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Introduction
Maternal mental health is a cornerstone of  public health, impact-
ing the well-being of  mothers and the development of  future gen-
erations. However, few studies to date have focused on the female 
brain, much less the pregnant or maternal brain. <5% of  neuro-
science studies from 2010 to 2014 focused solely on female indi-
viduals (1). Of  all clinical studies from the 1960s to 2013, only 
1% were conducted on pregnant women (2). Pregnancy and the 
postpartum period involve profound physiological and psycholog-
ical changes that effect the brain. Understanding these changes 
and the factors that regulate them is critical for supporting women 
and healthy families.

The maternal microbiome is emerging as a factor that can 
influence the health of  both mother and offspring. The complex 
communities of  microorganisms in the maternal gut are shaped 
by perinatal experiences and inform key biological processes of  
the immune (3, 4), nervous (5), and endocrine systems (6, 7) 
(Figure 1). Gut microbes differentially respond to sex hormones 
(8) and exhibit dynamic shifts throughout pregnancy (9). These 
changes are important, as the maternal microbiome guides phys-
iological processes in the mother and signals to developing off-
spring in utero through metabolite effectors (10, 11). Further-
more, the transmission of  the maternal microbiome from mother 
to offspring at and after birth informs early postnatal development 
(12). Given these key interactions between maternal microbiomes 
and maternal-offspring biology during homeostasis, environmen-

tal exposures that disrupt these interactions can lead to increased 
generational risk for immunological, developmental, and neu-
robehavioral disorders (13). Herein, we highlight the influences 
of  the maternal gut microbiome on maternal and offspring brain 
health, with a focus on microbial interactions with environmental 
factors during the pregnancy period, which together inform the 
risk for neurological disease. We also discuss growing research on 
mechanisms for maternal microbial signaling across the maternal- 
offspring interface.

The maternal microbiome on maternal brain 
health
Research on the microbiome-gut-brain axis has gained momen-
tum in recent years, reflecting technological advances (14) and a 
growing appreciation for the intricate relationships between the gut 
microbiome and brain health. Gut microbes play a pivotal role in 
influencing neurological functions and behaviors through various 
pathways, including the production of  metabolites that affect neu-
roimmune function, neuroendocrine activity, peripheral sensory 
neuronal signaling, and central neurophysiology (3–5, 15–19). As 
research continues to uncover the complexities of  this bidirectional 
communication, the need to consider the role of  sex differences and 
gendered experiences on microbiome interactions with the brain 
becomes increasingly apparent.

Female and male brains exhibit distinct structural and func-
tional differences. Adult male brains had larger volumes, more 
cerebrospinal fluid, and greater white matter compared with 
female brains (20). Male brains also showed a greater degree of  
intrahemispheric communication while female brains exhibit 
greater interhemispheric communication (21). Additionally, male- 
and female-specific transcriptomic signatures were found in neu-
rons involved in reproductive behavior and metabolism. During 
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Research is beginning to explore how the gut microbiome can 
affect brain structure and function between sexes and during preg-
nancy. Several animal and human studies have characterized sex 
differences in the gut microbiome (30). These could be driven by 
direct microbial responses to sex hormones (31–34) and indirect 
responses to sex-dependent differences in the normal physiology 
of  male and female animals and humans (30). Additional studies 
emphasize the potential for the gut microbiome to contribute to sex 
differences. For instance, male but not female germ-free mice had 
elevated levels of  tryptophan and serotonin, and reduced brain-de-
rived neurotrophic factor (BDNF), in the hippocampus (35). 
Microbial regulation of  sex hormones could play a role, as specific 
microbial species are known to produce enzymes that convert sex 
hormones into more active or inactive forms, thereby affecting their 
levels in the body (32, 36). In particular, the microbiome modulated 
levels of  testosterone in mice, increasing it in males and decreas-
ing it in females. Transferring the gut microbiomes from male into 
female mice conferred elevations in testosterone levels, raising the 
question of  whether these differences would result in alterations in 
testosterone-related brain and behavioral outcomes and how they 
may impact pregnancy (37).

While many studies have examined microbiome contribu-
tions to brain and behavior, few have focused on maternal mental 
health and the peripartum period. In pregnant women, particular 
gut bacteria during the third trimester were associated with anxi-
ety (38). Similarly, in a study of  mothers raising young children, 
reductions in the diversity of  the gut microbiome and alterations in 
levels of  particular taxa were associated with high parenting stress 
(39). While the reproducibility, nature, and directionality of  these 
relationships remain unclear, many are inspired by the promise 
of  microbiome-based interventions for promoting maternal men-
tal health (40–42). Further research is needed to extend and test 
current principles for microbiome-gut-brain interactions within the 
context of  women’s and maternal brain health.

