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Introduction
Historically, immune system involvement was considered cen-
tral to the pathobiology of  autoimmune (1), inflammatory, and 
infectious (2) central nervous system (CNS) diseases. Current 
diagnostic strategies for various neurologic diseases involve labo-
ratory assessment of  blood and cerebrospinal fluid (CSF) compo-
nents (3, 4). Routine clinical testing of  the CSF does not involve 
deep assessment of  its cellular composition, partially because of  
its usually low concentration of  cells and limited availability of  
material. Several therapeutics alter the CSF cell composition, 
prompting additional need for comprehensive characterization 
of  CSF immune cells (5, 6). Further, both innate and adaptive 
arms of  the immune system have recently been recognized to play 
important roles in neurodegenerative diseases (7). An in-depth 
analysis of  the immune cell communities within the CSF affords 

an opportunity to define disease pathogenesis and treatment 
responsiveness of  different neurologic diseases.

Single-cell transcriptomics is a powerful and rapidly evolving 
set of  technologies that enables the comprehensive characteriza-
tion of  cell heterogeneity at high resolution (8). Single-cell RNA 
sequencing (scRNA-Seq) facilitates identification of  rare and/or 
low-abundance cell populations that can be masked within bulk 
cell populations but that may play essential roles in biological 
processes or disease states. Moreover, scRNA-Seq offers an ini-
tial opportunity to address cell ontogeny, compare compartmen-
tal microenvironments, and unveil functional traits of  various 
immune cells during health and disease (9).

Several independent studies have explored the composition 
of  human CSF by scRNA-Seq (10–17). As a result, new findings 
have emerged, including the detection of  microglia-like cells found 
within the CSF but not in blood (17, 18) and identification of  dis-
tinct lineages such as border-associated macrophages (BAMs) and 
CXCR6+ resident memory T cells in the CSF (6, 15). However, 
these studies have used small numbers of  samples from individuals 
with a single neurologic disease, sometimes even without controls, 
thus returning a highly fragmented view of  the CSF micromilieu. 
Furthermore, single-cell characterization of  CSF to date has tend-
ed to focus only on specific cell populations (14, 17). Computa-
tional advancements including canonical correlation analysis and 
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CD4+ T cell cluster being statistically significantly higher compared 
with PBMCs (Figure 2D). Despite their overall low number, pDCs 
were also enriched in the CSF compared with PBMCs in a statisti-
cally significant manner (Figure 2D). On the contrary, myeloid, B, 
γδ T, and NK cells were more abundant in PBMCs, consistent with 
previous reports (12, 18, 21). We next aimed to understand how 
diseases influenced CSF cells. Because of  the vast disease heteroge-
neity of  the sample cohort, we decided to categorize samples into 5 
main groups: HC, MS, neurodegenerative diseases (ND), infectious 
CNS diseases (INF), and other inflammatory diseases of  the CNS 
(OID). Herein, we refer to these disease group names throughout, 
rather than individual diseases, unless otherwise specified (see 
Methods). When examining HC alone, the difference in pDC, NK, 
and B cell abundance between PBMCs and CSF mirrored that 
seen in the total collection of  subjects, although no difference in 
the CD4+ T cell proportion between PBMCs and CSF was found 
(Supplemental Figure 1A). The frequency of  the PBMC and CSF 
immune cell populations was unchanged within each disease group 
with a few notable exceptions. The proportion of  CD4+ T cells was 
dramatically elevated in the CSF of  MS subjects (Supplemental 
Figure 1A). The known numerical predominance of  CD4+ T cells 
in the MS CSF may thus be driven by disease rather than physiol-
ogy. In sum, these findings indicate a variability in compartmental 
distribution of  immune cells among different neurologic diseases.

We then analyzed the abundance of  different cell populations 
specifically within the CSF across different disease groups com-
pared with HC (Figure 2E). The proportion of  B cells was found 
to be markedly higher in MS compared with HC, while the reverse 
was true for myeloid cells. Notably, there was a strong trend for a 
higher frequency of  CD4+ T cells in MS compared with HC that 
did not reach statistical significance (adjusted P value = 0.056). 
Also, a statistically significant elevation in the proportion of  NK 
cells within the CSF of  ND versus HC was observed (Figure 2E). 
No other differences in frequencies of  other cell populations were 
apparent, likely because of  the small number of  samples in the 
INF and OID disease groups (Table 1). We also examined the 
proportion of  all immune cell subsets within PBMCs from these 
subjects. We found that, as with CSF, the frequency of  B cells 
was elevated in PBMCs of  MS subjects compared with HC as 
previously described (22, 23) (Supplemental Figure 1B). These 
findings provide a high-level assessment of  the cellular compo-
sition and distribution in both CSF and PBMCs across multiple 
neurologic diseases.

