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Supplementary Fiqure S1: Esr1 and Pdgfra expression in LAM fibroblasts

(A) Violin plots of Esr1 expression from a previously published single-cell RNAseq dataset
in Pdgfra+ and Pdgfra- fibroblast cells in WT and Arom"m mice. (B) Feature plots of Esr1
expression from a previously published single-cell RNAseq dataset in Pdgfra+ and

Pdgfra- fibroblast cells in WT and Arom"m mice (n = 3) (1).
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Supplementary Fig. S2: Inhibition of E2/ESR1 signaling in Arom”""™ mice with large

hernias

(A) Schematic of short 7-day fulvestrant treatment study design (left) and measurement
of scrotal hernias (right); fulvestrant was administered after severe and large hernias
formed for 7 days. (n = 3/group, mean = S.E.M, ANOVA). (B) Schematic of raloxifene
treatment study design (left) and measurement of scrotal hernias (right); raloxifene was
administered after large hernias formed. Arrow indicates the week of pellet implantation

(n = 7-10/group, mean + S.E.M, repeated measure ANOVA). Measurement of scrotal
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hernias prior to and post (C) MPP, (D) PHTPP, and (E) G-15 administration (n = 4-5/group,
mean + S.E.M, ANOVA). In (A and B), the dotted lines at 140 mm? represents normal
scrotum size prior to hernia development, and the shaded regions in (A) — (D) represents

large scrotal hernia size (>200 mm?). ns = not significant.
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Supplementary Fig. S3: Histopathology of LAM post fulvestrant administration

Representative images of LAM of mice after a (A) 90-day fulvestrant treatment from
Figure 2B and (B) 7-day fulvestrant treatment from Figure S2A. (C) Quantification of
percent fibrosis post 7-day fulvestrant treatment. (D) Immunohistochemistry of MYOZ1
and its (E) quantification in mice treated with fulvestrant for 7 days (n = 3 mice/group

mean = S.E.M, ANOVA with t-test, Scale bars, 100 um)
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Supplementary Fig. S4: Expression of key genes in HAFs

(A) Pgr, a downstream gene indicative of E2 signaling, and its expression in HAFs treated
with vehicle (ethanol, DMSO), E2, E2 plus fulvestrant or fulvestrant alone (n = 3, mean %
S.E.M, ANOVA). (B) In vivo Pgr expression in WT and Arom"m LAM in a previously
published sc-RNAseq dataset (left). Violin plots of Pgr expression in fibroblasts of WT and
Aromhum |AM, stratified by co-expression of Pdgfra (right) (n = 3). (C) Flow cytometric
quantification of key E2-responsive genes (PGR, PIEZO2, CCN3, PBX1) in HAFs treated

with E2 or E2 with fulvestrant (n = 3-5 mice/group)
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Supplementary Fig. S5: Genomic overview of E2/ESR1 signaling in hernia-

associated fibroblasts by ESR1 ChIP-seq analysis.

(A) ESR1 ChIP-seq heatmaps showing signal intensity from all binding events with input
signal subtracted and k-means clustering. (B) Heatmap of ESR1 ChIP-seq signal intensity

from binding events at promoter (left) and distal (right) regions after E2 or E2 + fulvestrant
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treatment (n = 3/group). Pathway analysis of top differential peaks enriched in (C) E2-
treated and (D) E2 + Fulvestrant-treated HAFs. Genome browser snapshots of
representative genes with stronger peaks in (E) E2-treated and in (F) E2 + fulvestrant-
treated HAFs in ESR1 ChlP-seq analysis. Arrows indicate the direction of the gene

transcription in (E) and (F).
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Supplementary Fig. S6: Epigenomic overview of E2/ESR1 signaling in hernia-

associated fibroblasts.

(A) Heatmaps of ATAC-seq of HAFs after E2 or E2+fulvestrant treatment, separated by
distal and promoter regions. Pathway analysis of top differential peaks enriched in (B)

E2-treated and (C) E2 + fulvestrant-treated HAFs (n = 3/group).
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transcriptome.

