Estrogen Receptor Alpha Ablation Reverses Skeletal Muscle Fibrosis and Inguinal

<u>Hernias</u>

Authors:

Tanvi Potluri¹, Tianming You¹, Ping Yin¹, John Coon V¹, Jonah J. Stulberg², Yang Dai³, David J. Escobar⁴, Richard L. Lieber⁵⁻⁷, Hong Zhao^{1†*} and Serdar E. Bulun^{1†*}

Affiliations:

¹Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, USA
²Department of Surgery, McGovern Medical School at the University of Texas Health Sciences Center, Houston, USA
³Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, USA
⁴Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, USA
⁵Departments of Physical Medicine and Rehabilitation and Biomedical Engineering, Northwestern University, Chicago, USA
⁶Research Service, Hines VA Medical Center, Maywood, IL USA
⁷Shirley Ryan AbilityLab, Chicago, USA
[†]These authors contributed equally to this work

The authors have declared that no conflict of interest exists

*Corresponding authors:

Serdar E. Bulun, M.D.

Department of Obstetrics & Gynecology,

Feinberg School of Medicine,

Northwestern University, Chicago, 60657, USA

Phone: +1 312.472.3980

Email: s-bulun@northwestern.edu

Hong Zhao, MD, PhD

Department of Obstetrics & Gynecology,

Feinberg School of Medicine,

Northwestern University, Chicago, 60657 USA

Phone: +1 312.503.0780

Email: h-zhao@northwestern.edu

1 SUPPLEMENTAL FIGURES

3 (A) Violin plots of *Esr1* expression from a previously published single-cell RNAseq dataset

4 in *Pdgfra*+ and *Pdgfra*- fibroblast cells in WT and *Arom^{hum}* mice. (B) Feature plots of *Esr1*

- 5 expression from a previously published single-cell RNAseq dataset in *Pdgfra*+ and
- 6 *Pdgfra-* fibroblast cells in WT and *Arom*^{hum} mice (n = 3) (1).

8 <u>hernias</u>

(A) Schematic of short 7-day fulvestrant treatment study design (left) and measurement
of scrotal hernias (right); fulvestrant was administered after severe and large hernias
formed for 7 days. (n = 3/group, mean ± S.E.M, ANOVA). (B) Schematic of raloxifene
treatment study design (left) and measurement of scrotal hernias (right); raloxifene was
administered after large hernias formed. Arrow indicates the week of pellet implantation
(n = 7-10/group, mean ± S.E.M, repeated measure ANOVA). Measurement of scrotal

hernias prior to and post (**C**) MPP, (**D**) PHTPP, and (**E**) G-15 administration (n = 4-5/group, mean \pm S.E.M, ANOVA). In (A and B), the dotted lines at 140 mm² represents normal scrotum size prior to hernia development, and the shaded regions in (A) – (D) represents large scrotal hernia size (>200 mm²). ns = not significant.

19

90 Days Fulvestrant Administration Post Large Hernia Development Aromhum WT WT Aromhum Placebo Fulvestrant Placebo Fulvestrant в 7 Days Fulvestrant Administration Post Large Hernia Development 7 Days Fulvestrant Administration С D Post Large Hernia Development 7 Days Fulvestrant Administration Post Large Hernia Development Aromhum p = 0.0081WT Aromhum p < 0.0001 80 Fulvestrant Placebo Fulvestrant 60 % Fibrosis 40 20 Е p = 0.001325 20 20 15 120 10-5n wT WT Aromh Aromhu Placebo Fulv Fulv Placebo

Supplementary Fig. S3: Histopathology of LAM post fulvestrant administration 20

Representative images of LAM of mice after a (A) 90-day fulvestrant treatment from 21 Figure 2B and (B) 7-day fulvestrant treatment from Figure S2A. (C) Quantification of 22 percent fibrosis post 7-day fulvestrant treatment. (D) Immunohistochemistry of MYOZ1 23 and its (E) quantification in mice treated with fulvestrant for 7 days (n = 3 mice/group 24 mean ± S.E.M, ANOVA with t-test, Scale bars, 100 µm) 25

