This PDF file contains: Supplementary Figures S1 to S10 and Tables 1-3. Supplementary Figures:

Figure S1. TMED4 positively correlates with ER stress responses and FOXP3 expression in tumor-infiltrating Treg cells.

(A and B) The heatmap showing the Pearson correlation coefficients between the expression values of ER stress response-associated genes (A)/Treg signatures (B) and *TMED4* from The Cancer Genome Atlas (TCGA)-colon adenocarcinoma (COAD)/-liver hepatocellular carcinoma (LIHC)/-lung adenocarcinoma (LUAD)/-stomach adenocarcinoma (STAD)/-rectum adenocarcinoma (READ) data. *p < 0.05, **p < 0.01, and ***p < 0.001.

(C and D) Pair-wise analyses for human colorectal, gastric and renal cancer associated Treg cells (n = 18 total). Expression of genes linked with ER stress responses and *TMED4* (C). *FOXP3* versus genes associated with ER stress responses (D) 'Pearson's rank correlation test, Pearson coefficient (r) with p value (two-tailed), 95% confidence intervals for all correlation analyses. n values correspond to biologically independent samples.

Figure S2. *Tmed4* deficiency impairs Treg cells' signature profiles in a cell intrinsic manner.

(A and B) The TMED4 protein (A) and mRNA (B) knockout efficiency of purified Treg cells (CD4⁺CD25⁺) by western blot(A) and qRT-PCR(B) stimulated with α -CD3/28 and 1 μ M thapsigargin (TG) (n = 3 for qRT-PCR).

(C) H&E staining of lung tissue. Scale bar: 100 µm.

(D) FCM plots (D, left) and analysis (D, right) of neutrophil (CD11b⁺Ly6G⁺) abundance among splenocytes from $Tmed4^{f/f}$ and $Tmed4^{\Delta Treg}$ mice (n = 2).

(E) FCM plots (E, left) and analysis (E, right) of in vitro proliferation assay of Treg cells from $Tmed4^{f/f}$ and $Tmed4^{dTreg}$ mice (n = 3).

(F) FCM levels (F, left) and statistical analysis (F, right) of Ki67⁺ percentages of Treg cells from $Tmed4^{f/f}$ and $Tmed4^{dTreg}$ mice (n = 3).

(G and H) FCM levels (G) and statistical analysis (H) of apoptosis levels of splenic Treg cells from $Tmed4^{f/f}$ and $Tmed4^{\Delta Treg}$ mice (n = 3). Annexin V⁺ PI⁻ represents the

early stage and Annexin $V^+ PI^+$ represents the later stage.

Data are presented as mean \pm SEM of biologically independent samples and each represents at least 3 independent experiments, each involving 2-4 mice per group. NS, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, by two-tailed Student's t test.

Figure S3. *Tmed4* deficiency impairs Treg cells' signature profiles in a cell intrinsic manner.

(A and B) FCM levels (A) and statistical analysis (B) of CD69, OX40, ICOS and PD1 MFI of $Tmed4^{h/f}$ and $Tmed4^{aTreg}$ mice (n = 4).

(C) FCM analysis of CD25 (C, left), CTLA4 (C, middle) and GITR (C, right) MFI between YFP⁺ and YFP⁻ Treg cells in female WT and chimera mice (n = 3).

Data are presented as mean \pm SEM of biologically independent samples and each represents at least 3 independent experiments, each involving 4 mice per group. NS, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, by two-tailed Student's t test.

Figure S4. Loss of *Tmed4* in Treg cells leads to more exacerbated inflammatory phenotype in mice.

(A) Maximal severity score of diseased $Tmed4^{ff}$ and $Tmed4^{aTreg}$ mice (n = 4).

(B-D) Flow cytometry (FCM) plots of Foxp3(B) IFN- γ (C) and IL-17(D) from spleen, dLN (draining lymph node), and CNS (central nervous system) of diseased *Tmed4*^{f/f} and *Tmed4*^{ATreg} mice.

