mouse skin was sufficient to constrain 
the total numbers of  commensal-specific T cells as well as their 
degree of  activation (69). Our knowledge of  how stromal cell pop-
ulations contribute to microbiota-directed immune responses is 
likewise growing, especially in regard to microbial infiltration of  
the dermis. Dermal adipocytes and preadipocytes can be import-
ant sources of  antimicrobial peptides (15, 70), while fibroblasts 
can promote neutrophil recruitment via release of  CXCL12 and 
other ligands following IL-17 sensing (71).

Hair follicles constitute a major immune niche in the skin as 
well as a reservoir of  commensal microbes (72), and as such are a 
major area of  focus for studies in mice trying to dissect cutaneous 
microbe-immune interactions. In healthy skin, hair follicle kerati-
nocytes produce cytokines that promote survival and perifollicular 

Figure 3. Commensal tuning of cutaneous immune function. Commensal microbes stimulate production of antimicrobial peptides (AMPs) by keratino-
cytes, sebocytes, sweat glands, and granulocytes, amplifying the innate immune defense of skin against potential pathogens. Specific microbial products 
also have the ability to expand certain skin lymphocyte populations. For example, riboflavin derivatives made by various bacteria are recognized by skin 
MAIT cells leading to their expansion and activation in the tissue. Similarly, fmet peptide produced by a particular clade of S. epidermidis is presented 
by nonclassical MHC-I molecules and leads to expansion of IL-17–producing CD8+ T cells (Tc17). DCs play a role both in initial uptake of skin bacteria and pre-
sentation of commensal antigens to naive T cells in the skin-draining lymph node as well as restimulation and cytokine production by commensal-specific 
skin-resident T cells. Type 2 DCs are especially capable of commensal uptake, at least for S. epidermidis, as shown in human and murine skin. In the early 
life window, these DC2 also play a key role in preferentially generating commensal-specific Tregs versus conventional T cells, usually Th17 cells. Commen-
sal-specific Th17, however, also plays a key role in immune defense as well as homeostatic functions such as reepithelialization after barrier breach.
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that this period is denoted by some distinct immune responses to 
skin commensal colonization. The first of  these relates to adaptive 
immune tolerance and the generation of  commensal-specific Tregs. 
Using a model antigen to track generation of  S. epidermidis–specific 
CD4+ T cells responses in mice, colonization of  neonatal versus 
adult skin has been shown to generate a much higher proportion of  
Foxp3+ S. epidermidis–specific Tregs (81, 82). This enriched popula-
tion of  commensal-specific Tregs can then protect the skin against 
inflammation upon reexposure to the same commensal during sub-
sequent skin injury in adulthood (82). High proportions of  poly-
clonal Tregs in developing skin (82) as well as enhanced retinoic 
acid production by neonatal versus adult skin CD301b+ cDC2 (55) 
are both mechanisms identified thus far that contribute to the pref-
erential early window for tolerance.

Generation of  mucosal-associate invariant T (MAIT) cells, 
which constitute a substantial portion of  T cells in both human and 
murine skin, represents another age-restricted interaction between 
the skin microbiome and cutaneous immune system (83). MAIT 
cells are denoted by expression of  an oligoclonal T cell receptor 
(TCR) repertoire and can be stimulated either through antigen rec-
ognition or direct cytokine sensing, thus spanning aspects of  innate 
and adaptive immune function (84). Riboflavin derivatives produced 
by intestinal and skin bacteria are a known ligand for MAIT TCRs 
(85, 86). Notably, thymic generation of  MAIT cells in response to 
riboflavin-producing bacteria has been shown to require the presence 
of  these microbes specifically during the neonatal window (83). Sub-
sequently, the presence of  riboflavin-producing bacteria at the skin 
barrier can promote local expansion of  MAIT cells in the tissue as 
well as their production of  IL-17. These cells can then contribute to 
skin homeostasis through various functions shared with other IL-17–
producing skin T cells, such as host defense and epithelial repair (83).