The maternal microbiome on offspring 
neurodevelopment and behavior
Human maternal infection, antibiotic use, and microbial variation. 
Beyond the microbiome-gut-brain axis within individuals, there is 
increasing appreciation of  another microbiome-gut-brain axis that 
exists between the maternal microbiome and the brain of  develop-
ing offspring. Interest in this possibility grew from human studies 
linking maternal antibiotic use in response to infection during preg-
nancy with neurodevelopmental abnormalities in the offspring. Var-
ious types of  infections during pregnancy have long been associated 
with adverse neurological outcomes in children, including mental 
retardation and developmental delay, psychosis-like experiences, 
epilepsy, and cognitive deficits (43). Epidemiological and clinical 
studies examining maternal antibiotic exposure revealed similarly 
intriguing associations with neurological outcomes in the offspring. 
For example, a retrospective study of  all mothers who gave birth 
in British Columbia from 2000 to 2014 reported that mothers who 
filled at least one antibiotic prescription during pregnancy had 
children with increased risk for autism spectrum disorder (ASD), 
as compared with those who did not fill an antibiotic prescription 
(44). In a study of  Danish mothers from 1996 to 2004, those who 
took at least one antibiotic during pregnancy had children with an 

mating and aggression, different subsets of  hypothalamic neurons, 
critical for maintaining homeostasis, were activated in male com-
pared with female individuals (22). These sex-specific reactions 
to stimuli have also been observed in other regions of  the brain, 
as the amygdala region in female and male brains, important for 
emotional processing, exhibited differential activity in response to 
olfactory sensations (23). Additionally, activation of  GABA-ergic 
neurons in the medial amygdala promoted parenting behavior in 
female mice but infanticidal behavior in male mice (24). Overall, 
these data describe that neural structures and responses to stimuli 
can depend on biological sex.

Within females, pregnancy induces neurobiological changes in 
the brain, reflecting the complex adaptations necessary for support-
ing fetal development and preparing for motherhood. Hormonal 
fluctuations lead to structural and functional alterations, including 
the enhancement of  regions associated with maternal behavior, 
emotional regulation, and social cognition. In mice, pregnancy 
activated neuronal stem cells and the formation of  olfactory inter-
neurons necessary for offspring odor recognition (25). Pregnancy 
also increased dendritic spines in the hippocampus, which helped 
to reduce anxiety and promote memory (26). Estradiol and pro-
gesterone increased the excitability of  galanin-expressing neurons 
in the medial preoptic area, which promoted parental behavior 
(27). In humans, reduced gray matter volume in regions linked to 
social cognition, both during pregnancy and for at least 2 years fol-
lowing childbirth, predicted levels of  maternal attachment during 
the postpartum period (28, 29). Overall, these adaptations illus-
trate how pregnancy shapes the female brain, optimizing it for the 
demands of  motherhood.

Figure 1. Maternal gut microbiome modulates the maternal and fetal 
brain. Environmental risk factors, including diet, stress, infection, and 
xenobiotics, can shape the composition and function of the maternal gut 
microbiome in ways that impact its interactions with the nervous system 
in both mother and developing offspring.
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indicate that the detrimental effects of  maternal antibiotic treatment 
during pregnancy on offspring neurodevelopment can persist into 
the postnatal period. Mice treated with antibiotics during pregnan-
cy yielded adolescent offspring with increased blood-brain barrier 
(BBB) permeability and decreased hippocampal pyramidal neurons, 
myelination in the corpus callosum, and neurogenesis in the dentate 
gyrus, as compared with those from vehicle-treated dams (51). In 
another study, adolescent offspring from dams treated with antibi-
otics during pregnancy had reduced levels of  brain cytokines asso-
ciated with neuroprotection and repair (52). These findings suggest 
that the maternal microbiome during pregnancy has a widespread 
influence, impacting multiple brain regions, cell types, and cellular 
processes integral to brain development in the offspring.

The lasting effects of  maternal antibiotic treatment are further 
supported by behavioral studies of  offspring after birth. In mice, 
antibiotic treatment during pregnancy and the postpartum period 
led to anxiety-like behavior and cognitive impairment in offspring, 
which correlated with reduced expression of  N-methyl D-aspartate 
receptor subtype 2B (NR

2B), a receptor related to synaptic develop-
ment, learning, and memory (53). Antibiotic treatment in pregnant 
mice resulted in decreased locomotion and heightened anxiety in 
early postnatal offspring. Cross-fostering these pups to untreated 
dams restored normal behavior, suggesting that adverse effects of  
maternal microbiome depletion on offspring behavior were revers-
ible (54). Another study found that antibiotic treatment during preg-
nancy reduced sociability and increased anxiety in the offspring 
(55). Moreover, adolescent offspring from dams treated with anti-
biotics during pregnancy showed decreased spatial memory and 
learning compared with controls (51). While these studies illustrate 
how maternal treatment with antibiotics, in the absence of  infec-
tion, can alter offspring neurodevelopment and behavior, they also 
raise concern that some antibiotics may influence factors beyond the 
microbiome and elicit off-target effects on the nervous system (56).

As such, many studies examine germ-free animal models, 
which are devoid of  microbial colonization, as a complementary 
approach to bacterial depletion with antibiotics. When pregnant 
mice were reared germ free, they produced fetuses with deficient 
levels of  microglia, when compared with controls raised by con-
ventionally colonized dams (57). Fetuses from germ-free dams 
exhibited reduced thalamocortical axonogenesis, consistent with 

increased incidence of  febrile seizures, as compared with unexposed 
mothers (45). This was consistent with another study of  moms in 
Korea from 2008 to 2021, wherein antibiotic exposure during preg-
nancy was associated with a greater risk for epilepsy in children 
when compared with nonexposed mothers (46). Similar links have 
been reported for maternal antibiotic exposure and infant attention 
deficit hyperactive disorder (ADHD), conduct disorder, and mood 
and anxiety disorders, when evaluating births in Finland from 1996 
to 2012 (47). The variety of  infections, antibiotics, and maternal 
gestational periods that have been implicated suggests that there 
are widespread and generalizable effects of  maternal inflammation 
and antibiotic treatment during pregnancy on adverse neurodevel-
opmental trajectories in offspring.

