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Introduction
As a group, autoimmune diseases affect approximately 3%–10% 
of the population worldwide (1–5) and are the third most common 
category of disease in industrialized countries following cardio-
vascular disease and cancer. What constitutes an autoimmune 
disease depends on how they are defined (6), with the number of 
autoimmune diseases varying from 80 to 120 or more (7). In gen-
eral, autoimmune disease develops when the innate and adaptive 
immune responses, which typically recognize and protect the host 
from invading pathogens or toxins, respond to self-antigens lead-
ing to loss of self-tolerance and chronic tissue damage (Figure 1). 
During maturation of the immune system, immune cells that react 
against self-antigens are eliminated in a process that is referred to 
as “central tolerance” (8). This protective process is incomplete 
and supplemented by several peripheral tolerance mechanisms, 
including the conversion of self-reactive Th cells to Tregs (9). A 
characteristic (and diagnostic) feature of autoimmune diseases is 
the presence of autoantibodies and autoreactive T cells (Figure 1) 
and a decrease in inhibitory Tregs (10, 11).

Most autoimmune diseases are more common in cisgender 
women (hereafter referred to as women) than cisgender men 
(hereafter referred to as men), especially autoimmune diseas-
es that are more prevalent in the population. For example, sex 
ratios for autoimmune diseases that occur more often in women 
than men include systemic lupus erythematosus (SLE) (8.8:1) (12), 
Takayasu’s arteritis (6.8:1) (13), primary Sjögren’s disease (6.1:1) 
(14, 15), thyroiditis (5.8:1) (16), Graves’ disease (3.9:1) (17), rheu-
matoid arthritis (2.1:1) (18), and multiple sclerosis (1.7:1) (19) (Fig-

ure 2). However, some autoimmune diseases occur more often in 
men, such as primary biliary cholangitis (1:3.9) (20) and myocar-
ditis (1:3.5) (21, 22) (Figure 2). There are several fundamental con-
tributors to the sex differences in immune response that underlie 
autoimmune diseases, including sex hormones, genes, and envi-
ronmental factors. The purpose of this Review is to summarize 
the current understanding of mechanisms that may determine sex 
differences in autoimmune disease.

The role of sex hormones
Sex differences in systemic and tissue-specific inflammation are 
evident in most autoimmune diseases based on studies in humans 
and animal models (19, 23–26). The term sex refers to biological 
differences between males and females in, for example, anato-
my, physiology, chromosomes, and genes, while gender refers to 
socially constructed roles, characteristics, and behaviors of men 
and women (27, 28). Very little data currently exist for other gen-
der identities, which are understudied and so are not discussed 
here. This Review focuses on biological sex differences while 
acknowledging that sex and gender are intertwined, and both crit-
ically affect disease pathogenesis and outcome.

Sex hormones and autoantibodies. One of the key immune 
factors that characterize autoimmune disease is the presence of 
autoantibodies. The effects of estrogens, and especially 17β-estra-
diol (E2/estrogen), are mediated primarily via estrogen recep-
tor α (ERα) and ERβ, which are expressed in many immune cell 
types, including mast cells, macrophages, DCs, T cells, and B cells 
(29–31). Along with playing a classical role in genomic transition, 
ERs — which are also expressed on the surface of cells, including 
immune cells — can initiate rapid responses as part of lipid signal-
ing rafts (reviewed in refs. 32, 33 ). Estrogen promotes activation 
and survival (34) and hypermutation and class switch recombi-
nation (35) in B cells, leading to higher antibody/autoantibody 
responses in females (36) (Figure 3). The effects of estrogen on 
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Tregs that regulate antigen/autoantigen-specific Th responses in 
women and female C57BL/6 mice (50–53), suggesting that females 
should be good at regulating proinflammatory responses. Howev-
er, the protective effect of estrogen goes awry in autoimmune dis-
eases. Far less research has been conducted on the role of andro-
gens on the immune response, but in general, androgens have been 
found to increase Th1 responses in males (54, 55).