The skin microbiome in disease
In parallel with efforts to uncover the composition and physiologic 
function of  the skin microbiome in health, there has been robust 
investigation into how microbial shifts contribute to human disease. 
As noted above, the topographical diversity of  the skin microbiome 
across body sites and its sensitivity to perturbation by topical or 
systemic antimicrobial agents (25) add complexity to study design 
along with inherent challenges in considering “chicken or the egg” 
questions. Even so, our understanding of  how the microbiome 
might contribute to pathophysiology of  various skin diseases has 
advanced in recent years.

Atopic termatitis. Atopic dermatitis (AD) is a chronic inflam-
matory disorder characterized by episodic flares of  itchy eczema-
tous lesions, in which epidermal barrier impairment and immune 
dysregulation play important roles. However, the consistent bac-
terial alterations accompanying disease flares and the clinical 
response to antimicrobials make AD a quintessential skin disorder 
to dissect the role of  the skin microbiome (87). AD prevalence is 
approximately 20% of  children, but also affects adults. Early stud-
ies implicated the “hygiene hypothesis” linking decreased AD risk 
with lifestyle factors associated with increased microbial expo-
sure such as dog ownership, farm residence, daycare attendance, 
or older siblings (88). Over fifty years ago, culture-based studies 
identified increased S. aureus skin abundance on AD lesional and 
nonlesional sites (89). More recent sequencing-based studies have 

consistently confirmed increased Staphylococcal prevalence during 
AD flares as well as a relative reduction following effective treat-
ment with topical steroids or dupilumab (90–92). Specifically, S. 
epidermidis increases during flares in young moderately affected 
children, with S. aureus seen in older children and more severe dis-
ease (90, 93). As AD resolves in 70% of  children by the age of  sev-
en, it would be fascinating to follow a birth cohort of  AD infants 
to understand how their flare-associated microbiome changes with 
age and if  it serves as a marker for a subtype of  AD treatment 
response or long-term outcome. Given shifts in the microbiome 
observed between baseline and flare, it would also be interesting 
if  we could use fluctuation dynamics of  the skin microbiome to 
predict when a child was about to flare, allowing earlier treatment 
and reduction of  skin inflammation. Given slow turnaround for 
sequencing analysis, metabolic signatures of  specific flare-associ-
ated microbes are an intriguing alternative target. Addressing the 
frequency and severity of  flares would have immediate benefit to 
affected children and with potential long-term prevention of  other 
atopic conditions, including asthma and allergic rhinitis.

Two critical questions are at the forefront of  the AD skin 
microbiome field. First, does the skin microbiome, and specifically 
Staphylococcal species, drive disease? Distinct S. aureus strains have 
been associated with AD and disease severity with some geographic 
specificity, perhaps due to differential prescribing practices of  anti-
biotics (87). Skin colonization of  mice with AD-associated S. aureus 
strains has been shown to mimic features of  AD, including epi-
dermal thickening and immune cell infiltration (51, 90), mast cell 
degranulation (94), and eosinophilia (95). AD-associated S. aureus 
strains can also produce proteases that impair skin barrier integ-
rity, while concomitantly activating neurons to induce itch (68). 
The second question is whether the skin microbiome of  healthy 
children provides some protection either at the individual strain or 
community level. Starting at age two to three months, higher lev-
els of  commensal Staphylococcus was associated with lower likeli-
hood of  developing AD at age two (96, 97). This fits into a model 
where early development of  immune tolerance to skin commensals 
is important for protection against later inflammation. However, 
animal studies have suggested that barrier dysfunction may under-
mine early life establishment of  commensal-specific Tregs (54). 
As discussed above, several commensal bacterial strains shown 
to have antimicrobial effects against S. aureus have been identified 
as deficient in AD skin (98), raising the possibility of  mining and 
harnessing endogenous microbiota for therapeutic molecules and 
behaviors. As further discussed below, AD is the disease with the 
most clinical trials approved to test safety and efficacy of  such live 
microbial therapeutics.