Discrimination of  CNS disease state based on PBMC and CSF 
myeloid cell subpopulations. The myeloid cell object comprised 59,770 
cells divided into 36,450 PBMCs and 23,320 CSF cells (Figure 3, 
A–C). After integration and extensive filtering of  the single-cell 
data, we obtained 13 distinct clusters of  myeloid cells. Using estab-
lished markers (Figure 3D), we identified CD14+ Mono (S100A8, 
CD14, and VCAN), interferon (Ifn) CD14+ Mono (ISG15, IF44, and 
IFI44L), CD16+ Mono (FCGR3A, TCF7L2, and CDKN1C), and a 
small population of  neutrophils probably the result of  contamina-
tion in PBMC preparations (CXCR2, FCGR3B, and G0S2). Seven 
DC populations were identified in the myeloid object: conven-
tional dendritic cell 1 (cDC1) (CLEC9A, DNASE1L3, and C1orf54); 
CD32B+ cDC2 (FCGR2B and FCER1A; resembling CD1C_A/DC2 
[ref. 24]); CD36+ cDC2 (CD36 and FCN1; akin to CD1C_B/DC3 

linear correlation methods only recently have enabled integration 
of  large datasets that reside in public repositories (19, 20), although 
these compilations have not yet included CSF immune cells. Thus, 
the opportunity exists to understand the immune cell landscape of  
the CSF across neurologic diseases.

We therefore have integrated multiple available scRNA-Seq 
datasets of  CSF and peripheral blood mononuclear cell (PBMC) 
specimens from healthy controls (HC) and subjects with multi-
ple neurologic diseases, including multiple sclerosis (MS), Alz-
heimer’s disease (AD), Parkinson’s disease, viral encephalitis, 
HIV-associated neurologic disease, COVID-19, and autoimmune 
encephalitis, among others. In total, 193 samples were assembled 
to the dataset comprising 403,973 immune cells (195,431 PBMCs 
and 208,542 CSF cells). The goal of  this study was to identify the 
diversity of  immune cells in neurologic diseases between tissue 
compartments with the hypothesis that the number and features 
of  various myeloid and lymphoid cell populations within the 
blood and CSF reflect disease states. Several observations were 
facilitated by the large number of  cells in our compiled dataset. 
First, based on trajectory inference, we provide evidence that CSF 
microglia-like cells arise through a BAM lineage from peripher-
al monocytes. Furthermore, microglia-like cells in the CSF con-
tained FN1+ cells that are uniquely increased in neurodegenera-
tive diseases. Additionally, we identify what we believe to be a 
new AREG+ type 2 conventional dendritic cell (cDC2) subpop-
ulation in CSF but not blood that is increased in frequency in 
MS. By redefining and validating the cellular CSF micromilieu at 
unprecedented depth, we thus identify disease-associated immune 
populations with future diagnostic potential.

Results
Initial characterization of  PBMC and CSF immune cells in neurologic dis-
eases by scRNA-Seq analysis. We performed a comprehensive analysis 
of  immune cells in the blood and CSF by combining scRNA-Seq 
datasets from published studies, including some of  our own samples 
(10–18), along with 17 newly acquired samples, including HC and 
various neurologic diseases (Figure 1A, Table 1, and Supplemen-
tal Table 1; supplemental material available online with this arti-
cle; https://doi.org/10.1172/JCI177793DS1). After integration, 
a total of  403,973 cells from 58 PBMC (almost exclusively paired 
with the CSF) and 135 CSF samples were included in the analysis 
(Figure 1A, Table 1, and Supplemental Table 2). Almost all data 
were obtained using 10x Genomics with either 5′ or 3′ sequencing 
(Supplemental Table 3). We first classified 7 main immune cell sub-
sets: myeloid cells, B cells, NK cells, CD4+ and CD8+ T cells, γδ T 
cells, and plasmacytoid dendritic cells (pDCs). Further analysis of  
these populations allowed additional discrimination of  T helper, 
microglia-like, and plasmablast cell objects, depicted in a uniform 
manifold approximation and projection (UMAP) dendrogram in 
Figure 1B. With more granular cluster dissection, we ultimately 
identified a total of  51 different cell subpopulations.