Estrogen and innate immunity. Although antigen/autoan-
tigen-specific immunity is mediated by T and B cells, innate 
immune cells such as mast cells, DCs, neutrophils, monocytes, 
and macrophages that initiate adaptive immune responses 
to environmental pathogens, toxins, or self-antigens can also 
mediate acute and chronic autoimmune pathology. Human and 
mouse mast cells, monocytes, and macrophages express ERα, 
ERβ, and the androgen receptor (30, 56). Androgen receptors are 
expressed at higher levels on macrophages in males than females 
(57). Estrogen via ERα has been shown to differentiate monocytes 
into inflammatory DCs, which present antigen to T cells and pro-
mote Th1 responses in female C57BL/6 mice and healthy human 
donors (58, 59). However, E2 activation of macrophages via ERα 
was also found to drive Th2 immune responses with increased 
GATA-3 and IL-4 in ovariectomized female C57BL/6 mice (60). 
The dose of estrogen seems to greatly affect monocytes and mac-
rophages, with low doses promoting proinflammatory cytokines 
such as IL-1β, IL-6, and TNF, and high doses inhibiting these 
responses in humans and female C57BL/6 mice (61–63), similar 
to its effect on T cells. Estrogen has been found to downregulate 
certain innate immune pathways, such as TLR4 and the inflam-
masome are found on/in innate immune cells including mast 
cells and macrophages leading to a reduction in IL-1β and IL-6 
(64–67). Another reason for the differential effects of estrogen is 
that ERα and ERβ exert opposite effects on the immune response 
(68–71), and their varying expression on immune cells may alter 
the effects of estrogen. Thus, estrogen appears to have a more 
complex effect on innate immune cells than on T and B cells 
(72); overall, however, sex steroids have profound effects on the 

antibody production in females are best illustrated following a 
viral infection. For example, women are reported to have higher 
antibody responses to the influenza vaccine compared with men 
regardless of age, dose of vaccine, or influenza strain (37). Simi-
larly increased responses are observed in C57BL/6 and DBA/2 
female mice after infection (38, 39). Exogenous estrogen admin-
istration increases autoantibody levels in both male and female 
mice in various mouse strains and animal models of autoimmune 
disease (reviewed in ref. 40).

Sex hormones and autoreactive T cells. Another key feature of 
autoimmune disease is the presence of autoreactive T cells. A criti-
cal protective feature of central tolerance is the autoimmune regu-
lator gene (AIRE), which encodes a transcription factor that protects 
against self-reactivity by inducing expression of tissue-specific anti-
gens that are normally not expressed in the thymus (41). Such tis-
sue-specific antigens expressed by medullary thymic epithelial cells 
(mTECs) can be directly presented to developing T cells, or resident 
DCs in the thymus may take up these self-proteins and present 
them to T cells. If reactivity to self-antigen is too strong, mTECs 
or DCs provide signals that destroy the autoreactive T cells (41). 
Importantly, estrogen has been found to decrease AIRE expression, 
while androgen increases its expression (42, 43) (Figure 3), provid-
ing one possible explanation for the greater susceptibility of females 
to develop autoreactive T cells and autoimmune disease.

Additionally, estrogen is necessary for the development of T 
cells in the thymus (44). This may be why females have elevated 
T cell responses (i.e., CD3+, CD4+, and CD8+) and elevated Tregs 
compared with males (45) (Figure 3). However, the effect of estro-
gen on the type of CD4+ Th cell response to antigen varies by dose. 
Low-dose estrogen acting via ERα binds to the nuclear estrogen 
response element to promote IFN-γ and Th1-type immune respons-
es in female C57BL/6 mice, as well as in male C57BL/6 mice that 
received orchidectomy and E2 supplementation (46–49). In con-
trast, estrogen at high concentrations promotes Th2-type immune 
responses associated with IL-4, IL-13, IL-33, and IL-10 production 
(40). Importantly, estrogen also promotes the development of 