Acne vulgaris. Acne vulgaris has long been linked to Cutibacterium 
acnes, a prevalent member of  the healthy, postadolescent skin micro-
biome, especially at sebaceous skin sites commonly affected by acne, 
such as the face, chest, and back (21, 99). Sequencing of  the acne-as-
sociated microbiome has shown largely equivalent relative abun-
dance of  C. acnes as compared with age-matched healthy volunteers 
(100–102). However, sampling of  individual lesions within affected 
subjects has revealed increased C. acnes prevalence in inflammatory 
versus comedonal (whitehead) lesions (103). Culture-based studies 
indicate that C. acnes levels in a single acne comedone approach 
those found over an entire square centimeter of  healthy facial skin 
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(104). Metagenomic sequencing has revealed particular C. acnes 
strains (100, 101, 105, 106) and certain metagenomic features (107) 
to correlate with disease. These features include enrichment in genes 
encoding particular metabolic pathways (100) as well as putative 
virulence elements, such as antimicrobial peptides, cytotoxins, and 
proteases (107). Ex vivo proteomic and transcriptomic analysis of  
C. acnes strains isolated from acne skin also support functional met-
abolic differences (106). This suggests that certain C. acnes isolates 
may be adapted to survival in the inflammatory acne environment 
and likewise contribute to its pathogenesis. There are two limita-
tions of  these natural history acne studies: first, they rarely follow 
subjects through the onset of  acne, and second, recruited cohorts are 
typically years or decades past the initial age of  disease onset, mak-
ing it hard to untangle whether observed strain selectivity is strictly 
correlated with disease or results from prior antibiotic treatment. Ex 
vivo functional assays have shown that acne-associated isolates are 
capable of  eliciting heightened responses from human immune cells 
(108, 109), keratinocytes (110), and sebocytes (105). Thus, recent 
work in the area of  the acne microbiome has added both clarity 
and complexity to our understanding of  how bacterial species and 
strains are correlated with disease pathogenesis.

Alopecia. Alopecia encompasses a set of  hair loss disorders, 
segregated into scarring and nonscarring entities based on the pres-
ence or absence of  inflammatory hair follicle destruction. Certain 
scarring alopecias, denoted by neutrophilic infiltrates, have long 
been associated with microbial infiltration of  the hair follicle, for 
example, by S. aureus (111). Sequencing-based approaches have 
added some additional nuance to our understanding of  disease-as-
sociated shifts in the microbiome in these (112) and other lympho-
cyte-rich scarring alopecias (113). However, most recent research 
has focused on microbiome contributions to the autoimmune non-
scarring condition, alopecia areata (AA). This has included exam-
ination of  intestinal microbiome composition as a potential source 
of  altered immune function, which has yet to reveal consistent 
disease-associated changes (114–116). Other 16s ribosomal DNA 
(rDNA) sequencing studies of  the scalp microbiome suggest that 
AA is accompanied by a relative increase in Proteobacteria, such as 
Corynebacterium and Cutibaterium spp, with a concurrent decrease in 
CoNS (117–119). Whether these shifts are instrumental to disease 
onset and/or severity or a consequence of  disease- or therapy-as-
sociated changes to the skin environment remains undetermined.

HS. HS is characterized clinically by inflammatory nodules and 
sinus tracks that predominantly affect flexural skin sites. Early stages 
of  disease respond, at least partially, to microbe-directed therapies 
such as topical and oral antibiotics. Research on HS has encompassed 
both the skin and gut microbiome (120–123). There is rationale  
for examining the intestinal microbiome in HS given its coassocia-
tion with inflammatory bowel disease (124), but here we will focus 
on key features of  the skin microbiota. HS presents a particular chal-
lenge for skin microbiome sampling, as the stage and morphology 
of  lesions can vary significantly within a given individual, and many 
lesions are characterized by deep, subcutaneous inflammation. Skin 
microbiome studies of  HS have, thus, employed not only standard 
skin swab sampling (125, 126), but also skin biopsies (127, 128). 
Results from 16S rDNA sequencing have shown with relative con-
sistency that affected HS skin, and particularly deeper lesions, have 
increased relative abundance of  anaerobic bacteria, such as Prevotella, 

Porphymonas, Fusobacteria, and Bacteroides, and reduced actinobacte-
ria, such as Corynebacterium and Cutibacterium spp (126–128). Clin-
ically unaffected areas of  skin from HS subjects also demonstrate 
similar but less pronounced changes (125, 126). It will be exciting 
to see results from ongoing work in this area, which will hopefully 
include metagenomic sequencing approaches, functional assessment 
of  disease-associated strains, and diverse research subjects reflective 
of  the demographics most often affected by HS (129).