(E) The curve of body weight percentage. Injections of CD4⁺CD45RB^{hi}CD25^{lo} naïve T cells or Treg cells isolated from *Tmed4^{f/f}* and *Tmed4^{ΔTreg}* mice were made in *Rag1^{-/-}* mice alone. The body weight is presented relative to the initial weight in each case (n = 4). Data are presented as mean ± SEM of biologically independent samples and each represents at least 2 independent experiments, each involving 4 mice per group. NS, not significant, *p < 0.05, **p < 0.01 or ##p < 0.01, ***p < 0.001 or ###p < 0.001, and ****p < 0.0001 or ####p < 0.0001, by one-way analysis of ANOVA with Tukey's multiple-comparison test (E) and two-tailed Student's t test.

Figure S5. Loss of *Tmed4* in Treg cells leads to boosted anti-tumor immunity in mice. (A-D) FCM plots and analysis of effector CD4⁺ (A and B) and CD8⁺ (C and D) T cells isolated from spleen, pLN (peripheral lymph node), and dLN (draining lymph node) in tumor bearing *Tmed4^{f/f}* and *Tmed4^{ΔTreg}* mice (n = 4).

(E) FCM plots of tumor-infiltrating Treg cells (CD4⁺CD25⁺) from dLN and tumor of MC38 tumor bearing mice (n = 4).

(F and G) FCM plots of IFN- γ (F) and TNF α (G) production from CD4⁺ and CD8⁺ T cells in dLN and tumor of *Tmed4*^{f/f} and *Tmed4*^{ΔTreg} tumor bearing mice (n = 4).

(H) FCM plots of tumor infiltrating Treg cells that producing IFN- γ and IL-17 from tumor bearing *Tmed4*^{f/f} and *Tmed4*^{ΔTreg} mice.

Data are presented as mean \pm SEM of biologically independent samples and represents at least 3 independent experiments, each involving 4 mice per group. NS, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, by two-tailed Student's t test.

Figure S6. *Tmed4*-deficiency leads to impaired ER stress response, mitochondria integrity in Treg cells.

(A) WB analysis of IRE1 α kinase activity-related proteins in WT and *Tmed4*-deficient Treg cells treated with α -CD3/28 alone or together with 1 μ M thapsigargin (TG) for 16-20 h.

(B) FCM analysis of mitochondria by staining with Mito-Tracker (MitoRed and MitoGreen) in WT and *Tmed4*-deficient splenic Treg cells treated with α -CD3/28 (TCR) alone or together with thapsigargin (TG) for 16-20 h (n = 2).

(C and D) The curve (C) and quantitative analysis (D) of Extracellular acidification rate (ECAR) of WT and *Tmed4*-deficient Treg cells stimulated with α -CD3/28 for 16-20 h (n = 3).

(E and F) The FCM levels (E) and statistical analysis (F) of phosphorylated-mTOR and S6 between WT and *Tmed4*-deficient Tregs isolated from spleen (n = 3).

(G) Heatmap of gene clusters of components of mitochondrial complex genes between WT and *Tmed4*-deficient Treg cells. Red and blue represent relatively higher and lower levels of expression of indicated genes, respectively. The colors indicate the value of log2 fold change (n = 3).

(H) The heatmap showing the Pearson correlation coefficients between the expression values of antioxidant response-associated genes and *TMED4* from The Cancer Genome Atlas (TCGA)-colon adenocarcinoma (COAD)/-liver hepatocellular carcinoma (LIHC)/-lung adenocarcinoma (LUAD)/-stomach adenocarcinoma (STAD)/-rectum adenocarcinoma (READ) data.

(I and J) Relative mRNA expression of *Gclm* (I) and *Ho-1* (J) in WT and *Tmed4*-deficient Treg cells under resting or with α -CD3/28 (TCR) alone or together with thapsigargin (TG) for 16-20 h (n = 3).

Data are presented as mean \pm SEM of biologically independent samples and represents at least 3 independent experiments, each involving 2-3 mice per group. NS, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, by two-tailed Student's t test.