Some studies have aimed to correlate maternal microbiomes 
from healthy women with fetal outcomes to determine whether 
associations exist in the absence of  infection or antibiotic expo-
sure. In mother-child pairs from the United States, particular bac-
teria from the third-trimester maternal gut microbiome were more 
strongly associated with child neurodevelopmental outcomes at 1 
year of  age than was the child gut microbiome (48). Additionally, in 
a study of  mothers from Australia, diversity of  the third-trimester 
gut microbiome predicted their children’s exhibition of  internaliz-
ing behavior, which is strongly associated with later development 
of  anxiety disorders (49). These studies provide initial evidence 
that the maternal gut microbiome can correlate with behavioral and 
developmental characteristics in children, raising the question of  
whether such relationships may be causal.

Maternal antibiotic treatment and germ-free rearing in animals. While 
many human studies have correlated maternal antibiotic exposure 
to increased risk for adverse neurological outcomes in offspring, 
most cases involved antibiotic prescription that was indicated for 
treating bacterial infection, making it challenging to decouple the 
effects of  antibiotic-induced depletion of  gut bacteria from infec-
tion-induced inflammation. Animal models studying maternal 
antibiotic treatment in the absence of  infection reveal causal effects 
of  antibiotic exposure during pregnancy on the offspring’s brain 
and behavioral development. Pregnant mice that were treated with 
antibiotics yielded fetuses with altered brain transcriptomic profiles 
and impaired thalamocortical axonogenesis, compared with those 
reared from vehicle-treated dams (50) (Figure 2). Additional studies 

Figure 2. Interactions between the maternal gut microbiome and offspring neurodevelopment. The maternal gut microbiome informs offspring brain 
and behavioral development through multiple interacting pathways, including the signaling of microbial metabolites to neurons and neuroimmune cells, 
to modulate peripheral immune responses, peripheral sensory neuronal activity, and central neurodevelopment processes. 5-HT, 5-hydroxytryptamine; 
4-EPS, 4-ethylphenylsulfate; SCFA, short-chain fatty acid; TMAO, trimethylamine N-oxide; IP, imidazole propionate.
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Infections during pregnancy have been linked to increased risk for 
ASD and other neurodevelopmental conditions in the offspring. 
Maternal fever (67) and infections (68–71) across all trimesters 
correlate with ASD risk, while maternal exposure to SARS-CoV-2 
shows mixed outcomes, with some infants experiencing neurolog-
ical abnormalities (72, 73) and cognitive delays (74, 75) and others 
showing no developmental defect. Similarly, in utero exposure to 
the Zika virus is associated with declines in social communica-
tion and motor skills (76–81). Maternal exposures to other infec-
tions, such as herpes simplex (82–84) and influenza (85–87), also 
contribute to adverse child outcomes. The diversity of  infections 
implicated suggests that the generalized maternal inflammatory 
response during pregnancy drives neurodevelopmental issues. Ani-
mal models based on maternal immune activation (MIA), in the 
absence of  overt infection by a pathogen, have established proof  
of  principle that maternal inflammation alters the neurodevelop-
ment and behavior of  the offspring. Injection of  the viral mimic 
polyinosinic-polycytidylic acid to activate the immune system in 
pregnant nonhuman primates and mice altered brain structure in 
fetuses and early postnatal offspring, including dendritic morphol-
ogy (88), hippocampal myelination (89), cerebellar development 
(90), and neuroimmune function (91). These neurodevelopmental 
alterations corresponded with behavioral abnormalities in adult 
offspring, including reduced social preference, stereotypies, anxi-
ety-like behavior, and impaired sensorimotor gating, leading many 
to use MIA to model key features of  neurobehavioral disorders like 
ASD and schizophrenia (91–95).

The microbiome is shaped by the host’s immune status, and 
immunomodulatory microbes regulate the severity of  the inflam-
matory response. In humans, multiple infections have been cor-
related with changes in the microbiome (Tables 1 and 2). In mice, 
dams infected with influenza A virus or Listeria monocytogenes 
during pregnancy exhibited altered gut microbiota by 2 days after 
infection with risk for long-term “dysbiosis” (96, 97). This was 
similarly seen in the MIA model, where offspring of  immune-acti-
vated dams exhibited altered gut microbiota, presumably through 
vertical transmission of  the altered maternal microbiota (98). 
Treating pregnant dams with antibiotics prevented the abnor-
malities in social and communicative behavior in the offspring of  
immune-activated dams, whereas enriching the proinflammato-
ry bacterium segmented filamentous bacteria (SFB) exacerbated 
abnormal behaviors in the offspring (99). These results suggest 
that the maternal microbiome can tune the severity of  the immune 
response to maternal challenge to ultimately impact the develop-
mental trajectories of  the offspring.

Additional studies have targeted the offspring microbiome 
to determine whether modifying the microbiome postnatally can 
impact the presentation of  neurobehavioral symptoms resulting 
from MIA (rather than mitigating the degree of  maternal risk itself). 
Treating offspring of  MIA dams with the immunoregulatory Bacte-
roides fragilis at weaning alleviated impairments in communicative, 
stereotyped, and anxiety-like behaviors (98). Similarly, treating off-
spring of  MIA dams with Limosilactobacillus reuteri from birth until 
weaning improved spatial learning behavior in offspring (100). An 
additional study tested the provocative question of  whether clinical 
alterations in the microbiome of  children with ASD could suffi-
ciently confer brain and behavioral abnormalities upon transfer to 

phenotypes seen from dams treated with antibiotics during preg-
nancy (50). Additional experiments focused on the transcriptom-
ic pathways affected by deficiencies in the maternal microbiome, 
finding that fetal brains from offspring of  germ-free dams exhibited 
downregulation of  genes involved in neural function and upregula-
tion of  genes involved in neuron projection development and glial 
cell projection (58). They also exhibited distinct metabolic profiles, 
including alterations in levels of  the microbial metabolites 5-ami-
novalerate (5AV) and trimethylamine N-oxide (TMAO), suggesting 
that metabolites from the maternal circulation may directly access 
the fetal brain to alter neurodevelopment.