Figure 1. Mechanisms contributing to the development of autoim-
mune disease. A combination of genetic predisposition (Genes) and 
environmental factors (Environment) contributes to the develop-
ment of autoimmune diseases. Genetic factors (red) include genes 
on the X chromosome that are not inactivated, such as FOXP3, 
which may lead to dysregulation of Tregs in females. HLA type is 
another example of a genetic factor that can increase susceptibil-
ity to developing an autoimmune disease. Environmental factors 
(blue) include chemicals and infections. Some genetic factors can be 
influenced by environmental factors (purple); for example, the auto-
immune regulator gene (AIRE) can be decreased by viral infections or 
endocrine-disrupting chemicals may alter sex hormone signaling.
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proteins, which can promote inflammation and autoimmune 
disease in females (Figure 3). Strikingly, females (47,XXX) or 
males (47,XXY) with an extra X chromosome are more commonly 
identified among individuals with Sjögren’s disease or SLE (78). 
Several immune genes (FOXP3, IL2RG, TLR7, TLR8, CD40LG, 
BTK, CXCR3) that are associated with increasing the likelihood 
of developing autoimmune disease in females are encoded on 
the X chromosome (77) (Figure 2). For example, the following are 
encoded on the X chromosome and found to be overexpressed in 
lymphocytes of females with SLE: the gene for forkhead box P3 
(FOXP3), which increases Treg function; CD40 ligand (CD40LG), 
which allows T cells to activate B cells; Bruton tyrosine kinase 
(BTK), which is essential for the development and maturation of 
B cells; TLR7, which is a pattern recognition receptor that binds 
single-stranded RNA (ssRNA) and increases production of type 
I IFNs (IFN-α/β), resulting in elevated IFN-γ (resulting in elevat-
ed Th1 immune responses) and B cell activation; and chemokine 
(C-X-C) receptor 3 (CXCR3), which increases IFN-γ/Th1 immune 
cell responses to CXCL-9, CXCL-10, and CXCL-11 (45, 79–81). A 
gain-of-function TLR7 variant that was identified in a child with 
severe lupus and then introduced into mice induced lupus-like 
features in a B cell–intrinsic manner independent of the formation 
of follicles or germinal centers (81). Evidence for a role of TLR7 in 
SLE was further strengthened by the finding that hyperactivation 
of TLR7 associated with early-onset SLE; the hyperactivation was 
attributed to mutations in genes that encode proteins required for 
proper control of TLR7 levels and function (82, 83). TLR7 has also 
been linked to the pathogenesis of other autoimmune diseases 
besides SLE, including type 1 diabetes and Sjögren’s disease, by 
increasing type I IFNs (25, 84, 85). These data indicate that TLR7 
is a mediator of some autoimmune diseases, although all these 
genes could increase the risk of autoimmune disease in females.

immune response, providing at least part of the explanation for 
sex differences in the pathogenesis of autoimmune disease.

The role of genes
A combination of genetic predisposition and environmental fac-
tors contributes to the development of autoimmune diseases (Fig-
ure 1), which are known to cluster in families and in individuals 
(i.e., individuals with one autoimmune disease are more likely to 
develop another autoimmune disease) (73). There is also a high-
er probability that family members without autoimmune disease 
will develop autoantibodies. The likelihood of developing similar 
autoantibodies relates directly to the sharing of human lympho-
cyte antigen (HLA) haplotypes with family members (74), and 
the probability is even greater if two haplotypes rather than one 
are shared. HLA haplotype, or the MHC in mice, is proposed to 
increase the prevalence of autoimmune disease by enhancing or 
altering self-antigen presentation in the periphery, resulting in 
increased autoreactive T cell activation (Figure 1). Most autoim-
mune diseases are thought to be polygenic, i.e., involving more 
than one gene, and many of the genes conferring susceptibility 
involve the immune response. Genetic predisposition to autoim-
mune disease can involve genes/genetic variants and noncoding 
microRNAs (miRs) or long noncoding RNAs (lncRNAs) (75).

Role of X chromosome genes. Increasing evidence indicates 
a role for the X chromosome in promoting autoimmune disease 
in females, as the number of X chromosomes in an individual is 
associated with an increased risk of developing an autoimmune 
disease (female 46XX, male 46XY) (19, 76, 77). To normalize the 
dose of gene expression in females (46XX), one X chromosome 
is randomly inactivated in each cell by X-inactive specific tran-
script (XIST). However, some genes (15%–23%) escape X chro-
mosome inactivation, leading to a double dose of the encoded 