Figure S7. ROS scavenger or NRF2 inducer restores Foxp3 expression and suppressive function of *Tmed4*-deficient Treg cells

(A-C) Cellular ROS levels (A) and their quantitative analysis of MFI (B) and Foxp3 MFI (C) in splenic WT and *Tmed4*-deficient Treg cells treated with TCR alone or together with thapsigargin (TG) for 12 h in the presence or absence of Sulf (Sulforaphane) (n = 3).

(D) WB analysis of NRF2 and TMED4 protein levels in WT (W) and cKO (K) Treg cells treated as above.

(E and F) The Foxp3 expression levels of splenic WT Treg cells treated with TCR (E) alone or together with thapsigargin (TG) (F) for 12 h in the presence or absence of NAC (N-acetylcysteine) at the concentration of 1 mM or 5 mM (n = 3).

(G and H) The FCM levels (G) and statistical analysis (H) of cellular total ROS 3 days after NAC pretreatment (n = 3).

Data are presented as mean \pm SEM of biologically independent samples and represents at least 3 independent experiments, each involving 3 mice per group. NS, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, by two-tailed Student's t test.

Figure S8. *Tmed4*-deficiency in Treg cells led to lower Foxp3 expression and ROS accumulation in an IRE1 α -XBP1 axis dependent manner

(A) The schematic diagram of tumor model on $CD45.1^+$ recipient mice with $CD45.2^+$ donor Treg adoptive transfer.

(B) The image of tumor growth in CD45.1⁺ mice injected (s.c.) with MC38 cells together with WT or *Tmed4*-deficient Treg cells and then on day 7 intravenously (i.v.) treated with WT or *Tmed4*-deficient Treg cells again (Treg cells were pretreated with α -CD3/28 for 12 h in the presence or absence of NAC).

(C) The FCM plots of T cell activation of host CD45.1⁺ T cells with WT or *Tmed4*-deficient Treg cells pretreated with α -CD3/28 for 12 h in the presence or absence of NAC.

(D and E) The FCM plots of IFN- γ -producing CD45.1⁺CD4⁺ (D) and CD45.1⁺CD8⁺ (E) T cells with WT or *Tmed4*-deficient Treg cells pretreated with α -CD3/28 for 12 h in the presence or absence of NAC.

(F) The FCM plots of IFN- γ and IL-17-producing CD45.2⁺ Treg cells pretreated with α -CD3/28 for 12 h in the presence or absence of NAC.

(G and H) The FCM levels (G) and statistical analysis (H) of cellular total ROS 7 days after NAC pretreatment (n = 3).

Data are presented as mean \pm SEM of biologically independent samples and represents at least 2 independent experiments, each involving 3 mice per group. NS, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001, by one-way analysis of

ANOVA with Tukey's multiple-comparison test (H).

Figure S9. *Tmed4*-deficiency in Treg cells led to lower Foxp3 expression and ROS accumulation in an IRE1 α -XBP1 axis dependent manner

(A and B) The FCM plots of T cell activation (A) and IFN- γ -producing (B) T cells isolated from spleens in $Ern1^{ff}$ and $Ern1^{\Delta Treg}$ mice.

(C) The FCM plots of IFN- γ and IL-17-producing Treg cells isolated from spleens in $Ern l^{f/f}$ and $Ern l^{\Delta Treg}$ mice.

(D) Levels of cellular total ROS (D, left), mitochondrial ROS (D, middle) and Foxp3 (D, right) of $Ern I^{f/f}$ and $Ern I^{\Delta Treg}$ splenic Treg cells treated with α -CD3/28 (TCR) alone or together with thapsigargin (TG) for 16-20 h (n = 3).

(E and F) FCM levels (E) and statistical analysis (F) of in vitro suppressive assay of Treg cells purified from spleen in $Ern1^{f/f}$ and $Ern1^{\Delta Treg}$ mice, and assessed by proliferation of activated CD4⁺ T cells in the presence of various ratios (Tresp : Treg = 16:8, 16:4, 16:2 and 16:1) of Treg cells (n = 3, detected on day 3).