Alterations observed during fetal development have been sim-
ilarly reported in germ-free mice at birth and early postnatal ages. 
Newborn pups from germ-free dams exhibited increased microglia 
numbers compared with pups from conventionally colonized dams, 
which correlated with reductions in the cytokines implicated in neu-
ronal differentiation (51, 59). Early postnatal germ-free mice had 
fewer microglia in the hippocampus and somatosensory cortex and 
higher cell death in the hypothalamus, abnormalities that were not 
rescued by cross-fostering to conventionally colonized dams (60). 
This highlights the importance of  the maternal microbiome during 
the gestational period in programming microglial development 
in offspring. Similar effects of  the microbiome on brain structure 
have been noted in other species. For example, germ-free zebrafish 
had fewer neural stem cells and glia compared with convention-
ally colonized zebrafish (61). Additionally, young germ-free swine 
had reduced brain weight, along with decreased white matter in 
the prefrontal cortex and corpus callosum, attributable to decreased 
oligodendrocyte proliferation (62). These findings underscore the 
critical role of  the maternal and early-life microbiome on offspring 
neurodevelopment across various animal species.

As germ-free animals exhibit numerous postnatal abnormali-
ties in brain function and behavior, some studies have employed 
postnatal conventionalization of  the microbiome to ask whether 
restoring the offspring (but not maternal) microbiome can prevent 
brain and behavioral abnormalities. Restoring the microbiome at 
weaning failed to prevent elevated hippocampal neurogenesis (63) 
and serotonin levels (35), hypermyelination in the prefrontal cor-
tex (64), anxiety-like behavior (35), and impaired social preference 
behavior (65), as seen in germ-free mice. Similarly, early microbi-
al colonization failed to rescue the locomotor hypermotility seen 
in germ-free zebrafish. These findings highlight the importance of  
the maternal and/or early-life microbiome in conditioning brain 
development and behavior in animal models (66). Overall, studies 
examining the effects of  severe microbiome deficiency by germ-
free rearing or antibiotic treatment establish proof  of  concept that 
the maternal microbiome affects brain development and later life 
behaviors in offspring. They further raise the question of  whether 
the same principles would apply to more physiologically or clinical-
ly relevant contexts.

Maternal environmental exposures on the 
microbiome and offspring
Maternal inflammation. The microbiome plays a crucial role in reg-
ulating susceptibility and response to infection, leading many to 
consider how the maternal microbiome may modify the effects of  
infection on environmental risk for neurodevelopmental disorders. 
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Maternal diet. Diet is a major determinant of  microbiome com-
position and function, which in turn influences microbial dietary 
metabolism and nutrient accessibility to the host. Numerous 
human studies have associated dietary intake during pregnancy 
with offspring developmental abnormalities. Of  these, maternal 
high-fat diet (HFD) and low-protein diet (LPD) reflect major types 
of  maternal malnutrition that predispose to adverse metabolic 
and neurological outcomes in the offspring. In particular, mater-

mice (101). Colonizing and rearing mice with human ASD-asso-
ciated gut microbes led to increased repetitive behavior, decreased 
locomotion, and decreased communication, relative to controls 
reared with microbiota from individuals acting as healthy controls. 
Taken together, these studies highlight diverse roles for the microbi-
ome in modulating the severity of  maternal risk for immune chal-
lenge, as well as the presentation of  neurobehavioral symptoms in 
offspring of  immune-activated dams.

Table 1. Correlations between perinatal environmental exposures and the diversity of the maternal gut microbiota

Condition Pregnancy Period Microbiome Finding Ref.
SARS-CoV-2 infection Entire pregnancy Decreased bacterial richness 185
SARS-CoV-2 infection 16–39 weeks Unchanged bacterial richness and evenness, and number of bacterial taxonomic units 186

Changed β-diversity
HIV infection >20 weeks Decreased bacterial richness and diversity 187

Changed β-diversity
High-fiber diet >17 weeks Increased bacterial richness and diversity 188
High-fat diet Entire pregnancy Increased bacterial richness and evenness 189
High-fat diet Entire pregnancy Decreased bacterial richness and number of bacterial taxonomic units 190
Low-protein diet Entire pregnancy Decreased bacterial richness 189, 191
Depression Third trimester Unchanged bacterial richness and evenness 192

Unchanged β-diversity
Stress Entire pregnancy Unchanged bacterial richness and evenness 193

Unchanged β-diversity

α-Diversity measures bacterial species richness and/or evenness within individual samples. β-Diversity measures similarity versus differences in bacterial 
taxonomic diversity across multiple samples.