Figure 2. Sex differences in autoimmune disease. Most autoimmune diseases occur more often in women than men. Sex ratios comparing women with 
men for a number of autoimmune diseases are illustrated, including systemic lupus erythematosus (8.8:1) (12), Takayasu arteritis (6.8:1) (13), primary 
Sjögren’s disease (6.1:1) (15), thyroiditis (5.8:1) (16), systemic sclerosis (4:1) (167), Graves’ disease (3.9:1) (16), rheumatoid arthritis (2.1:1) (18), multiple sclero-
sis (1.7:1) (168), celiac disease (1.4:1) (169), type 1 diabetes (1:1.8) (170), Crohn’s disease (1:2) (171), ankylosing spondylitis (1:2.6) (172), myocarditis (1:3.5) (21), 
and primary biliary cholangitis (1:3.9) (20).
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Insight provided by Four-Core Genotypes mouse model. The 
Four-Core Genotypes (FCG) and similar mouse models (95) 
are useful for determining whether the causes of sex differenc-
es that are observed in phenotypes are due to hormonal effects, 
sex-chromosomal effects, or both. In FCG mice, the sex-deter-
mining region of the Y chromosome (Sry) is removed from the Y 
chromosome and provided through an independent transgene. 
Sry encodes the testis-determining factor, which initiates male 
sex determination. The FCG model produces four genotypes in 
which the sex characteristics are due to the presence or absence 
of Sry and independent of sex chromosomes, resulting in: XX 
with ovaries, XX with testes, XY with ovaries, or XY with tes-
tes. Comparison of the XX and XY mice with the same type of 
gonad (i.e., either containing Sry and testes or lacking Sry and 
containing ovaries) has led to discovery of phenotypes in which 
the complement of sex chromosomes causes sex differences. 
Comparison of mice with testes versus ovaries, with the same sex 
chromosomes, has led to discovery of phenotypes in which the 
presence or absence of Sry causes sex differences, including the 
effects of testicular versus ovarian secretions (95, 96). The mod-
els have been used to uncover sex chromosome contributions 
to sex differences in a wide variety of tissues and disease states, 
including the brain, heart, and immune system, as well as cardio-
vascular, autoimmune, and Alzheimer’s disease (95–98). In some 
cases, use of these models has led to the discovery of specific X or 
Y genes that protect from or exacerbate disease (97). Additional-
ly, when sex chromosome and hormonal factors interact, they can 
reduce each other’s effects, which may not be discovered without 
the use of tools such as these.

Additionally, a large percentage of the genome encodes tran-
scripts that are not translated into proteins, such as miRs and 
lncRNAs. miRs can be free floating in the cell, where they are 
produced or released to the local environment or circulation in 
extracellular vesicles (EVs) (85). miR content within EVs has been 
reported to be elevated in many autoimmune diseases and shown 
to have roles in promoting and/or regulating disease (75, 87–90). 
In one study, around 10% of the miRs in the human genome were 
located on the X chromosome (91), suggesting that their expres-
sion may be higher in females. The lncRNA XIST, which is nec-
essary for X chromosome inactivation, was found in EVs released 
from apoptotic cells in culture after UV irradiation (92). Crawford 
et al. showed that XIST lncRNA from EVs was able to bind to and 
activate TLR7 and increase IFN-γ levels in culture, and that XIST 
was expressed more often in females (n = 12) with SLE than age-
matched controls (n = 11) (92). These findings suggest that XIST 
could activate TLR7 in females in a sex-specific manner, pro-
moting autoreactive antibodies and SLE (Figure 3). Evidence for 
this idea was further supported by Dou et al., who showed that 
expression of XIST in male C57BL/6 mice induced autoantibod-
ies and exacerbated disease in a mouse model of SLE (93). Addi-
tional evidence of the importance of XIST in regulating TLR7 was 
recently reported by Huret et al., who prevented XIST inactivation 
in C57BL/6 mice, which resulted in elevated expression of TLR7, 
TLR8, TLR13, and CXCR3 on splenocytes, leading to elevated 
anti-DNA and anti-RNA serum antibodies and splenic TNF, IL-1β, 
and IL-6 levels in 1-year old mice (94). Thus, genes and noncoding 
transcripts found on the X chromosome may increase susceptibil-
ity to autoimmune disease in women.