(A) Pgr, a downstream gene indicative of E2 signaling, and its expression in HAFs treated with vehicle (ethanol, DMSO), E2, E2 plus fulvestrant or fulvestrant alone (n = 3, mean \pm S.E.M, ANOVA). (B) *In vivo* Pgr expression in WT and *Arom^{hum}* LAM in a previously published sc-RNAseq dataset (left). Violin plots of Pgr expression in fibroblasts of WT and *Arom^{hum}* LAM, stratified by co-expression of *Pdgfra* (right) (n = 3). (C) Flow cytometric quantification of key E2-responsive genes (PGR, PIEZO2, CCN3, PBX1) in HAFs treated with E2 or E2 with fulvestrant (n = 3-5 mice/group)

35 Supplementary Fig. S5: Genomic overview of E2/ESR1 signaling in hernia-

36 associated fibroblasts by ESR1 ChIP-seq analysis.

(A) ESR1 ChIP-seq heatmaps showing signal intensity from all binding events with input
 signal subtracted and k-means clustering. (B) Heatmap of ESR1 ChIP-seq signal intensity
 from binding events at promoter (left) and distal (right) regions after E2 or E2 + fulvestrant

treatment (n = 3/group). Pathway analysis of top differential peaks enriched in (C) E2treated and (D) E2 + Fulvestrant-treated HAFs. Genome browser snapshots of representative genes with stronger peaks in (E) E2-treated and in (F) E2 + fulvestranttreated HAFs in ESR1 ChIP-seq analysis. Arrows indicate the direction of the gene transcription in (E) and (F).

46 <u>Supplementary Fig. S6: Epigenomic overview of E2/ESR1 signaling in hernia-</u> 47 <u>associated fibroblasts.</u>

- (A) Heatmaps of ATAC-seq of HAFs after E2 or E2+fulvestrant treatment, separated by
- distal and promoter regions. Pathway analysis of top differential peaks enriched in (B)
- 50 E2-treated and (C) E2 + fulvestrant-treated HAFs (n = 3/group).

51

52 Supplementary Fig. S7: Effect of E2/ESR1 on hernia-associated fibroblast

53 transcriptome.

(A) Heatmap of RNA-seq showing differential gene expression comparing E2 and E2 +
fulvestrant-treated LAM HAFs (n = 3/group). Enriched pathways were upregulated in (B)
E2-treated HAFs or (C) in E2 + fulvestrant-treated HAFs, accompanied by top-ranked
genes associated with each pathway. Dot plots of RNA-seq counts of the representative
genes that were upregulated in (D) E2-treated HAFs and (E) E2 + fulvestrant-treated
HAFs compared with each other (n=3/group).

62 <u>seq.</u>

60

61

(A) Venn diagram showing overlap of genes upregulated with E2 + fulvestrant treatment
 in the three multi-omics assays, i.e., RNA-seq, ChIP-seq, and ATAC-seq (fold change >
 1.2, *p*<0.05). (B) Functional pathway enrichment of upregulated genes in both ChIP-seq
 and RNA-seq in E2 + fulvestrant-treated HAFs. (C) Motifs enriched from both ChIP-seq

and ATAC-seq in E2 + fulvestrant-treated HAFs at the promoter and distal regions.
Network of biological pathways upregulated in (D) E2-treated and (E) E2 + fulvestranttreated HAFs.

71 Supplementary Fig. S9: *Ccn3* plays a key role in mediating E2-driven proliferation

72 of HAFs

73 (A) Ccn3 RNA expression at various siRNA concentrations (left) and following vehicle or E2 treatment (right, 25 nM si-*Ccn3*) (n = 3, mean ± S.E.M, one-way ANOVA with t-tests 74 for multiple comparisons). (B) Distribution of HAFs across cell cycle stages (G0/G1, S, 75 76 and G2 phases) following Ccn3 knockdown and E2 treatment (n = 3). (C) DNA content in HAFs treated with vehicle or E2, with and without *Ccn3* knockdown (n = 3, mean ± SEM, 77 one-way ANOVA with t-tests for multiple comparisons). (D) Expression of beta-catenin 78 (Ctnnb1), a key downstream marker of Ccn3 response, following Ccn3 knockdown (n = 79 3, mean ± SEM, one-way ANOVA with t-tests for multiple comparisons). 80