Table 2. Correlations between perinatal environmental exposures and particular taxonomic alterations in the maternal gut microbiota

Condition Pregnancy Period Microbiome Finding Ref.
SARS-CoV-2 infection Entire pregnancy Increased: Dialister 185

Decreased: Phascolarctobacterium Faecium, Anaerostipes, Prevotella buccalis, Porphyromonas uenonis, Bacteroides
SARS-CoV-2 infection 16–39 weeks Increased: Bifidobacteriaceae, Oscillospiraceae 186

Decreased: Microbacteriaceae
HIV infection >20 weeks Decreased: Clostridium, Turicibacter, Ruminococcus, Parabacteroides, Bacteroides, Bifidobacterium, Treponema, Oscillospira, Faecalibacterium 187
Low-fiber diet 16 weeks Increased: Collinsella 188
Low-fiber diet 16 weeks Decreased: Clostridiales, Barnciellaceae, Bacteroidaceae 190
Low-fiber diet Entire pregnancy Decreased: Veillonella, Paraprevotella 189

Increased: Sutterella, Ruminococcus
High-fat diet Second trimester Increased: Proteobacteria, Firmicutes, Bacteroidetes, Lachnobacterium, Methanobrevibacter 193

Decreased: Actinobacteria
High-fat diet At birth Increased: Proteobacteria, Firmicutes, Lachnospira, Rombustia 194
Low-protein diet Entire pregnancy Decreased: Veillonella, Collinsella, Anaerostipes 189
Low-protein diet At birth Increased: Firmicutes 194

Decreased: Actinobacteria
Depression Third trimester Increased: Butyricicoccus, Firmicutes 192

Decreased: Escherichia-Shigella, Klebsiella, Enterobacter, Intestinibacter, Enterococcus
Depression Postpartum Decreased: Faecalibacterium, Phascolarctobacterium, Butyricicoccus, Lachnospiraceae 195

Increased: Enterobacteriaceae
Stress First trimester Increased: Faecalitalea, Catenibacterium mitsuokai 196
Stress Second trimester Increased: Prevotella, Streptococcus pasteurianus 196
Stress Third trimester Increased: Lagierella, Lactobacillus iners 196
Stress At birth Decreased: Lactobacillaceae, Peptostreptococcaceae 197
Anxiety Entire pregnancy Increased: Oxalobacter, Rothia, Acetitomaculum, Acidaminococcus, Staphylococcus, Peptococcaceae, Peptostreptococcaceae 38
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nal HFD was associated with an increased incidence of  cognitive 
impairment and neurodevelopmental and neuropsychiatric dis-
orders, including ASD and ADHD, in their children (102, 103). 
Similar outcomes have been linked to maternal LPD, even with 
offspring nutritional habilitation, supporting the importance of  
the pregnancy period in programming long-term neurological tra-
jectories in the offspring (104). Notably, the similarities in adverse 
offspring outcomes from maternal diets reflecting overnutrition 
(HFD) and undernutrition (LPD) highlight the potential for shared 
pathophysiological pathways.

Animal studies support a causal role for maternal LPD and 
HFD in disrupting neurodevelopment and behavior in the off-
spring. Dams fed LPD throughout pregnancy yielded fetuses with 
decreased neuronal proliferation and increased apoptosis in the 
ganglionic eminence (105). Upon switching to a control diet at par-
turition, offspring of  LPD-fed dams still developed impaired cog-
nitive behavior and increased anxiety-like behavior by adulthood, 
highlighting the importance of  maternal diet during the pregnancy 
period (106). In contrast, dams fed HFD before and during preg-
nancy yielded fetuses with altered neuronal proliferation in the hip-
pocampus and cortex (107, 108). Continuation of  HFD through 
the lactation period led to anxiety-like behavior (109–112) and 
reduced sociability in the offspring (113). Although maternal diets 
can affect fetal development through mechanisms independent 
of  the microbiome, alterations in the maternal microbiome have 
been reported in animal models of  maternal LPD and HFD. LPD 
reduced the diversity of  the maternal microbiome during pregnan-
cy, with notable shifts in several Clostridial species and correspond-
ing microbiome-dependent alterations in metabolomic profiles 
across the maternal-fetal compartments, including in the fetal brain 
(106). HFD in pregnant mice induced differential temporal shifts 
in the maternal microbiome, with early enrichment of  Akkermansia 
and Bifidobacterium and later alterations in multiple Clostridial taxa 
(114). Different microbial signatures were reported in nonhuman 
primates fed HFD, highlighting the potential for host species-spe-
cific effects (115).

Alterations in the maternal microbiome are also associated 
with dietary intake in pregnant women (Tables 1 and 2). Only 
a few studies to date have evaluated causal roles of  the micro-
biome in modifying the effects of  altered maternal diets on neu-
robehavioral outcomes in the offspring. In a study of  maternal 
LPD, which reduced the diversity of  the maternal microbiome 
during pregnancy, further depletion of  the maternal microbiome 
via antibiotic treatment exacerbated cognitive and anxiety-like 
deficits in adult offspring that were reared on a control diet since 
birth. In contrast, maternal supplementation with select micro-
bial metabolites during pregnancy partially prevented abnormal 
behaviors in the offspring.

Microbiome manipulations in models of  maternal HFD have 
as yet focused on postnatal interventions to mitigate social impair-
ments in offspring (106). Normalizing the microbiome by cohous-
ing offspring from dams fed HFD versus control diet, or by trans-
ferring fecal microbiota, ameliorated the social behavioral deficits 
caused by maternal HFD. Positive effects were similarly seen by 
treating HFD offspring with Lactobacillus reuteri for 4 weeks after 
weaning, which corresponded with increases in oxytocin-reactive 
neurons in the hypothalamus (116). As with MIA, these studies 

highlight the ability of  the maternal microbiome to modulate the 
severity of  maternal malnutrition on promoting abnormal behavior 
in the offspring as well as the ability of  postnatal manipulations of  
the offspring microbiome to modify behavioral symptoms arising 
from maternal insults.