Figure 3. Potential mechanisms increasing the 
risk for autoimmune disease in women. Key 
factors that may increase the risk of developing 
autoimmune disease in females include genes 
on the X chromosome, sex hormones such as 
17β-estradiol (E2), endocrine disruptors such as 
bisphenol A (BPA), and infections such as viruses. 
AIRE, autoimmune regulator gene; EVs, extra-
cellular vesicles; FoxP3, forkhead box P3; mIR, 
microRNA; mito, mitochondria; XIST, X-inactive 
specific transcript.
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exposure to BPA or other endocrine disruptors can make disease 
worse, such as collagen-induced arthritis in male DBA/J mice 
(120), type 1 diabetes (reviewed in ref. 121), SLE in various mod-
els (122–124), and myocarditis in male and female BALB/c mice 
(106, 125). BPA is also able to disrupt DNA methylation (109, 126). 
Importantly, these effects are transgenerational (126, 127), and 
exposures continue after birth. Exposure to BPA has been found to 
lead to hypomethylation of CD4+ T cells in SLE and other autoim-
mune diseases compared with controls and to contribute to disease 
(126, 128), similar to the effects of estrogen. Because this is a new 
area of research there are only a few studies reporting the effects of 
endocrine disruptors on miRs (reviewed in refs. 86, 109), but with 
the high regulation of miRs by estrogen, endocrine disruptors may 
influence their production. However, more research is needed in 
animal models and human disease to confirm the role of endocrine 
disruptors in specific autoimmune diseases.

Role of infection. For many decades, viral and other infections 
have been suspected as “triggers” of autoimmune disease (90, 
129), but mechanisms for how this could occur have been dif-
ficult to establish (130, 131). The COVID-19 pandemic brought 
viral infections back into the focus, as SARS-CoV-2 was found to 
increase myocarditis by at least 15-fold, from around 1–10 cases 
per 100,000 before COVID to 150 cases per 100,000 or more 
during the pandemic (132, 133). Additionally, several new diseas-
es emerged from the pandemic that were reminiscent of autoim-
mune diseases, such as multisystem inflammatory syndrome in 
children (MIS-C) and long COVID in women (134–136).

Recent findings indicate that many viruses target mitochondria 
for a replicative advantage and subvert EV pathways to hide within 
EVs and evade the immune response, such as coxsackievirus, influ-
enza, HIV, and SARS-CoV-2 (reviewed in refs. 137–142). In this 
process, EVs are created that contain mitochondria/mitochondrial 
and virus/viral components, altered miRs, and typical EV content 
(138, 143, 144). These EVs are expected to be highly immunogenic, 
because many of the constituents of the mitochondria within the 
EVs — e.g., mitochondrial cardiolipin, cytochrome c, and ATP — are 
known to activate TLR4 (145–149). Increased levels of extracellular 
mitochondria (likely housed in EVs) are observed in patients with 
rheumatic autoimmune diseases and are thought to contribute to 
disease (reviewed in ref. 150). Activation of innate immune cells by 
these mitochondrion-containing EVs may generate autoimmune 
responses against antinuclear cellular components, particularly 
antinuclear antibodies (ANAs), which are primary autoantigens 
in rheumatic autoimmune diseases (Figure 3). Additionally, anti-
mitochondrial antibodies (e.g., antibodies that target cardiolipin, 
mitofusin 1, mitochondrial DNA, or mitochondrial RNA) are com-
monly found in patients with rheumatic autoimmune diseases 
such as rheumatoid arthritis, SLE, and antiphospholipid syndrome 
(150). Elevated levels of EVs containing mitochondria are posi-
tively associated with increased SLE disease activity, proinflam-
matory cytokines, and anti-dsDNA antibodies, suggesting that 
EVs with mitochondrial components may be involved in disease 
pathogenesis (150, 151). Elevated mitochondrial levels in red blood 
cells have been found to increase IFN responses in patients with 
SLE (152, 153). TLR4/inflammasome activation by mitochondrial 
components can lead to elevated IFNs via IL-18, which was initially 
called IFN-inducing factor, in addition to traditional IFN pathways 

The role of environment
Although genetic factors are important in the development of auto-
immune disease, twin studies indicate that environmental factors 
are a significant contributor (99–103). However, disentangling 
environmental from genetic contributions to autoimmune disease 
is complicated by epigenetic regulation of genes by the environ-
ment. Examples of environmental exposures associated with auto-
immune diseases include infections, pesticides, solvents, endo-
crine-disrupting agents such as bisphenol A (BPA), occupational 
exposure to respirable particulates and fibers, and personal factors 
such as cigarette smoking history and diet (21, 104–107) (Figure 3).