Psoriasis. Unlike AD, HS, or acne vulgaris, psoriasis is not typical-
ly treated with antimicrobial agents. However, the guttate form of pso-
riasis can be triggered by preceding Streptococcal infection. This obser-
vation along with the high prevalence and chronicity of plaque-type 
psoriasis have inspired a search for microbiome-based contributions 
to its pathogenesis. While there have been few reports of increased 
Firmicutes, studies have not identified a consistent psoriasis skin 
microbiome signature (130–132). 18s rDNA sequencing and qPCR 
of psoriatic skin lesions have shown a relative and absolute increase in 
Malassezia spp. (133, 134). Notably, in a small study performed several 
decades ago, topical application of heat-killed Malassezia ovalis or S. 
epidermidis elicited psoriatic lesions in patients with preexisting pso-
riasis (135). This has been corroborated by murine studies looking at 
the effects of commensal fungi and bacteria in models of psoriasiform 
skin inflammation (59, 60). Work examining the gut microbiome of  
psoriasis patients has unveiled some consistent disease-associated 
shifts, such as a relative increase in Firmicutes and Actinobacteria and 
a decrease in Bacteroides (136–140). Considering that psoriasis encom-
passes a heterogeneous clinical disease spectrum, it is perhaps not 
surprising that some studies have identified distinct gut “enterotype” 
profiles among psoriasis subjects, which in certain cases also correlat-
ed with clinical subtypes or disease severity (136, 141, 142). A team 
employing a Mendelian randomization approach to explore a causal 
link for the gut microbiome in over 18,000 psoriasis patients identi-
fied a handful of gut microbiome features with a small but statistical-
ly significant change in psoriasis risk (143). Moving forward, larger 
studies and those focusing on specific forms of psoriasis (e.g., guttate 
psoriasis) may be needed to define if  the skin and/or gut microbiome 
contribute to psoriasis pathogenesis in at least some individuals.

Seborrheic dermatitis. Seborrheic dermatitis is another chronic 
inflammatory condition, primarily affecting the scalp, face, and chest, 
in which shifting skin microbiome composition, specifically of Malas-
sezia spp. and the mycobiome, is thought to play a pathogenic role. 
Indeed, antifungal shampoos and creams are a treatment mainstay. 18s 
rDNA sequencing has confirmed the findings of culture-based studies 
that indicated a role for Malassezia in seborrheic dermatitis (47). How-
ever, analogous to acne vulgaris and C. acnes, further work is needed 
to disentangle how this ubiquitous commensal yeast contributes to 
seborrheic dermatitis. In parallel, 16S rDNA sequencing has revealed 
increased prevalence of coagulase-negative Staphylococcus spp. (47, 144, 
145). Considering that antibacterial treatments are not readily used or 
effective in seborrheic dermatitis, it is quite possible that this shift in 
skin bacteria is a secondary change following disease onset.

Skin ulcers and wounds. The skin microbiome’s influence on 
wound healing and clinical outcomes of  skin wounds and ulcers was 
recently reviewed in depth (146). Upon injury, the skin microbiota 
composition can shift (147), which has the potential to facilitate or 
impede the healing process (148). Commensal microbes, including 
certain S. epidermidis isolates, have been shown to promote wound 
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transplant is a distinct and unanswered question. Although pilot 
studies have explored composition of  the skin microbiome in cuta-
neous GVHD (157), it is difficult to adequately control for the role 
of  immunosuppressive or antimicrobial medicines. Future studies 
that examine composition of  the pretransplant skin microbiome 
in both donor and recipient as well as their anticommensal T cell 
repertoire will hopefully further inform our understanding.