81

83 Supplementary Fig. S10: E2/ESR1 modulated genes in men with inguinal hernias

(A) Representative images of Masson's Trichrome stain in tissues from healthy and
herniated LAM. Arrows point to atrophied myofibers. RNAscope images of the genes
(B) ADAMTS6 and (C) NRP2 identified from multiomic studies that were observed in
some patient samples (n = 8 tissues from 4 patients, mean ± S.E.M, t-test, scale bar:

88 200 μm). (D) Immunohistochemical staining of PGR. Black arrows point to positive

staining (n = 44 samples from 22 patients, mean \pm S.E.M, t-test, scale bar: 200 μ m).

90 METHODS

91 Immunohistochemistry and Immunocytochemistry

H&E and Masson's Trichrome Staining: LAM from Arom^{hum} mice were dissected and 92 fixed in 4% phosphate-buffered paraformaldehyde for 24 hours at 4°C. Tissues were 93 subsequently embedded in paraffin and sectioned at 4-µm thickness. The sections were 94 stained with hematoxylin and eosin (H&E) and Masson's Trichrome (Weigert's 95 Hematoxylin, Biebrich scarlet-acid fuschin solution, and Aniline blue) using a staining kit 96 (American Master Tech, # KTTRBPT). Images were obtained using a Zeiss Axio Scope 97 and EVOS M5000 (Thermo Fisher Scientific) microscope at ×20 magnification (2). The 98 area of fibrosis was quantified using ImageJ v1.53f51 measure function. 99

Immunocytochemistry: HAFs and NIH/3T3 cells were first washed with PBS and fixed in 100 4% paraformaldehyde for 10 minutes at room temperature and then permeabilized with 101 0.5% Triton-X in PBS for 5 minutes. These HAFs were blocked with 5% BSA for 1 hour 102 at room temperature. Primary antibodies (2 µg/mL of PDGFRA [R&D Systems 103 #AF1062], 5 µg/mL of ESR1 [MilliporeSigma #06-935], 1:400 of PBX1 [Invitrogen] 104 #PA517223], 1:200 of NCAM1 [Proteintech #142551AP], 1:200 of PIEZO2 [Invitrogen # 105 PA572976], 1:200 of PGR [ABclonal # A0321], or 1:200 of ADAMTS6 [Invitrogen 106 #PA560365]) in wash buffer (1% BSA + 0.1% Tween20) were added to HAFs and 107 incubated overnight at 4°C. Secondary antibodies (Invitrogen #A31573, #A32814, or 108 #A31572) in PBS were added to the samples and incubated for 1 hour in the dark. 109 110 HAFs were washed 3 times with PBS and incubated in 0.5 µg/mL of DAPI for 5 minutes, then washed 3 times with wash buffer. Coverslips were mounted onto slides with
 antifade mountant (Invitrogen #S36937). Images were obtained using an EVOS M5000
 microscope (Thermo Fisher Scientific).

ESR1, PDGFRA, PGR, Ki67 Immunohistochemistry: LAM were fixed in 4% PBS-114 paraformaldehyde solution overnight, embedded in paraffin, and sectioned at 4 µm. 115 After deparaffinization and citrate antigen retrieval (Fisher Scientific, #50843064), 116 sections were incubated in primary antibodies against ESR1 (1:400 Millipore Sigma 117 #06-935 for mouse, 1:100 Biocare SP1 #OAA-301-T60 for human, 1:400 Dako 118 #M3569), PDGFRA (2.5 µg/mL FITC-conjugated Invitrogen 11-1401-82 for mouse, 119 1:250 Abcam #ab134123 for human), Ki67 (10 µg/mL R&D Systems #AF7649 for mice, 120 1:50 Dako #M7240 for human), or PGR (1:400, Dako #M3569 for human) overnight at 121 4°C. After washing, sections were incubated with secondary antibodies (Vector 122 Laboratories for HRP-conjugated). DAB (Dako #GV825) was used for chromogenic 123