Maternal stress. Microbial “dysbiosis” has long been associ-
ated with exposure to stressful situations (117) and altered stress 
response (18), raising interest in potential relationships between the 
maternal microbiome and perinatal mood disorders. Maternal anx-
iety and depression are linked to many negative outcomes in child 
neurodevelopment, including reduced cognitive and social-emo-
tional performance (118, 119) and increased risk for emotional 
disorders and ADHD (120–122). Dams exposed to periconceptu-
al stress yielded fetuses with alterations in brain gene expression 
(123–125), including in pathways related to neuronal development, 
core metabolism, and neuroimmune function, with notable sex dif-
ferences. Consistent with this, many studies have reported effects 
of  maternal stress on offspring neurogenesis (126–128), tryptophan 
and amino acid metabolism (129), microglial and cytokine levels 
(130–132), as well as anxiety-like behavior and impaired cognitive 
behavior (127, 133).

Early culture-based observations that stressful environmental 
and housing conditions correspond with rapid decreases in Lac-
tobacillus (117) have generally aligned well with more modern 
sequencing-based studies of  stress-induced alterations in the gut 
microbiome (134, 135). Recent studies have extended this line of  
inquiry to the maternal microbiome, finding that maternal stress 
alters microbial diversity, with particular increases in Lachnospir-
aceae and Oscillibacter and decreases in Parasutterella (136). Similar 
observations of  stress altering the maternal microbiome have been 
observed in humans (Tables 1 and 2). Studies also report the ability 
of  maternal stress during pregnancy to alter the offspring microbi-
ome, with decreases in Lactobacillus and Ruminococcaceae (129) and 
increases in Prevotellaceae (128, 137). One particular study manip-
ulated the maternal microbiome to alter maternal, rather than off-
spring, neurological health and found that treating stressed dams 
with Lactocaseibacillus rhamnosus HN001 during pregnancy reduced 
their anxiety-like behavior, with corresponding alterations in cor-
tical neurotransmitter levels (138). These studies raise the prospect 
of  modifying the maternal microbiome to offset the adverse effects 
of  maternal stress during pregnancy on both maternal and off-
spring neurological health.

Maternal antidepressants. While most studies of  the maternal 
microbiome have interrogated its ability to modify risk for neu-
rological disorders, there is rising interest in the roles for the 
maternal microbiome in regulating responsiveness to treatments for 
neurological disorders. As an extension of  interest in maternal 
depression and anxiety, the microbiome is increasingly impli-
cated in interacting with common antidepressant and anxiolytic 
drugs, including selective serotonin reuptake inhibitors (SSRIs) 
and serotonin-norepinephrine reuptake inhibitors (SNRIs), for 
which maternal use during pregnancy has been associated with 
increased risk for ASD and ADHD in offspring (139–146). In 
large-scale screens of  microbiome interactions with medications, 
SSRIs exhibit notable associations with microbiome alterations 
and effects on microbial activity (147–149). These links have been 
further assessed in animal models, wherein maternal SSRI treat-
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ment altered the composition of  the maternal gut microbiome. 
In dams deficient in serotonin transporter (SERT), a model for 
maternal depression, treatment with the SSRI fluoxetine through-
out pregnancy reduced Bacteroides and increased Prevotella and 
Ruminococcus levels in the gut (150). In contrast, treating wild-
type dams with fluoxetine from midgestation through lactation 
increased Parasutterella and decreased Turicibacter (151). Another 
study that treated wild-type mice with fluoxetine during midgesta-
tion reported selective increases of  Lachnospiraceae COE1, a short-
chain fatty acid–producing (SCFA-producing) bacterium (152). 
To gain insight into whether the maternal microbiome may mod-
ify the effects of  SSRIs on the host, the study examined maternal 
fluoxetine treatment during midgestation in microbiome-deficient 
dams compared with conventionally colonized dams (152). Mater-
nal fluoxetine treatment resulted in gene expression alterations in 
the fetal brain, including in genes related to synapse organization, 
cognition, locomotory behavior, and neurotransmission. These 
signatures were altered by maternal treatment with antibiotics to 
deplete the microbiome prior to fluoxetine exposure, establishing 
proof  of  principle that the presence of  the maternal microbiome 
modifies the effects of  maternal fluoxetine exposure on offspring 
neurodevelopment. Taken together, results from these studies 
emphasize that the maternal microbiome is an important factor 
that can modify the severity of  maternal environmental exposures 
and their effects on both maternal and offspring health.

Mechanisms for microbiome-brain interaction 
across the maternal-offspring interface
Microbial effects on maternal-offspring barriers. The ability of  the 
maternal microbiome to modulate offspring behavior has moti-
vated many to uncover signaling pathways that mediate crosstalk 
between maternal gut microbes and the developing brain. As the 
literal interface between mother and fetus, the placenta plays a 
critical role in supporting fetal neurodevelopment by ensuring the 
proper supply of  nutrients, oxygen, and hormones and protection 
from pathogens and harmful substances (153, 154). In mouse mod-
els of  maternal stress and MIA, placental inflammatory responses 
were quickly mounted in response to the maternal challenge and 
required for downstream neurological abnormalities in the off-
spring (155–157). Similar relationships have been reported in large 
epidemiological studies, wherein small placental size and placental 
pathologies were associated with ADHD, antisocial disorder (158), 
and poor early learning in children (159).