The distinction between PBMC and CSF immune cell com-
position was assessed by separation of  these tissues into different 
objects encompassing 195,431 PBMCs and 208,542 CSF cells (Fig-
ure 2, A and B). Annotation of  immune cell populations was done 
based on canonical marker gene expression (Figure 2C). Overall, 
T lymphoid populations were abundant in the CSF, with the CSF 
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with CSF (Figure 3E). Non-classical monocytes (CD16+ Monos) 
also showed a statistically significant increase in proportion within 
PBMCs as compared with CSF (Figure 3E).

When examining the frequency of  different CSF myeloid cell 
subsets in different disease groups, we found that the fraction of  
CD16+ Monos in the CSF of  ND subjects was greater in compar-
ison with HC in a statistically significant manner. We observed 
the same increase in CD16+ Monos from INF subjects, who 
additionally harbored a greater percentage of  LAMP3+ DCs and 
neutrophils in contrast to HC (Figure 3F). Remarkably, CD16+ 
Monos, a very rare CSF population, were virtually absent in MS 
subjects, unlike in blood (Supplemental Figure 2, B and C). Other 
myeloid cell clusters within the CSF were substantially underrep-
resented in the MS group compared with HC subjects, such as 
CD14+ Monos and microglia-like cells (Figure 3F). On the con-
trary, confirming prior reports that MS patients accumulate DCs 
within the CSF (6, 12), we observed a statistically significant ele-
vation in percentage of  all DC subsets except CD36+ cDC2 and 
ACY3+ DCs in the CSF of  MS versus HC (Figure 3F). The most 
abundant of  these DC populations seen in greater proportions 

[ref. 24]); AXL+SIGLEC6+ DCs, which share characteristics with 
pDCs (AXL, PPP1R14A, and SIGLEC6) (25) and were described for 
the first time in PBMCs by Villani et al. (24); ACY3+ DCs (ACY3, 
S100B, and KIT), inaugurally described within the CSF by Kang 
et al. (26); LAMP3+ DCs (LAMP3, CR7, and BIRC3) (27); and 
what we believe to be a new subset of  cDCs, which we refer to 
as AREG+ cDC2 (AREG and RGS1). All seven were enriched in 
the CSF compartment, with ACY3+ DCs and AREG+ cDC2 being 
exclusive to this compartment (Figure 3, A–C and E). As expected 
from previous studies (17, 18), the CSF was also uniquely populat-
ed by microglia-like cells, featuring parenchymal brain macrophage 
marker genes (TREM2, SLC2A5, and CH25H) (28–30) (Figure 3, A, 
C, and E). Border-associated macrophages (BAMs; CD74, HLA-DR, 
and APOE) (31) were characterized by a transcriptional signature 
comparable to CSF microglia, expressed elevated levels of  HLA-
DR genes, and were similarly exclusive to the CSF (Figure 3D and 
Supplemental Figure 2A). Conversely, the PBMC compartment 
was substantially populated by monocyte subsets. CD14+ mono-
cytes were the most abundant myeloid subset within PBMCs and 
exhibited a greater proportion in the blood compartment compared 

Figure 1. Cluster hierarchy of overall immune cell type composition from PBMCs and CSF. (A) Schematic representing study design incorporating PBMC 
and CSF samples (n = 193) from 139 individuals. (B) Dendrogram of UMAP of PBMC and CSF samples colored by cluster and identified by cell type for deep-
er analysis. Separate objects for subclusters of CD4+ T cells, myeloid cells, and B cells are shown. Total number of cells per object following quality control 
processing is depicted. See also Supplemental Table 2.
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subcluster highly expressed PADI2, C12orf75, and LPL (Figure 4, 
C and D). All clusters were present in each disease group, with a 
higher frequency of  FN1+ microglia-like cells observed in ND com-
pared with HC (Figure 4E).

In the broader context of  myeloid cells, microglia-like cell gene 
expression overlapped with other clusters, including BAM and 
Mono. While the concept of  myeloid cells positioned at the border 
of  the CNS is not new, and likely encompasses perivascular mac-
rophages, meningeal macrophages, and choroid plexus–associated  
macrophages (33), we and others have used the term BAM to 
broadly describe a myeloid subset with unique functionality such 
as antigen presentation and regulation of  adaptive immunity (31, 
34). When typical BAM genes derived from Van Hove et al. (31) 
were mapped to the overall myeloid object, we observed a gradient 
of  enrichment centered on our BAM cluster (Supplemental Figure 
5B and Supplemental Table 5). As noted earlier, HLA-DR genes 
are highly expressed by BAMs, suggesting a prominent role in anti-
gen presentation (Figure 3D). Further, genes highly enriched in 
macrophages, such as the family of  C1Q genes, were prominently 
expressed by CSF BAMs (31) (Supplemental Figure 5C).