(A) Heatmap of RNA-seq showing differential gene expression comparing E2 and E2 +

fulvestrant-treated LAM HAFs (n = 3/group). Enriched pathways were upregulated in (B)

E2-treated HAFs or (C) in E2 + fulvestrant-treated HAFs, accompanied by top-ranked

genes associated with each pathway. Dot plots of RNA-seq counts of the representative

genes that were upregulated in (D) E2-treated HAFs and (E) E2 + fulvestrant-treated

HAFs compared with each other (n=3/group).
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Supplementary Fig. S8: E2/ESR1-related regulatory networks in E2 + fulvestrant

treated hernia-associated fibroblasts identified by RNA-seq, ChiP-seq, and ATAC-

seq.

(A) Venn diagram showing overlap of genes upregulated with E2 + fulvestrant treatment
in the three multi-omics assays, i.e., RNA-seq, ChiP-seq, and ATAC-seq (fold change >
1.2, p<0.05). (B) Functional pathway enrichment of upregulated genes in both ChIP-seq

and RNA-seq in E2 + fulvestrant-treated HAFs. (C) Motifs enriched from both ChlP-seq



67 and ATAC-seq in E2 + fulvestrant-treated HAFs at the promoter and distal regions.
68  Network of biological pathways upregulated in (D) E2-treated and (E) E2 + fulvestrant-

69 treated HAFs.
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Supplementary Fig. S9: Ccn3 plays a key role in mediating E2-driven proliferation

of HAFs

(A) Ccn3 RNA expression at various siRNA concentrations (left) and following vehicle or
E2 treatment (right, 25 nM si-Ccn3) (n = 3, mean = S.E.M, one-way ANOVA with t-tests
for multiple comparisons). (B) Distribution of HAFs across cell cycle stages (G0/G1, S,
and G2 phases) following Ccn3 knockdown and E2 treatment (n = 3). (C) DNA content in
HAFs treated with vehicle or E2, with and without Ccn3 knockdown (n = 3, mean + SEM,
one-way ANOVA with t-tests for multiple comparisons). (D) Expression of beta-catenin
(Ctnnb1), a key downstream marker of Ccn3 response, following Ccn3 knockdown (n =

3, mean + SEM, one-way ANOVA with t-tests for multiple comparisons).
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(A) Representative images of Masson’s Trichrome stain in tissues from healthy and

herniated LAM. Arrows point to atrophied myofibers. RNAscope images of the genes

(B) ADAMTS6 and (C) NRP2 identified from multiomic studies that were observed in

some patient samples (n = 8 tissues from 4 patients, mean £ S.E.M, t-test, scale bar:
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200 pm). (D) Immunohistochemical staining of PGR. Black arrows point to positive

staining (n = 44 samples from 22 patients, mean = S.E.M, t-test, scale bar: 200 um).

METHODS

Immunohistochemistry and Immunocytochemistry

H&E and Masson’s Trichrome Staining: LAM from Aromh'm mice were dissected and

fixed in 4% phosphate-buffered paraformaldehyde for 24 hours at 4°C. Tissues were
subsequently embedded in paraffin and sectioned at 4-um thickness. The sections were
stained with hematoxylin and eosin (H&E) and Masson’s Trichrome (Weigert’s
Hematoxylin, Biebrich scarlet-acid fuschin solution, and Aniline blue) using a staining kit
(American Master Tech, # KTTRBPT). Images were obtained using a Zeiss Axio Scope
and EVOS M5000 (Thermo Fisher Scientific) microscope at x20 magnification (2). The

area of fibrosis was quantified using Imaged v1.53f51 measure function.

Immunocytochemistry: HAFs and NIH/3T3 cells were first washed with PBS and fixed in

4% paraformaldehyde for 10 minutes at room temperature and then permeabilized with
0.5% Triton-X in PBS for 5 minutes. These HAFs were blocked with 5% BSA for 1 hour
at room temperature. Primary antibodies (2 ug/mL of PDGFRA [R&D Systems
#AF1062], 5 ug/mL of ESR1 [MilliporeSigma #06-935], 1:400 of PBX1 [Invitrogen
#PA517223], 1:200 of NCAM1 [Proteintech #142551AP], 1:200 of PIEZO2 [Invitrogen #
PA572976], 1:200 of PGR [ABclonal # A0321], or 1:200 of ADAMTSS6 [Invitrogen
#PA560365]) in wash buffer (1% BSA + 0.1% Tween20) were added to HAFs and
incubated overnight at 4°C. Secondary antibodies (Invitrogen #A31573, #A32814, or
#A31572) in PBS were added to the samples and incubated for 1 hour in the dark.