Looking ahead: therapeutic opportunities 
leveraging the skin microbiome
Bugs as drugs. As detailed above, our skin microbiome encodes anti-
biotics, enzymes, quorum-sensing molecules, and other substanc-
es that can influence skin health directly or via effects on other 
microbes. Indeed, a large motivation for research in this field has 
been the hope that microbial products might be harnessed to pre-
vent or treat skin disease, and in recent years, this is looking more 
like a tenable possibility (Figure 4). Similar to oral probiotics for gut 
health, growing consumer awareness of  the skin microbiome has 
led to an increase in cosmetic products touted to “benefit the skin 
microbiome” through probiotic or prebiotic components. Howev-
er, this is categorically different than having an FDA-approved live 
bacterial therapy rigorously tested for evidence of  clinical benefit 
and safety. Since 2017, several investigational new drug applica-
tions have been approved and phase 1 and 2 trials initiated to test 
topical application of  live bacteria to skin, the majority targeting 
AD. Like any area of  drug development, there have been therapies 
that failed phase 2 (36, 158) but several live therapeutics that have 

healing through mechanisms including immune modulation, barrier 
function enhancement, and modulation of  matrix metalloprotein-
ase 10 (40, 57, 83, 149, 150). Conversely, S. aureus and Pseudomonas 
aeruginosa can lead to chronic inflammation, delayed healing, and 
persistent ulcers (151, 152). Understanding the balance between 
beneficial and harmful microorganisms is essential for developing 
microbiome-targeted therapies. Emerging approaches to optimize 
the wound microbiome and promote repair, including but not limit-
ed to live microbial transplant (153), will hopefully offer new options.

Posttransplant immune responses. Solid organ and stem cell trans-
plantation represent major advances of  modern medicine, but hur-
dles remain. For example, graft-versus-host disease (GVHD) man-
ifesting as inflammation at barrier sites such as the skin or intestine 
complicates many stem cell transplants. Separately, while autolo-
gous skin grafting is a commonly used surgical practice, successful 
transplantation of  nonautologous skin, e.g., facial transplant, is less 
common and still has a high rate of  rejection (154). Whether skin 
microbes contribute to these ongoing challenges remains uncer-
tain, but some evidence in animal models supports this idea. For 
example, transplant of  a S. epidermidis monocolonized skin graft 
hastened rejection in mice by augmenting the immune response 
to allogeneic antigens (155). Commensal-specific T cells also infil-
trate and damage S. epidermidis–colonized syngeneic grafts (i.e., 
from a genetically identical donor), especially in recipient mice 
with preexisting commensal-specific memory T cells (156). How 
much anticommensal immune responses contribute to human skin 
inflammation in cutaneous GVHD following allogeneic stem cell 

Figure 4. Emerging skin microbiome–based therapeutic approaches. (A) Current clinical trials involving live microbiome-based skin therapeutics are 
based on the paradigm of (re)introducing or increasing the abundance of commensal microbes that naturally produce molecules with bioactivity to combat 
growth or pathogenicity of unwanted bacteria such as S. aureus. These strains typically produce AMPs, which can directly kill bacteria, or autoinducing 
peptides (AIPs), which impede pathogenic behaviors by inhibiting quorum-sensing dependent expression of key virulence factors. (B) Another therapeutic 
approach that has recently garnered attention due to promising results in animal models, but which remains untested in humans, is using skin commen-
sals as chassis for exogenous expression of immunogenic antigens. In mice, for example, expression of tumor antigens (purple lines) by S. epidermidis 
enhanced immune responses against melanoma. These could stimulate both CD4+ and CD8+ T cells through a combination of surface and secreted antigen 
expression. (C) Separately, recent work has identified the accumulation-associated protein (aap) on the surface of S. epidermidis as especially stimulatory 
towards B cell–mediated antibody responses. Mice colonized with a strain of S. epidermidis engineered to express a nonnative peptide in place of the cen-
tral aap beta-helix (purple segment) generated antigen-specific antibodies sufficient to protect them against humoral immune response to tetanus toxin.
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sites (169). In a recent preprint (63), S. epidermidis was also shown 
capable of  eliciting a potent host antibody response targeting its 
cell surface protein Aap. Leveraging click-chemistry to decorate 
S. epidermidis Aap with non-native antigens, the host humoral 
response could be redirected toward tetanus toxin with protective 
effects in a tetanus infection model (63). Although these animal 
models may not adequately reflect the complexity of  preexisting 
human immune responses to commensal microbes, which can 
be distinctly shaped by early life interactions (170), using skin 
commensal microbes as a delivery system for immune-mediated 
therapies remains a very exciting possibility.