(G) Expression levels of Foxp3 (left panel) and cellular ROS (right panel) in WT splenic Treg cells treated with α -CD3/28 (TCR), thapsigargin (TG) alone or together with 4µ8C for 16-20 h (n = 3).

(H) WB analysis of TRAF2 protein level in WT Treg cells treated with α -CD3/28, thapsigargin (TG) alone or together with KIRA6 for 16-20 h.

(I and J) The FCM plots (I) and analysis (J) of XBP1s in WT Treg cells treated with α -CD3/28, thapsigargin (TG) alone or together with 4µ8C for 16-20 h (n = 3).

Data are presented as mean \pm SEM of biologically independent samples and represents at least 3 independent experiments, each involving 3 mice per group. NS, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, by one-way analysis of ANOVA with Tukey's multiple-comparison test (J) and two-tailed Student's t test.

Figure S10. *Tmed4*-deficiency in Treg cells led to lower Foxp3 expression and ROS accumulation in an IRE1 α -XBP1 axis dependent manner (Continued)

(A) WB analysis of IRE1 α protein levels of iTreg with Vector (Ctrl) or IRE1 α -forcible expression.

(B) The FCM plots of XBP1s in WT and *Tmed4*-deficient splenic Treg cells with overexpressing of IRE1 α or not (Ctrl). Cells were treated with thapsigargin (TG) for 16-20 h.

(C) WB analysis of PERK pathway proteins in WT splenic Treg cells treated with thapsigargin (TG) alone or together with PERK inhibitor GSK2656157 (GSK) for 16-20 h.

(D-F) The FCM Levels (D) of cellular ROS (D, upper) and Foxp3 (D, below) and their statistical analysis (E and F) in WT splenic Treg cells treated with thapsigargin (TG) or together with PERK inhibitor GSK2656157 (GSK) for 16-20 h (n = 3).

(G) WB analysis of PERK protein levels of Vector (Ctrl) and siPERK-1/siPERK-2 transfected primary iTreg cells.

(H and I) FCM levels (H) and statistical analysis (I) of Foxp3 and ROS levels of Vector (Ctrl) and siPERK-1/siPERK-2 transfected primary iTreg cells (n = 3).

Data are presented as mean \pm SEM of biologically independent samples and represents at least 3 independent experiments, each involving 3 mice per group. NS, not significant,

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, by one-way analysis of ANOVA with Tukey's multiple-comparison test (E-F and I).

Supplementary tables

Table 1: Q-PCR primer sequences				
Actin-F	GGCTGTATTCCCCTCCATCG			
Actin-R	CCAGTTGGTAACAATGCCATGT			
<i>Tmed4</i> -F	GACGGCAAGGTTGTACTGTC			
<i>Tmed4</i> -R	GAGAGCCATTCTGGTGGAGT			
<i>Bip-</i> F	TCATCGGACGCACTTGGAA			
<i>Bip-</i> R	CAACCACCTTGAATGGCAAGA			
Chop-F	GTCCCTAGCTTGGCTGACAGA			
Chop-R	TGGAGAGCGAGGGCTTTG			
<i>Erdj4-</i> F	TAAAAGCCCTGATGCTGAAGC			
<i>Erdj4-</i> R	TCCGACTATTGGCATCCGA			
Sec61a1-F	CTATTTCCAGGGCTTCCGAGT			
Sec61a1-R	AGGTGTTGTACTGGCCTCGGT			
<i>Atf4-</i> F	GTGGTTCCCGTGGGTCTCCT			
<i>Atf4</i> -R	CTGCTCAGCCCGCTTCTTCT			
<i>mt-Cytb-</i> F	TTCATGTCGGACGAGGCTTA			
<i>mt-Cytb-</i> R	GTTTATTGGGGATTGAGCGTAG			
<i>mt-Nd1-</i> F	CTAGCAGAAACAAACCGGGC			
<i>mt-Nd1-</i> R	GTATGGTGGTACTCCCGCTG			
<i>mt-Nd4-</i> F	ACAACACACCTTAGACGCT			
<i>mt-Nd4-</i> R	TGTGGATCCGTTCGTAGTTGG			
Gclm-F	TGGGCACAGGTAAAACCCAA			
Gclm-R	CACCCTGATGCCTAAGCCAA			
<i>Hmox-1-</i> F	GAGCAGAACCAGCCTGAACT			
<i>Hmox-1-</i> R	AAATCCTGGGGCATGCTGTC			
ACTIN-F	CTCTTCCAGCCTTCCTTCCT			
ACTIN-R	CAGGGCAGTGATCTCCTTCT			
<i>TMED4-</i> F	GGGCTCTACTTCCACATCGG			
<i>TMED4-</i> R	TCTGGGTACGATAGTTGCCG			
<i>DDIT3-</i> F	CTGCTTCTCTGGCTTGGCTG			
<i>DDIT3-</i> R	GCTCTGGGAGGTGCTTGTGA			
HSPA5-F	GACGGGCAAAGATGTCAGGA			
HSPA5-R	GCCCGTTTGGCCTTTTCTAC			
<i>FOXP3-</i> F	GTGGCCCGGATGTGAGAAG			
<i>FOXP3-</i> R	GGAGCCCTTGTCGGATGATG			