124 staining

Quantification: Scoring was performed with blinding to sample type and treatment by an 125 independent pathologist. For human PDFGRA and ESR1, staining was categorized in to 126 weak, moderate, and strong expression and weighted accordingly to derive the H-score, 127 H score was calculated as [(% weak staining*1) + (% moderate staining*2) + (% strong 128 staining*3)] with scores ranging from 0-300. Ki-67 was guantified as percentage of 129 positive nuclear staining. For mouse studies, percent fibrosis was calculated using 130 Masson's Trichrome staining using ImageJ color deconvolution and measure functions 131 (3). 132

133 Collagen Content Measurement

LAM from *Arom^{hum}* and WT mice were harvested and homogenized using a Dounce
 homogenizer (Active Motif #40401). Collagen content was measured using a
 hydroxyproline assay kit (Abcam #ab222941) according to the manufacturer's
 instructions.

138 **RNAscope™ Assay**

Chromogenic *in situ* mRNA detection for transcripts was manually performed on human 139 LAM muscle samples using the RNAscope 2.5 HD Detection kit (ACD Bio, #322300). 5-140 µm thick formalin-fixed paraffin-embedded tissue sections were pretreated with heat 141 and protease before hybridization. Slides were processed according to the 142 manufacturer's instructions with some modifications: hydrogen peroxide treatment for 143 30 minutes, AMP 5 hybridization for 45 minutes, and AMP 6 hybridization for 22.5 144 minutes. Tissue sections were hybridized with RNAscope target probes. Probes to the 145 DapB bacterial gene (probe DapB cat# 310043) and the endogenous human UBC 146 mRNA (probe #310041) were used as technical negative and positive controls, 147 148 respectively, for each run. Positive mRNA expression was demonstrated by brown, punctate staining present within the cytoplasm and/or nucleus. The probes were 149 purchased from ACD (Hs-NCAM1 [#421461, Accession No: NM 001242608.1], Hs-150 LTBP1 [#523281, Accession No: NM 000627.3], Hs-ADAMTS6 [#814831, Accession 151 No: NM 197941.4], Hs-NRP2 [#422371, Accession No: NM 201264.1], Hs-PBX1 152 [#490041, Accession No: NM 002585.3], and Hs-PIEZO2 [#449951, Accession No: 153 NM 022068.3]). Probe signal was guantified using ImageJ "Trainable Weka 154 Segmentation" plugin (4). 155

156 **Table S1. Significantly upregulated genes in HAFs after E2 treatment across the**

157 RNA-seq, ChIP-seq, and ATAC-seq datasets

Gene	Name
Mrc2	Mannose Receptor C Type 2
Tmem86a	Transmembrane Protein 86A
Npas3	Neuronal PAS domain-containing protein 3
Gcnt1	Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase
Rbp1	Retinol-binding protein 1
Adcy3	Adenylate cyclase type 3
Lipe	Hormone-sensitive lipase
Adamts3	a disintegrin-like and metallopeptidase with thrombospondin type 1 motif, 3
Svil	Supervillin
Adgra2	Adhesion G protein-coupled receptor A2
Obsl1	Obscurin-like protein 1
Adamts6	A disintegrin-like and metallopeptidase with thrombospondin type 1 motif, 6
Prkd3	Pyruvate Dehydrogenase Kinase 3
Ccn3	Cellular communication network factor 3
Mgat3	Beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase
Ogdhl	Oxoglutarate dehydrogenase (succinyl-transferring)
Cdon	Cell adhesion molecule-related/down-regulated by oncogenes
Fxyd1	Phospholemman
Prickle2	Prickle Planar Cell Polarity Protein 2
Kcnma1	Calcium-activated potassium channel subunit alpha-1
ld2	DNA-binding protein inhibitor ID-2
Ltbp1	Latent-transforming growth factor beta-binding protein 1
Pdcd4	Programmed cell death protein 4
Pcdh7	Protocadherin-7
Nrp2	Neuropilin-2
Kif26b	Kinesin-like protein KIF26B
Chst2	Carbohydrate sulfotransferase 2
Aff3	AF4/FMR2 family member 3
Kalrn	Kalirin
Pgr	Progesterone receptor
Zfp521	Zinc finger protein 521
lgfbp4	Insulin-like growth factor-binding protein 4
Tanc2	Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2
Fbln5	Fibulin-5
HIf	Hepatic leukemia factor
Fbln7	Fibulin-7
Mex3a	Mex3 RNA-binding family member A
Pbx1	Pre-B-cell leukemia transcription factor 1
Piezo2	Piezo-type mechanosensitive ion channel component 2
Pde8b	High affinity cAMP-specific and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8B
Maml3	Mastermind Like Transcriptional Coactivator 3
Cntln	Centlein
Bach2	BTB Domain And CNC Homolog 2
Ncam1	Neural cell adhesion molecule 1
Rnf150	RING finger protein 150
Zfp618	Zinc finger protein 618
Plcl1	Inactive phospholipase C-like protein 1
Cdc42ep5	Cdc42 effector protein 5
Apcdd1	Protein APCDD1
Ssbp2	Single-stranded DNA-binding protein 2
Pknox2	Homeobox protein PKNOX2
Ntn4	Netrin-4