Role of epigenetics. DNA methylation, histone modification, 
and regulation by miRs are important epigenetic mechanisms 
that influence the development of autoimmune disease (108, 
109). Estrogen has been found to regulate DNA methylation in 
breast and endometrial cancers (110–112) and to enhance global 
hypomethylation of CD4+ T cells from patients with SLE, promot-
ing disease (113) (Figure 3). Thus, estrogen-induced epigenetic 
regulation of gene expression could increase the susceptibility of 
women to autoimmune disease.

miRs are short (22 nucleotides), single-stranded, noncoding 
RNAs that form complementary base-pairs with the 3′ untrans-
lated region of target mRNAs within the RNA-induced silencing 
complex (RISC) and block the function of protein-coding mRNAs 
(86). It has been reported that the human genome contains approx-
imately 2,500 mature miRs that regulate approximately 60% of 
mRNAs (114). As mentioned above, the X chromosome has been 
estimated to regulate 10% of miRs (91). Additionally, miR tran-
scription has been found to be regulated through ERα and ERβ 
in a tissue-specific and cell-dependent manner (86), producing 
so-called estrogen-related miRs. Estrogen-related miRs, such as 
miR-125 and miR-155, are thought to mediate the ability of estro-
gen to activate B cells to increase antibody/autoantibody produc-
tion (86, 115) (Figure 3). Based on these findings, we would expect 
many miRs to differ by sex. Evidence for this includes a study by 
Dai et al. that reported sex differences in lupus-associated miRs in 
the NZB/WF1 mouse model of SLE (66), indicating their poten-
tial role in driving autoimmune disease in females. An avid area 
of research for many diseases, including autoimmune diseases, 
examines whether circulating EVs with specific miR content have 
the potential to be effective biomarkers of disease (116).

Role of endocrine disruptors. An important environmental 
factor that may influence sex differences in immune function is 
endocrine disrupting chemicals such as phenols (e.g., BPA, BPS), 
parabens, and phthalates, which can change immune function by 
altering binding of sex hormones to their receptors or sex hormone 
production (106, 109, 117, 118) (Figure 3). Endocrine-disrupting 
chemicals are now ubiquitous not only in the environment at large, 
but also in the environment of our animal models and cell culture 
experiments (e.g., there are endocrine-disrupting chemicals in cul-
ture media and leaching from warm plastic culture trays; and mice 
are housed in plastic cages with plastic water bottles and estrogenic 
compounds in their food and bedding). For example, BPA is a non-
steroidal xenoestrogen that exhibits 10–4 the activity of E2 and can 
inhibit the androgen receptor (119). Studies of the effect of BPA on 
immune cells in culture and animal models are abundant, reveal-
ing varied effects (reviewed in ref. 119). Some studies indicate that 
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such as MAVS/STING (154). These findings suggest that damage to 
mitochondria from viral infections, drugs, or toxins may increase 
autoimmune responses and serve as a common mechanism in the 
pathogenesis of several autoimmune diseases.

The question is whether viral infection or other causes of dam-
age to mitochondria can increase susceptibility to autoimmune 
disease in females. Mitochondrial energetics (that is, morphology, 
biogenesis, respiration, reactive oxygen species, etc.) are known to 
differ by sex (155, 156). For example, mitochondria from the hearts 
of female rodents and human cardiomyocytes in culture are known 
to have greater efficiency, fatty acid utilization during exercise, 
and calcium retention; whereas males have more mitochondrial 
content, reactive oxygen species production, and a higher calcium 
uptake rate (28, 157). A major transcriptional regulator of mito-
chondrial genes and function is ER-related receptor α (ERRα) (158, 
159), which, although it does not have estrogen as a ligand, is asso-
ciated with sex differences in mitochondrial function in a number 
of animal models (137, 160–162). PPARγ coactivator 1α (PGC1α), 
which is a known master regulator of mitochondrial function, is 
a cofactor for ERRα transcription (163). Thus, it would be expect-
ed that interference of mitochondrial function by viruses or other 
pathogens or toxins may differ by sex, and the release of EVs with 
mitochondrial content may promote sex-specific immune respons-
es, increasing the risk of autoimmune disease in females (Figure 3). 
Future studies are needed to confirm this hypothesis.