Microglia-like cells have been postulated to arise from mono-
cytes, a hypothesis supported by CSF examination of  a patient 
who underwent allogeneic hematopoietic stem cell transplan-
tation (35). To investigate the question of  ontogeny further, we 
performed a trajectory inference of  microglia-like cells including 
BAMs and CD14+ CSF monocytes. We measured the transcrip-
tional status as a function of  pseudotime by using CD14+ CSF 
monocytes as the root for the trajectory given monocytes’ role 
in populating tissue-specific macrophage niches (36) (Figure 4, F 
and G). We observed a continuum of  the transcriptional trajecto-
ry from CD14+ CSF monocytes to BAMs, and then CCL2+ MG, 
FN1+ MG, and SPP1+ MG subclusters. In summary, our data sug-
gest that CSF microglia-like cells form a continuous spectrum of  
transcriptional states originating from monocytes and transform-
ing into microglia-like cells, possibly through a BAM intermedi-
ate (Figure 4, F and G). This further supports a peripheral, not 
brain-derived, origin of  these cells.

within the CSF of  MS subjects compared with HC was the newly 
identified AREG+ cDC2 population (Figure 3F). While CD32B+ 
cDC2, CD36+ cDC2, and AREG+ cDC2 shared expression of  the 
canonical cDC2 marker CD1C, they could be discriminated by the 
expression of  several genes (Supplemental Figure 3A). Looking 
specifically at these 3 subpopulations in the CSF, AREG+ cDC2 
expressed some microglia-like cell–related genes, including BHL-
HE41, RGS1, and HPGDS (Supplemental Figure 3B). To confirm 
the existence of  our newly described AREG+ cDC2 subpopula-
tion, we performed flow cytometry on blood and CSF obtained 
from 4 MS subjects (Supplemental Table 4) using a collection of  
informative surface markers (Supplemental Figure 4, A and B). 
Consistent with our finding from scRNA-Seq, we identified a dis-
tinct cDC2 population only in the CSF that expressed AREG on 
its surface (Figure 3G). At the level of  flow cytometry, these cells 
were HLA-DR+BDCA-2–XCR1–CLEC9A–CD1c+FCER1A+CD-
32B+AREG+, and their frequency was increased in the CSF com-
pared with PBMCs from each of  the 4 MS subjects analyzed (Fig-
ure 3H). Our ability to identify rare DC subsets in this large-scale 
transcriptomic dataset thus enabled us to discover AREG+ cDC2s 
both transcriptomically and by flow cytometry in the CSF.

Microglia-like cell characterization and ontogeny. Microglia-like 
cells are a population of  CSF cells of  unclear origin. Several reports 
have used different nomenclature to refer to these cells, but all stud-
ies replicate expression of  common parenchymal microglia markers 
by these cells in the CSF (17, 18, 31, 32) (Figure 4A). In our data-
set, microglia-like cells exhibited a distinct set of  universal microg-
lia signature genes, including SLC2A5, TREM2, CH25H, SPARC, 
TMEM119, and P2RY12 (Figure 3D, Figure 4A, Supplemental 
Figure 5A, and Supplemental Table 5). Using the large number of  
analyzed samples herein, we were able to isolate and categorize 
CSF microglia-like cells into 3 separate subclusters: CCL2+ MG, 
FN1+ MG, and SPP1+ MG cells (where MG refers to microglia-like 
cell subclusters), totaling 6,330 CSF cells (Figure 4B). CCL2+ CSF 
microglia-like cells shared markers of  activated microglia such as 
CCL2, CCL4, and EGR2. The FN1+ subcluster was characterized by 
a signature including CLEC5A, ANXA2, and S100A10. The SPP1+ 