Table 1: Q-PCR primer sequences

Table 2: Other primer sequences

TMED4-noTag-	TCTAGAGCCACCATGGCAGGTGTCGGGGGCTGG
F	
TMED4-noTag-	GGATCCTCACACCAGCTTCTTGGCCTCAA
R	
IRE1α-HA-F	GAATTCGCCACCATGCCGGCCCGGCGGCTGCT
IRE1α-HA-R	GCGGCCGCTCAAGCGTAGTCTGGGACGTCGTATGGGT

	AGAGGGCGTCTGGAGTCACTG
siPERK-1-F	GCCACUUUGAACUUCGGUAUA
siPERK-1-R	UAUACCGAAGUUCAAAGUGGC
siPERK-2-F	CCUCUACUGUUCACUCAGAAA
siPERK-2-R	UUUCUGAGUGAACAGUAGAGG

Table 3: Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
TMED4	Abcam	GR256482-9
TMED4	Proteintech	14141-1-AP
FOXP3	Santa Cruz	sc-166212
ACTIN	Santa Cruz	sc-69879
IRE1a	CST	3294T
IRE1α	Zen Bioscience	251357
PERK	CST	5683T
PERK	Abclonal	A11577
ATF6	proteintech	24169-1-AP
ATF6	Abclonal	A9979
HRD1	proteintech	67488-1
P-IRE1a	Affinity	AF7150
p-eIF2a(Ser51)	CST	3398T
BIP	CST	12721T
BIP	Santa Cruz	sc-13539
СНОР	Santa Cruz	sc-16682
Ub(K48)	CST	8081
TRAF2	CST	9166T
XBP1(u/s)	Abcam	ab37152
XBP1(u/s)	GeneTex	GTX102229
GAPDH	CST	13140
НА	GeneTex	GTX54716
FLAG	Abclonal	AC008
TUBULIN	BD Biosciences	553142
NRF2	CST	12721T
Anti-mouse IgG HRP-linked	CST	7076s
Antibody		
Anti-rabbit IgG HRP-linked	CST	7074s
Antibody		
Anti-rat IgG HRP-linked	CST	7077s
Antibody		
K48 TUBE HF (FLAG)	LifeSensors	LSS-UM-0607-0050
Flow antibody		
Fc block CD16/CD32	BD Biosciences	553142
CD4-APC	Biolegend	147311
CD4-FITC	BD Biosciences	557307
CD8-APCCY7	BD Biosciences	557654
CD44-PE	BD Biosciences	553134
CD62L-APC	BD Biosciences	553152