HAFs were washed 3 times with PBS and incubated in 0.5 ug/mL of DAPI for 5 minutes,
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then washed 3 times with wash buffer. Coverslips were mounted onto slides with
antifade mountant (Invitrogen #S36937). Images were obtained using an EVOS M5000

microscope (Thermo Fisher Scientific).

ESR1, PDGFRA, PGR, Ki67 Immunohistochemistry: LAM were fixed in 4% PBS-

paraformaldehyde solution overnight, embedded in paraffin, and sectioned at 4 uym.
After deparaffinization and citrate antigen retrieval (Fisher Scientific, #50843064),
sections were incubated in primary antibodies against ESR1 (1:400 Millipore Sigma
#06-935 for mouse, 1:100 Biocare SP1 #OAA-301-T60 for human, 1:400 Dako
#M3569), PDGFRA (2.5 ug/mL FITC-conjugated Invitrogen 11-1401-82 for mouse,
1:250 Abcam #ab134123 for human), Ki67 (10 ug/mL R&D Systems #AF7649 for mice,
1:50 Dako #M7240 for human), or PGR (1:400, Dako #M3569 for human) overnight at
4°C. After washing, sections were incubated with secondary antibodies (Vector
Laboratories for HRP-conjugated). DAB (Dako #GV825) was used for chromogenic

staining

Quantification: Scoring was performed with blinding to sample type and treatment by an

independent pathologist. For human PDFGRA and ESR1, staining was categorized in to
weak, moderate, and strong expression and weighted accordingly to derive the H-score,
H score was calculated as [(% weak staining*1) + (% moderate staining*2) + (% strong
staining*3)] with scores ranging from 0-300. Ki-67 was quantified as percentage of
positive nuclear staining. For mouse studies, percent fibrosis was calculated using

Masson’s Trichrome staining using ImagedJ color deconvolution and measure functions

(3).
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Collagen Content Measurement

LAM from Arom"m and WT mice were harvested and homogenized using a Dounce
homogenizer (Active Motif #40401). Collagen content was measured using a
hydroxyproline assay kit (Abcam #ab222941) according to the manufacturer’s

instructions.

RNAscope™ Assay

Chromogenic in situ mMRNA detection for transcripts was manually performed on human
LAM muscle samples using the RNAscope 2.5 HD Detection kit (ACD Bio, #322300). 5-
pum thick formalin-fixed paraffin-embedded tissue sections were pretreated with heat
and protease before hybridization. Slides were processed according to the
manufacturer’s instructions with some modifications: hydrogen peroxide treatment for
30 minutes, AMP 5 hybridization for 45 minutes, and AMP 6 hybridization for 22.5
minutes. Tissue sections were hybridized with RNAscope target probes. Probes to the
DapB bacterial gene (probe DapB cat# 310043) and the endogenous human UBC
MRNA (probe #310041) were used as technical negative and positive controls,
respectively, for each run. Positive mRNA expression was demonstrated by brown,
punctate staining present within the cytoplasm and/or nucleus. The probes were
purchased from ACD (Hs-NCAM1 [#421461, Accession No: NM_001242608.1], Hs-
LTBP1 [#523281, Accession No: NM_000627.3], Hs-ADAMTS6 [#814831, Accession
No: NM_197941.4], Hs-NRP2 [#422371, Accession No: NM_201264.1], Hs-PBX1
[#490041, Accession No: NM_002585.3], and Hs-PIEZO2 [#449951, Accession No:
NM_022068.3]). Probe signal was quantified using ImagedJ “Trainable Weka

Segmentation” plugin (4).
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Gene Name

Mrc2 Mannose Receptor C Type 2

Tmem86a Transmembrane Protein 86A

Npas3 Neuronal PAS domain-containing protein 3

Gent1 Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase
Rbp1 Retinol-binding protein 1

Adcy3 Adenylate cyclase type 3

Lipe Hormone-sensitive lipase

Adamts3 a disintegrin-like and metallopeptidase with thrombospondin type 1 motif, 3
Svil Supervillin

Adgra2 Adhesion G protein-coupled receptor A2

Obsl1 Obscurin-like protein 1

Adamts6 A disintegrin-like and metallopeptidase with thrombospondin type 1 motif, 6
Prkd3 Pyruvate Dehydrogenase Kinase 3