Spats2l	Spermatogenesis Associated Serine Rich 2 Like
Gpr85	Probable G-protein coupled receptor 85
Tnik	Traf2 and NCK-interacting protein kinase
Cxxc5	CXXC-type zinc finger protein 5
Twsg1	Twisted gastrulation protein homolog 1
Wnt5a	Protein Wnt-5a

158 Table S2. Significantly upregulated genes in HAFs after E2 plus fulvestrant

159 treatment across the RNA-seq, ChIP-seq, and ATAC-seq datasets

Gene	Name
Gbe1	1,4-alpha-glucan-branching enzyme
Trim24	Transcription intermediary factor 1-alpha
Ppm1h	Protein phosphatase 1H
Avpr1a	Vasopressin V1a receptor
Selenop	Selenoprotein P
Stim1	Stromal interaction molecule 1
Col4a2	Collagen alpha-2(IV) chain
Gsn	Gelsolin
Trib1	Tribbles homolog 1, TRB-1
Plcxd2	PI-PLC X domain-containing protein 2
Plce1	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1
Cdkn1c	Cyclin-dependent kinase inhibitor 1C
Ampd3	AMP deaminase 3
Akap13	A-kinase anchor protein 13
Mb21d2	Nucleotidyltransferase MB21D2
Higd1a	HIG1 domain family member 1A, mitochondrial
Ccnl1	Cyclin-L1
Wee1	Wee1-like protein kinase
Dcbld2	Discoidin, CUB and LCCL domain-containing protein 2
Cdc7	Cell division cycle 7-related protein kinase
Dlgap1	Disks large-associated protein
Klf15	Krueppel-like factor 15
Sorbs1	Sorbin and SH3 domain-containing protein 1
Nav3	Neuron navigator 3
Arhgap24	Rho GTPase-activating protein 24
Pdk4	Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 4, mitochondrial
Fkbp5	Peptidyl-prolyl cis-trans isomerase FKBP5
Nfil3	Nuclear factor interleukin-3-regulated protein
Dusp14	Dual specificity protein phosphatase 14
Pkp2	Plakophilin-2
Aff1	AF4/FMR2 family member 1,
Slc7a1	High affinity cationic amino acid transporter 1
Dpep1	Dipeptidase 1
Gda	Guanine deaminase

160

161 **REFERENCES**

- 162 1. Potluri T, Taylor MJ, Stulberg JJ, Lieber RL, Zhao H, and Bulun SE. An estrogen-163 sensitive fibroblast population drives abdominal muscle fibrosis in an inguinal 164 hernia mouse model. *JCI insight*. 2022;7(9).
- ¹⁶⁵ 2. Zhao H, Zhou L, Li L, Coon VJ, Chatterton RT, Brooks DC, et al. Shift from ¹⁶⁶ androgen to estrogen action causes abdominal muscle fibrosis, atrophy, and

- inguinal hernia in a transgenic male mouse model. *Proc Natl Acad Sci U S A*.
 2018;115(44):E10427-E36.
- Chen Y, Yu Q, and Xu C-B. A convenient method for quantifying collagen fibers in atherosclerotic lesions by ImageJ software. *Int J Clin Exp Med.* 2017;10(10):14904-10.
- 4. Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, et al. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. *Bioinformatics*. 2017;33(15):2424-6.

175