Table 1. Cohort characteristics are divided by disease group

Disease group # Subjects Organ # Samples # Cells # Sex Age range Age (mean)
HC 

(HC, HCTW, IIH) 56
PBMCs 18 44,619

43F/31M 20–88 47
CSF 56 71,914

MS 
(RMS, CIS) 44

PBMCs 34 124,560
52F/24M 18–63 38

CSF 42 90,736
ND 

(AD, PD, DLB, MCI) 22 CSF 22 20,475 11F/11M 48–83 69

INF 
(COVID, HIV, VE) 11

PBMCs 2 3,413
4F/9M 25–77 53

CSF 11 19,197
OID 

(MOGAD, AIME, NMO) 6
PBMCs 4 22,839

7F/1M 20–72 47
CSF 4 6,220

AD, Alzheimer’s disease; AIME, autoimmune encephalitis; CIS, clinically isolated syndrome; COVID, SARS-CoV-2–associated neurologic disease; DLB, 
dementia with Lewy bodies; F, female; HC, healthy control; HCTW, healthy control twin subjects whose twin had MS; HIV, human immunodeficiency virus–
associated neurologic disease; IIH, idiopathic intracranial hypertension; INF, infectious CNS disease; M, male; MCI, mild cognitive impairment; MOGAD, 
myelin oligodendrocyte glycoprotein antibody disease; MS, multiple sclerosis; ND, neurodegenerative disease; NMO, neuromyelitis optica spectrum 
disorder; OID, other neuroinflammatory disease; PD, Parkinson’s disease; RMS, relapsing MS; VE, viral encephalitis.
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Figure 2. Differences in composition of major PBMC and CSF cell populations in health and disease. (A and B) UMAP of PBMC (A) and CSF cell 
(B) atlases color-coded by main cell clusters. (C) Dot plot of marker genes designating each respective cluster. (D) Percentage of total for each 
major PBMC and CSF cluster. (E) Percentage of total for each CSF cluster across 5 subject groups including 4 disease states. HC, healthy control; 
MS, multiple sclerosis; ND, neurodegenerative disease; INF, infectious CNS disease; OID, other inflammatory CNS disease. In D and E, whiskers 
indicate values within 1.5 × interquartile range from either upper or lower hinge. Horizontal bars represent the median value. In D, the test of pair-
wise comparisons of cell type percentages in PBMCs and CSF was determined by post hoc Dunn’s test with Benjamini-Hochberg adjustment. In E, 
significance for pairwise comparisons between HC and all other disease groups was determined by post hoc Dunn’s test with Benjamini-Hochberg 
adjustment. *Adjusted P value (Padj) < 0.05, **Padj < 0.01, ****Padj < 0.0001.
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B cell and plasmablast subclustering across CNS disease states. B 
cells and plasmablasts play crucial roles in antibody production 
and antigen presentation, which can often contribute to CNS 
pathology. In the present study, we subclustered a total of  25,129 B 
cells and plasmablasts from the atlas (Figure 1B), with 21,387 cells 
derived from PBMCs and 3,742 from CSF (Figure 5, A–C). Anal-
ysis of  the gene expression signatures of  these subclusters revealed 
the presence of  previously described B cell subtypes, including 
naive, transitional, switched memory, atypical memory, and acti-
vated B cells, as well as plasmablasts (37–39) (Figure 5D and Sup-
plemental Figure 6A). Importantly, we observed prominent dif-
ferences in the composition of  B cells and plasmablasts between 
PBMCs and CSF. Naive, atypical memory, and transitional B cells 
were found to be statistically significantly more abundant in the 
blood, while the frequencies of  switched memory and activated 
B cells, along with plasmablasts, were notably higher in the CSF 
(Figure 5E). When examining the distribution of  different B cells 
and plasmablast subsets across tissues, we found that the propor-
tion of  plasmablasts was greater in PBMCs than in CSF for HC, 
whereas in MS the opposite was observed (Supplemental Figure 
6B). When comparing the distribution of  B cell subsets from only 
PBMCs of  HC versus MS subjects, we observed a greater propor-
tion of  naive and transitional B cell subsets in MS and a reduction 
in switched memory B cells in MS (Supplemental Figure 6C). To 
characterize B cells involved in neurologic disorders, we analyzed 
CSF B cell subclusters across disease groups. Compared with HC, 
the MS disease group exhibited a decrease in switched memory B 
cells and an increase in atypical memory B cells (Figure 5F). Nota-
bly, the abundance of  plasmablasts within the CSF (Figure 5E) 
was driven mainly by MS, INF, and OID, with HC CSF containing 
very few plasmablasts (Figure 5F).