Foxp3-APC	BD Biosciences	560401
CD69-FITC	Biolegend	104506
OX40-APC	Biolegend	119413
ICOS-PE	Biolegend	107706
IFN-γ-APC	BD Biosciences	554413
IL-17-PE	BD Biosciences	559502
CD25-PECY7	BD Biosciences	552880
CD45.2-BV605	Biolegend	109841
CD45.2-APC-cy7	Invitrogen	47-0454-82
CD25-PE	Invitrogen	12-0251-82
CD8a-BV650	Biolegend	100742
CD4-PB	BD Biosciences	558107
GITR-PECY7	Invitrogen	25-5874-80
CTLA-4-APC	eBioscience	17-1522-80
PD-1-FITC	Biolegend	135213
PD-1(CD279)-APC-cy7	Biolegend	135223
Ki67-PE	Invitrogen	12-5698-82
CD45.1-percp-cy5.5	Invitrogen	45-0453-82
Foxp3-e450	Invitrogen	48-5773-82
CD45.2-APC-eFluor TM 780	Invitrogen	47-0454-82
CD45.2-BV605	Biolegend	109841
CD45RB-PE	Biolegend	151603
IL-17A-percp-cy5.5	Biolegend	506919
IL-17-APC-CY7	BD Biosciences	560821
TNF-α-PE	BD Biosciences	554419
XBP1s-AF647	BD Biosciences	562821
Ly6G- percp-cy5.5	Biolegend	127615
CD11b-FITC	BD Biosciences	557396
Phospho-mTOR-PE-Cy7	Invitrogen	25-9718-41
Phospho-S6	Invitrogen	MA5-16397
hCD45-FITC	Biolegend	304006
hCD4-APC	Biolegend	317416
hCD25-PE	Biolegend	302666
hCD8-PE-Cy7	BD Biosciences	557746
Fixable Viability Stain700	BD Biosciences	564997
Annexin V-FITC/PI Apoptosis	Yeasen	40302ES60
Detection Kit		
Chemicals and reagents		
Thapsigargin	Sigma	67526–95-8
Tunicamycin	Selleckchem	S7894
Cycloheximide	Selleckchem	S7418
H2DCFDA	Selleckchem	S9687
Mito-SOX TM Red	Invitrogen	1830251
mitochondrial superoxide		
indicator		
4µ8C	Selleckchem	S7272
KIRA6	Selleckchem	S8658
GSK2656157	Selleckchem	S7033

NAC	Selleckchem	S1623
Mito Tracker TM Green FM	Invitrogen	M7514
Mito Tracker TM Deep Red	Invitrogen	M22426
FM		
Sulforaphane	Selleckchem	S5771
Purified Hamster Anti-Mouse	BD Biosciences	553058
CD3e		
Purified NA/LE Hamster	BD Biosciences	553294
Anti-Mouse CD28		
Anti-Flag (DYKDDDDK)	Selleckchem	B23101
affinity gel		
Anti-HA Affinity Beads	Smart-Lifesciences	SA068001
Trizol	Ambion	15596026
Cell proliferation dye eFlour	eBioscience	65-0842
E450		
DNase I	STEMCELL	9003-98-9
SYBR Green	Yeasen	11201ES03
ECL WB substrate	Tanon	180-5001
Phosphatase inhibitors	Keygen Biotech	KGP602
DMSO	Beyotime	ST038
DCA	Selleck	S8615
Agilent Seahorse XF	Agilent	103020-100
glycolysis stress test kit	_	
Agilent Seahorse XF Cell	Agilent	103015-100
Mito Stress test kit	_	
RPMI without amino acid	Coolaber science	CM0011
Triton X	Beyotime	ST795
BSA	Yeasen	36101ES60
Percoll	GE-healthcare	17-5446-02
PEI	Polysciences	24765
Critical commercial assays		
Hifair II 1st Strand cDNA	Yeasen	11121
Sythesis Kit (gDNA digester		
plus)		
PVDF membrane	Immobilon-P	IPVH00010
collagenase IV	Sigma	403a
stimulation cocktail	Invitrogen	00-4975-93
True Nuclear staining kit	Biolegend	73162/73158/73160