Recent studies have asked whether the maternal microbi-
ome impacts placental physiology and function. Pregnant mice 
reared germ free or treated with antibiotics yielded placentas with 
reduced weight, volume, and tissue density, compared with con-
ventionally colonized controls (160). These morphological defi-
cits were localized to the placental labyrinth region as the main 
site for maternal-fetal exchange and corresponded with deficient 
placental vascularization. Consistent with this, placental metab-
olomic profiles from germ-free dams were altered compared with 
those from conventionally colonized controls (161). In particular, 
maternal supplementation with SCFAs, products of  bacterial fer-
mentation by the gut microbiome, restored placental weight and 
vascular development in microbiome-deficient dams (160). Con-
sistent with the ability of  SCFAs to cross the placental barrier, the 

effects of  SCFA on placental vascularization were mediated by 
direct signaling to the G protein–coupled receptors GPR41 and 
GPR43 on endothelial cells (162, 163). Upon entry into the fetus, 
receptor-mediated signaling of  SCFAs regulated fetal inflamma-
tion (164), lipid metabolism (165, 166), and insulin secretion (167, 
168). These studies indicate that the maternal microbiome can 
impact fetal health by indirectly modulating placental function and 
producing metabolites that cross the placental barrier to signal to 
fetal tissues. While there is a strong premise for placental influenc-
es on fetal neurodevelopment, how microbiome-dependent regu-
lation of  placental function may ultimately impact brain health of  
the offspring remains to be studied.

The gut microbiome regulates hundreds of  bioactive metabo-
lites across various organ systems, raising the question of  whether 
this ability may extend from the maternal microbiome to metabo-
lites in the fetus. Indeed, serum metabolomic profiles from fetuses 
of  microbiome-deficient dams were altered compared with those 
from conventional controls (50, 160). Given that subsets of  metab-
olites from the maternal microbiome, like SCFAs, can enter the 
fetus directly by crossing the placental barrier, a key question is 
whether they may similarly access the offspring’s brain by crossing 
the BBB. The BBB is not fully developed until after birth (169), 
suggesting that microbial metabolites that enter the fetus have the 
potential to access the fetal brain. Indeed, several metabolites in 
the fetal brain were differentially regulated by maternal microbi-
ome status, and a subset of  these were coregulated in maternal 
serum (50). There is also some evidence that the microbiome 
may modulate BBB development. In germ-free mice, the BBB 
remained permeable even after birth, with decreased expression of  
tight junction proteins, compared with conventionally colonized 
controls (170). Restoring the microbiome or supplementing with 
SCFAs after birth rescued these phenotypes (171). This relation-
ship between the microbiome and BBB was similarly seen in other 
disease-related models. For example, offspring of  immune-acti-
vated dams exhibited increased BBB permeability compared with 
those from vehicle-treated controls (172), which was corrected by 
maternal treatment with L. reuteri during lactation (100). Overall, 
these results indicate that the microbiome influences BBB integri-
ty and that the maternal microbiome modulates metabolites that 
access the developing brain in offspring.

Signaling of  microbial metabolites to neurons. Given that the 
microbiome modulates numerous metabolites within the develop-
ing brain, recent studies have asked whether the maternal micro-
biome alters offspring neurodevelopment via the regulation of  
metabolites that act upon neurons. By screening metabolites on 
fetal brain explants cultured ex vivo, microbially regulated metab-
olites, including TMAO and imidazole propionate, were found 
to promote thalamic axon outgrowth. This was further validated 
by supplementing microbiome-deficient dams with the microbial 
metabolites of  interest, which prevented defects in thalamocor-
tical axonogenesis and later-life tactile sensory behavior in adult 
offspring (50). Similar influences of  metabolites on offspring 
behavior were seen in a mouse model of  maternal protein under-
nutrition, where supplementing protein-restricted dams with a 
cocktail of  10 microbially modulated metabolites prevented cog-
nitive deficits and anxiety-like behavior in adult mice that were 
reared on a standard diet since birth (106). These studies indicate 
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injection of  the SCFA propionic acid into adult rats activated microg-
lia, promoted oxidative stress, and induced behavioral abnormalities 
(179), suggesting that excess access of  SCFAs to the brain could be 
detrimental. Consistent with this, in a model of  Parkinson’s disease, 
the altered microbiome contributed to disease symptoms and SCFA 
supplementation promoted α-synuclein–mediated neuroinflamma-
tion by activating microglia (180). As microglia play important roles 
in early neurodevelopment, additional research is warranted to dis-
sect mechanisms by which the maternal microbiome affects microg-
lial function in ways that impact the developing brain.

Many effector molecules of  peripheral immune cells play fun-
damental roles in normal neurodevelopment. For example, various 
cytokines are present in the absence of  overt inflammation and 
influence neurodevelopmental processes, such as neuronal prolif-
eration, differentiation, migration, and synaptic plasticity (181). 
Recent research indicates that the maternal microbiome can mod-
ulate neurodevelopment by tuning cytokine responses to environ-
mental challenges. In a mouse model of  maternal stress, CCL2 
and IL-6 were quickly elevated in the placenta and fetal brain in 
conventional, but not germ-free, dams (182). This microbiome-de-
pendent regulation of  brain CCL2 led to deficits in sociability and 
anxiety-like behavior in adult offspring. Similarly, maternal colo-
nization with the Th17-inducing bacterium SFB enhanced IL-17A 
in the fetal brain, which contributed to fetal cortical defects and 
social behavioral abnormalities in the offspring (183, 184). These 
data indicate that the maternal microbiome can impact offspring 
neurodevelopment by regulating peripheral immune homeostasis 
and responses to environmental challenges.