Subclustering of  plasmablasts revealed 3 distinct popula-
tions: pre-plasmablasts, IgA+ plasmablasts (IgA+), and IgG+ 
plasmablasts (IgG+), comprising a total of  1,343 cells (579 in 
blood and 764 in CSF) (Figure 5, G–I). As previously described 
(40, 41), pre-plasmablasts expressed genes associated with pro-
liferation, such as MKI67, UBE2T, and PCNA, while IgA+ and 
IgG+ plasmablasts primarily expressed genes involved in anti-
body production such as IGHA2 or IGHG1 (Figure 5J). Surpris-
ingly, IgA+ plasmablasts were predominantly found in blood, 
while pre- and IgG+ plasmablasts were more prevalent in the CSF 
(Figure 5K). Pre-plasmablasts, previously reported in relapsing 

MS (RMS) to be elevated in blood (42), were also prominent in 
the CSF of  subjects with MS (Figure 5L). Our ability to distin-
guish the subtle but important composition of  CSF plasmablast 
subsets provides potential insights into the compartmentaliza-
tion of  immune responses in CNS diseases, specifically for those 
with acute activity.

Characterization of  CD4+ T cell subclusters in the CSF and blood. T 
lymphocytes were the most abundant population in PBMCs and 
CSF and were divided into CD8+ and CD4+ subclusters. The CD4+ 
T cell cluster, with a total of  204,738 cells, was the biggest object 
(Figure 6A). This consisted of  75,776 PBMCs and 128,962 CSF 
CD4+ T cells (Figure 6, B and C). Further investigation revealed 9 
distinct subclusters within CD4+ T cells, exhibiting unequal distri-
bution between these 2 anatomical compartments (Figure 6, D and 
E). Among the identified subsets, naive CD4+ T cells expressing 
CCR7, FHIT, and LRRN3 along with T helper (Th) CD4+ T cells 
expressing TNFRSF4, NSG1, and EGR1 were the most prevalent in 
PBMCs. Naive CD4+ T cells were more abundant in PBMCs com-
pared with CSF, while conversely Th CD4+ T cells were much more 
frequent within the CSF compartment compared with PBMCs 
(Figure 6E). The terminal effector cluster (characterized by GZMA, 
GZMK, and CXCR3; Supplemental Figure 7A) was also more abun-
dant in CSF and, together with Th CD4+ T cells, comprised approx-
imately 75% of  the CSF CD4+ T cell population. Additionally, we 
found that the proportions of  TEMRA and TRAVhi CD4+ T cells in 
the CSF relative to PBMCs were substantially reduced (Figure 6E). 
In the blood, there were no significant differences in the major pop-
ulations of  CD4+ T cells when MS subjects and HC were compared 
(Supplemental Figure 7B).

Notably, a previously characterized subset of  CCR5hi effector 
memory cells (43) was found predominantly in the CSF (Figure 6E 
and Supplemental Figure 7C). This subpopulation displayed sig-
natures of  resident memory T cells (CCR5, PDCD1, and CXCR6) 
and effector memory markers (CCL5, GZMK, and GZMA), as well 
as features shared with the Th17.1 subpopulation of  CD4+ T cells 
(TBX21, EOMES, and CXCR3) (44). CD4+ Tregs were subclustered 
into naive and memory populations. Memory CD4+ Tregs were 
evenly distributed between PBMC and CSF compartments, where-
as naive CD4+ Tregs were more frequent in the blood. When we 
compared the frequencies of  the 9 CD4+ T cell subclusters in the 
CSF across our 5 disease groups, no statistically significant differ-
ences were found (Figure 6F).

Abundance of  five Th CD4+ T cell subclusters across different neu-
rologic diseases. To further analyze the Th cell population from the 
CD4+ T cell object, we isolated and reclustered them into a UMAP 
comprising 104,996 cells from both PBMCs (28,333 cells) and CSF 
(76,663 cells) (Figure 7, A–C). We subdivided them into 5 sepa-
rate populations: Th1 (GZMA, GZMK, and EGR1), Th17 (ERN1, 
ATP6V0C, and RORC), Th with an interferon signature (Th Ifn; 
IFIT1, IFI44L, and RSAD2), T follicular helper (Tfh; TSHZ2, TOX, 
and CXCR5), and Th2/Th22 cells (S100A6, VIM, and LGALS1; 
Figure 7D), using an approach similar to that of  Terekhova et 
al. (45). We applied gene sets identified previously and validated 
by flow cytometry (46, 47) that were specific for these Th subsets 
(Supplemental Table 5). As expected, Th1, Th17, and Tfh signa-
tures were distinctly distributed within the Th object. However, 
Th2 and Th22 signatures overlapped (Figure 7E). Th1 cells were 