Pediatric autoimmune diseases
Generally, in autoimmune diseases that occur during both child-
hood and adulthood — including SLE, Sjögren’s disease, system-
ic sclerosis, multiple sclerosis, celiac disease, and autoimmune 
thyroid disease — sex differences are less pronounced in chil-
dren, with a more modest female predominance (164–166). For 
example, female-to-male ratios of Sjögren’s disease in adults are 
as high as 21:1 in the 19- to 36-year age group and over 14:1 in all 
adults, but 6:1 in the pediatric age range (166). For autoimmune 
diseases more common in children, sex differences are relatively 
less female-skewed or more variable. For example, type 1 diabe-
tes occurrence is nearly equal in males and females, perhaps with 
slight male predominance; while juvenile idiopathic arthritis (JIA) 
is more common in females (2:1 to 3:1), except for certain sub-
types, such as systemic JIA (no sex difference) and enthesitis-re-
lated arthritis (slight male predominance) (164). While hormones 
change in a sex-specific manner during adolescence, sex differ-
ences in some autoimmune diseases occur during earlier child-
hood, when hormones are not sex dependent, suggesting that 
non-hormone-associated drivers of sex differences exist. More 
research is needed to better understand those factors.

Summary
Most adult autoimmune diseases, especially those with the high-
est prevalence, occur more often in women than men. Decades 
of research provide a strong basis for the role of estrogen in pro-
moting autoreactive T and B cells, leading to increased autoanti-
bodies and clinical disease. However, research on the role that sex 
hormones and estrogen play in innate immune cells has generat-
ed highly variable result. Genes, including genes on the X chro-
mosome, contribute to sex differences in autoimmune diseases, 

but environment and epigenetics are also a major contributor. 
Recent and rapidly evolving areas of research include the role of 
hormone-dependent miRs and EVs on promoting and/or protect-
ing from autoimmune disease. The COVID-19 pandemic provided 
new insight into how viruses may alter miR and EV content to pro-
mote autoimmune diseases, reviving an old hypothesis.

Gaps
Large advances in understanding have been made to identify the 
potential mechanisms leading to a higher prevalence of autoim-
mune disease in women. The 2015 requirement by NIH to report 
sex differences in cell, animal, and human research has led to an 
increase in reporting. However, a large quantity of past publica-
tions did not report the sex of the animal or cell type, and the exper-
iments have not been repeated to determine whether sex differenc-
es exist. An often overlooked issue that affects interpretation of sex 
differences in the immune response is the presence or absence of 
mast cells in mouse strains. Mouse strains with many mast cells 
such as BALB/c mice develop predominant Th2 immune responses 
to antigens/autoantigens, while mouse strains with few mast cells 
such as C57BL/6 mice develop predominant Th1 immune respons-
es. Thus, there is a need to report sex differences in mouse models 
in the context of mouse strain. Additionally, few studies exist on 
the effects of androgen receptor signaling in females and males. 
More research is also needed on the effect of endocrine disruptors 
on physiology and immune responses to self-antigens according to 
sex. Almost all studies that examine the role of sex hormones and 
endocrine disruptors do not control for the exposure of exogenous 
estrogens in the bedding, food, and culture media supplements, 
nor do they control for endocrine-disrupting agents such as plastics 
(i.e., BPA, BPF) in culture dishes, media, caging, and water. Anoth-
er important gap is that there are no recent epidemiologic studies 
that report the prevalence of all autoimmune diseases in the US, 
or the prevalence of many individual autoimmune diseases along 
with their sex ratios. These data are needed to better understand 
sex differences in autoimmune disease and to stimulate research 
into understanding the mechanisms.

Conclusions
Recent evidence provides an increasingly clear understanding 
of the role of sex hormones, genes, and environmental factors in 
promoting inflammation in females that leads to autoimmune dis-
ease. However, many gaps and questions remain. More research is 
needed to better understand how hormones affect physiology by 
organ and tissue and their effect on the immune response in mod-
els of autoimmune disease and in patients. Exciting new areas of 
investigation include sex differences in the epigenetic regulation 
of genes/RNA by miRs carried in EVs, which may serve as nov-
el biomarkers, therapeutic targets, and/or potential therapies for 
autoimmune diseases that disproportionately affect women.
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