Future directions
The maternal microbiome, itself  and through interactions with 
environmental risk factors, is emerging as an important modifier of  
long-term health trajectories for both mother and offspring. Many 
studies in animal models provide fundamental proof  of  concept 
for causality between the maternal gut microbiome and alterations 
in neurodevelopment and behavior in the offspring. Whether these 
principles faithfully translate to the human condition remains poor-
ly understood. This is especially challenging given the concerns of  
and confounding issues related to conducting human studies with 
pregnant women and children as vulnerable groups. The wealth of  
evidence to date, drawn from laboratory animals and human epi-
demiological studies, supports the need for longitudinal evaluation 
of  the maternal microbiome and related outcomes in maternal-off-
spring pairings. Results from these, together with advances in mech-
anistic studies in animal models, will form the foundation for further 
evaluating the promise of  microbiome-based interventions for the 
perinatal period. Recent studies have begun to define the various 
pathways by which metabolites from, or modulated by, the mater-
nal microbiome can impact the brain and behavior of  the offspring. 
Much remains to be explored in terms of  the molecular and cellular 
biology underlying the new phenomena that have been described, in 
addition to other non-metabolite-based pathways that may contrib-
ute. In addition, while the vast majority of  studies on the maternal 
microbiome have focused on the maternal gut microbiome, addi-
tional research is warranted to evaluate the effects of  microbiomes 
from other sites, such as the maternal vagina, milk, oral cavity, and 
skin, on the neurological health of  the mother and offspring. Final-

that metabolites regulated by the maternal microbiome have the 
capacity to act directly on the fetal brain to impact the neurobe-
havioral development of  the offspring.

Other evidence of microbial metabolite interactions with neurons 
is derived from postnatal studies. Many brain metabolites are mod-
ulated by the microbiome during adulthood, opening the possibility 
that they may regulate the activity (rather than development) of neu-
ral circuits underlying behavior. In mice colonized with gut microbes 
from patients with ASD compared with mice colonized with gut 
microbes from individuals acting as healthy controls, decreases in 
brain levels of the 5AV and taurine were associated with deficient 
social and stereotypic behaviors. Causal links were established, 
wherein supplementation of the metabolites reduced repetitive behav-
ior and increased social duration. The metabolites were proposed to 
directly modulate neuronal activity, as 5AV reduced the excitability 
of pyramidal neurons, and taurine delayed the switch from excitatory 
to inhibitory response to GABA in cortical neurons (101). Additional 
microbial metabolites were reported to indirectly modulate neuronal 
activity by regulating neuronal myelination in the brain. The micro-
biome-dependent metabolite 4-ethylphenylsulfate was abnormally 
elevated in mouse models of ASD and reduced oligodendrocyte mat-
uration to promote anxiety-like behavior in mice (173). Whether these 
effects may extend to early neurodevelopment of oligodendrocytes, 
during midgestation in the mouse, remains unclear.

In addition to interacting with neurons within the central ner-
vous system, many microbially modulated metabolites signal to 
peripheral sensory neurons either directly or indirectly via interme-
diate effectors. Recent studies highlight that microbial metabolites 
from the intestinal lumen regulate the activity of  gut-innervating 
vagal neurons that project directly to the brain stem (174) and also 
to gut-innervating dorsal root neurons that signal through spinal cir-
cuits to the brain (175). Consistent with this, gut microbes regulate a 
variety of  behaviors in a manner that requires an intact vagus nerve 
(116, 176). Beyond active sensory signaling of  microbial metabolites, 
there is also evidence that the microbiome may regulate the develop-
ment of  neuronal circuits for interoception. Mice reared germ free 
exhibited widespread alterations in vagal neuronal gene expression, 
including reductions in urotensin 2B (UTS2B) — a putative regulator 
of  blood pressure, which may influence its response landscape. The 
vagus nerve is reported to be functionally active during early gesta-
tion (177), raising the intriguing possibility that metabolites regulated 
by the maternal microbiome may begin to exert their effects on vagal 
activity during fetal neurodevelopment. Further research is needed to 
explore mechanisms for metabolite interactions with neurons, espe-
cially during fetal and early postnatal critical periods.

Microbial regulation of  neuroimmune function. The immune system 
plays an integral role in guiding normal neurodevelopment, through 
both central functions of  brain-resident immune cells and peripheral 
immune signaling to the brain. Mice reared germ free or treated with 
antibiotics exhibited deficiencies in brain microglia, characterized by 
cellular immaturity and dysfunctional response to immune activa-
tion (178). Microbiome-dependent alterations in microglia were even 
seen in prenatal ages (57), suggesting a role for the maternal microbi-
ome in affecting microglial development. However, supplementation 
of  adult germ-free mice with microbial SCFAs reversed defects in 
microglial maturation (178), suggesting early impacts of  the mater-
nal microbiome are temporary and/or reversible. Intraventricular 
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ly, a key area for future advancement requires acknowledging the 
importance of  maternal health, in and of  itself, rather than solely as 
a determinant of  offspring health. The field is ripe for evaluating the 
microbiome-gut-brain axis in the context of  women’s health, espe-
cially the maternal brain during pregnancy and the postpartum peri-
od. Understanding how maternal microbiomes impact both mater-
nal and offspring brain health will not only uncover new knowledge 
regarding biological interactions that occur during important critical 
periods, but also pave the way for new approaches to addressing the 
unmet medical needs of  women and children.
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