Figure 3. Cell type diversity and statistical comparison of myeloid cells 
in PBMCs and CSF between 5 main disease groups. (A) Overall UMAP of 
myeloid cells in both PBMCs and CSF combined. (B and C) UMAP of myeloid 
cells in PBMCs (B) and CSF (C). (D) Dot plot of select marker genes for each 
respective cluster. (E) Percentages of major clusters in both PBMC and CSF 
compartments. (F) Proportions of each CSF myeloid cell cluster across dis-
ease groups. (G) Representative plots from blood and CSF of AREG+ cDC2s 
identified as HLA-DR+BDCA-2–XCR1–CLEC9A–CD1c+FCER1A+CD32B+AREG+ 
cells. (H) Quantification of the AREG+ cDC2 cell frequency in blood and CSF 
from 4 MS subjects. Each line connects blood and CSF from one subject. 
In E, the test of pairwise comparisons of cell type percentages in PBMCs 
and CSF was determined by post hoc Dunn’s test with Benjamini-Hochberg 
adjustment. In F, significance for pairwise comparisons between HC and 
all other disease groups was determined by post hoc Dunn’s test with Ben-
jamini-Hochberg adjustment. In H, significance was determined by paired 
2-tailed t test. *Padj < 0.05, **Padj < 0.01, ***Padj < 0.001, ****Padj < 0.0001.
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Compartmentalized CD8+ T cell subclusters with distinct frequencies 
in neurologic diseases. The second largest subcluster identified in our 
dataset was composed of  75,649 CD8+ T cells, divided into 35,373 
PBMCs and 40,276 CSF cells (Figure 8, A–C). The relative distri-
bution of  CD8+ T cell subclusters within the PBMC and CSF com-
partments differed in a statistically significant fashion. In PBMCs, 
we observed notable enrichment of  3 CD8+ T cell subsets: muco-
sal-associated invariant T (MAIT) CD8+ (TRAV1-2, SLC4A10, and 
ZBTB16), NKT-like (TYROBP, TRDC, and NCR1), and T effector 
memory (Tem) GZMB+ (GZMB, FGFBP2, and CX3CR1) (Figure 8, 
D and E, and Supplemental Figure 9A). Conversely, the CSF com-
partment demonstrated heightened representation of  naive (CCR7, 
LEF1, and MAL), Tem GZMK+ (GZMK, KLRB1, and B2M), and 
HLA-DR+ (HLA-DRB1, EOMES, and HLA-DQB1) CD8+ T cell sub-
clusters (Figure 8, D and E, and Supplemental Figure 9A). This 
CD8+ T cell subcluster distribution between PBMCs and CSF was 
observed in both HC and MS subjects (Supplemental Figure 9B). 

found in relatively greater abundance within the CSF compared 
with PBMCs. In contrast, Tfh cells were less frequent within the 
CSF versus PBMCs across disease states (Figure 7F). When spe-
cifically examining MS samples compared with HC, these differ-
ences between blood and CSF compartments persisted with the 
exception of  the Th2/Th22 subpopulation (Supplemental Figure 
8A). Notably, the Th17 cluster, an important inflammatory Th 
population implicated in MS pathogenesis, was expanded in MS 
compared with HC PBMCs (Supplemental Figure 8B). We then 
examined the proportion of  different Th cells in the CSF exclu-
sively in different disease states compared with HC. Importantly, 
whereas Th1 cells were decreased in MS and INF, Tfh cells were 
found to be increased in the CSF (Figure 7G), but not blood (Sup-
plemental Figure 8B), of  MS subjects relative to HC. The higher 
frequency of  Tfh cells in MS CSF, as supported by previous studies 
(6, 12), could reflect the ongoing propagation of  B cell–mediated 
autoimmunity within the CNS compartment during MS.