Conclusion
The skin microbiome represents a complex and dynamic ecosystem 
that plays a crucial role in maintaining skin health and overall tis-
sue homeostasis. Understanding the intricate interactions between 
host and microbial communities has revealed novel insights into 
the pathogenesis of  various skin conditions and highlighted the 
potential for innovative therapeutic strategies. Future research must 
continue to explore the composition and functionality of  skin-asso-
ciated microbiota, particularly in diverse populations, microbiome 
changes accompanying skin disease onset, and their application 
in therapeutic contexts. By advancing our knowledge of  the skin 
microbiome’s contributions to immune regulation, barrier function, 
and disease, we can pave the way for targeted interventions that 
promote skin health and prevent dermatological disorders. This 
evolving field holds great promise, offering new avenues for both 
basic scientific discovery and clinical application.

Acknowledgments
JAS acknowledges support from the National Human Genome 
Research Institute (NHGRI) Intramural Research Program. 
TCS acknowledges current research and salary support from the 
National Institute of  Arthritis, Musculoskeletal and Skin Dis-
eases (NIAMS), the Kenneth Rainin Foundation, and the UCSF 
Department of  Dermatology.

Address correspondence to: Tiffany C. Scharschmidt, Department 
of  Dermatology, University of  California, San Francisco, 1701 
Divisadero Street, 3rd Floor, San Francisco, California, 94115 
USA. Phone: 415-353-7800; Email: tiffany.scharschmidt@ucsf.
edu. Or to: Julia A. Segre, Microbial Genomics Section, National 
Human Genome Research Institute, National Institutes of  Health, 
49 Convent Drive, Room 4A30, Bethesda, Maryland 20892, USA. 
Phone: 301-402-2314; Email: jsegre@nih.gov.

shown promise (33, 159, 160) remain in active investigation (Clini-
calTrials.gov NCT06504160; NCT06469385; NCT06096857). For 
example, TIME-2 is an ongoing randomized multicenter phase 2 
trial to study topical application of  S. hominis expressing the anti-
microbial peptide A9 (33, 161). This builds on a previous phase 1 
trial and careful studies in mice and humans. These have uncovered 
important insights, such as that A9 expression causes S. hominis to 
be more susceptible to killing by host antimicrobial peptides (162). 
This led to incorporation of  topical steroid administration as an 
adjuvant treatment in TIME-2 to reduce host antimicrobial pep-
tide production. In general, there are many things to consider in 
designing a live therapeutic for topical versus oral administration, 
the most obvious of  which is formulation — will it be spray, cream, 
ointment? How often should it be administered for good results 
— daily or only during flares? And to what areas of  the body — 
diseased skin only or more generally? The arena of  bacterial ther-
apeutics for skin disease will remain very dynamic and exciting in 
coming years. The approval of  one or more products in this area 
for chronic inflammatory skin conditions, such as AD, HS, or acne, 
would certainly be welcomed by patients and clinicians alike.

Harnessing skin microbes ability for immune modulation. The 
potential therapeutic impact of  antibacterial immune responses 
is not a new concept. In fact, it inspired some of  the first forms of  
anticancer immunotherapy (163). However, growing knowledge 
of  our commensal microbiota and the immune responses they 
elicit presents new opportunities to imagine how these might 
be leveraged for health (164). Indeed, the notion that intestinal 
microbial composition could predict (41) or modulate (165–167) 
responses to anti-PDL1 cancer immunotherapy has motivated a 
substantial number of  clinical trials (168). However, we must also 
recognize where our knowledge yet falls short. We still have a 
limited molecular understanding of  microbe-specific components 
that can tune cutaneous immune responses. To date, CD8-pro-
moting fMet peptides expressed by a specific clade of  S. epider-
midis (57) and Th17-promoting mycolic acids produced by Cory-
nebacterium spp. (59) are rare exceptions where we have gained 
some level of  molecular understanding. Perhaps newly devel-
oped approaches to rapidly probe these interactions will acceler-
ate knowledge in this area (16). Even so, a proximal goal might 
be leveraging skin commensal bacteria as chassis for antigens or 
other molecules with well-defined and desirable immune effects. 
One study elegantly demonstrated that S. epidermidis can be engi-
neered to express melanoma antigens that augmented antimela-
noma CD4+ and CD8+ T cell responses and tumor clearance in S. 
epidermidis–colonized mice, both within skin and at more distal 
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