Ccn3 Cellular communication network factor 3

Mgat3 Beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase
Ogdhl Oxoglutarate dehydrogenase (succinyl-transferring)

Cdon Cell adhesion molecule-related/down-regulated by oncogenes

Fxyd1 Phospholemman

Prickle2 Prickle Planar Cell Polarity Protein 2

Kcnma1 Calcium-activated potassium channel subunit alpha-1

1d2 DNA-binding protein inhibitor ID-2

Ltbp1 Latent-transforming growth factor beta-binding protein 1

Pdcd4 Programmed cell death protein 4

Pcdh7 Protocadherin-7

Nrp2 Neuropilin-2

Kif26b Kinesin-like protein KIF26B

Chst2 Carbohydrate sulfotransferase 2

Aff3 AF4/FMR2 family member 3

Kalrn Kalirin

Pgr Progesterone receptor

Zfp521 Zinc finger protein 521

Igfbp4 Insulin-like growth factor-binding protein 4

Tanc2 Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2
Fbin5 Fibulin-5

HIf Hepatic leukemia factor

Fbin7 Fibulin-7

Mex3a Mex3 RNA-binding family member A

Pbx1 Pre-B-cell leukemia transcription factor 1

Piezo2 Piezo-type mechanosensitive ion channel component 2

Pde8b High affinity cAMP-specific and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8B
Maml3 Mastermind Like Transcriptional Coactivator 3

Cntln Centlein

Bach2 BTB Domain And CNC Homolog 2

Ncam1 Neural cell adhesion molecule 1

Rnf150 RING finger protein 150

Zfp618 Zinc finger protein 618

Plcl1 Inactive phospholipase C-like protein 1

Cdc42ep5 Cdc42 effector protein 5

Apcdd1 Protein APCDD1

Ssbp2 Single-stranded DNA-binding protein 2

Pknox2 Homeobox protein PKNOX2

Ntn4 Netrin-4
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Spats2| Spermatogenesis Associated Serine Rich 2 Like
Gpr85 Probable G-protein coupled receptor 85

Tnik Traf2 and NCK-interacting protein kinase

Cxxch CXXC-type zinc finger protein 5

Twsg1 Twisted gastrulation protein homolog 1

Whntb5a Protein Wnt-5a

Table S2. Significantly uprequlated genes in HAFs after E2 plus fulvestrant

treatment across the RNA-seq, ChlP-seq, and ATAC-seq datasets

Gene Name

Gbe1 1,4-alpha-glucan-branching enzyme
Trim24 Transcription intermediary factor 1-alpha
Ppm1h Protein phosphatase 1H

Avpria Vasopressin V1a receptor

Selenop Selenoprotein P

Stim1 Stromal interaction molecule 1

Col4a2 Collagen alpha-2(1V) chain

Gsn Gelsolin

Trib1 Tribbles homolog 1, TRB-1

Plcxd2 PI-PLC X domain-containing protein 2
Plce1 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1

Cdkn1ic Cyclin-dependent kinase inhibitor 1C
Ampd3 AMP deaminase 3

Akap13 A-kinase anchor protein 13

Mb21d2 Nucleotidyltransferase MB21D2

Higd1a HIG1 domain family member 1A, mitochondrial
Ccnl1 Cyclin-L1
Wee1 Wee1-like protein kinase
Dcbld2 Discoidin, CUB and LCCL domain-containing protein 2
Cdc7 Cell division cycle 7-related protein kinase
Digap1 Disks large-associated protein
KIf15 Krueppel-like factor 15
Sorbs1 Sorbin and SH3 domain-containing protein 1
Nav3 Neuron navigator 3
Arhgap24 | Rho GTPase-activating protein 24
Pdk4 Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 4, mitochondrial
Fkbp5 Peptidyl-prolyl cis-trans isomerase FKBP5
Nfil3 Nuclear factor interleukin-3-regulated protein
Dusp14 Dual specificity protein phosphatase 14
Pkp2 Plakophilin-2
Aff1 AF4/FMR2 family member 1,
Sic7a1 High affinity cationic amino acid transporter 1
Dpep1 Dipeptidase 1
Gda Guanine deaminase
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