Figure 4. Cell population diversity and trajectory analysis of CSF microglia-like cells. (A) UMAP of the myeloid object is shown colored based on the 
enrichment score of the transcriptional signature obtained from murine microglia (31). (B) UMAP of CSF microglia-like cell subsets. Each subset is desig-
nated MG for microglia-like cells. (C) Dot plot of select marker genes for the microglia-like cell subclusters. (D) Heatmap of aggregated and log-normalized 
gene expression in each microglia-like cell subcluster. Top 10 genes for each subcluster are shown. (E) Proportions of CSF microglia-like cell subclusters 
across disease groups. (F) UMAP plot representing select CSF myeloid populations inclusive of CD14+ monocytes, BAMs, and microglia-like cells color-cod-
ed by subclusters. (G) UMAP plot of the pseudotime trajectory of the object shown in F. In E, significance for pairwise comparisons between HC and all 
other disease groups was determined by post hoc Dunn’s test with Benjamini-Hochberg adjustment. *Padj < 0.05.
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RQA1, and HLA-DRB5), CD56bright (IL7R, CCR7, and GPR183), pro-
liferating (MKI67, TOP2A, and NUSAP1), and tissue-resident–like 
NK cells (TR-NK) (CXCR6, ITGAE, and LDB2). Additionally, we 
discovered a unique population of  group 3 innate lymphoid cells 
(ILC3s) expressing KIT, SOX4, and RORC (50) (Figure 9D and 
Supplemental Figure 10A). Consistent with previous reports (12), 
the predominant NK population in PBMCs consisted of  CD56dim-

LAG3– NK cells, accounting for 80% of  the NK cluster. Similarly, 
CD56dimLAG3+ NK cells were more abundant in the blood com-
pared with the CSF (Figure 9E). In contrast, CSF exhibited a sta-
tistically significant elevation in the proportion of  other NK cell 
subclusters (Figure 9E). This pattern remained consistent when HC 
and MS subjects were specifically compared, with the exception of  
CD56dimLAG3+ NK cells and ILC3s in the HC group (Supplemen-
tal Figure 10B). No differences in NK cell subcluster frequencies 
were noted in the PBMC compartment between HC and MS (Sup-
plemental Figure 10C). Interestingly, while ILC3 cells were scarcely 
detected in PBMCs, this subcluster was abundant in the CSF, where 
they have been shown to produce cytokines at CNS borders (50, 
51). In contrast to previous studies (6, 12), our findings revealed 
a lower frequency of  CD56dimLAG3– NK cells in the CSF of  MS 
compared with HC subjects (Figure 9F). Interestingly, while the 
overall NK population was more abundant in the CSF of  ND sub-
jects, none of  the subclusters of  NK cells exhibited this difference 
(Figure 9F). These results shed light on the distinct NK cell sub-
sets and their distribution in different compartments with potential 
implications in MS pathophysiology.

Discussion
We have constructed a comprehensive single-cell reference of  
blood and CSF immune cells. Profiling 193 samples facilitated 
the reliable annotation of  51 subtypes of  leukocytes and identifi-
cation of  unique subpopulations of  myeloid and lymphoid cells. 
Dissection of  CSF myeloid cell subsets from this compendium 
was highly revealing. Originally, microglia-like cells in the CSF 
were identified as a single entity (18), but discrete subtypes have 
been described (6), and our analysis identified 3 microglia-like 
cell subclusters, which we term CCL2+ MG, SPP1+ MG, and 
FN1+ MG based on marker genes. It is tempting to hypothesize 
that each subset of  CSF microglia-like cells has a distinct func-
tion and could act in a pathogenic or protective manner in differ-
ent neurologic diseases. For example, FN1+ MG were found to 
be relatively increased in ND subjects compared with HC. The 
FN1+ MG subcluster exhibits high expression of  the Alzheimer’s 
disease risk genes ABI3, CD33, and PTK2B (52, 53), suggesting 
that this component of  CSF microglia-like cells could emerge 
from a specific myeloid cell response to protein aggregates accu-
mulating in the parenchyma during neurodegeneration. Or it 
could perhaps even represent a predisposition to skewed microg-
lial responses in neurodegeneration that is reflected in the CSF 
and could potentially gain diagnostic potential. In contrast, while 
total microglia-like cells were less frequent in MS subjects com-
pared with HC, no individual microglia-like cell subcluster had 
an altered relative frequency. Nevertheless, a previously defined 
parenchymal microglial subset (“Hu-C8”) (32) overlaps in gene 
expression with the SPP1+ MG subcluster that we found in the 
CSF for marker genes including PADI2 and LPL. Since Spp1 

No differences in CD8+ T cell subcluster frequencies were noted 
in the PBMC compartment between HC and MS (Supplemental 
Figure 9C). These findings indicate a distinct distribution of  CD8+ 
T cell subsets in the blood and CNS compartments.

Examining the CSF CD8+ T cell subpopulations across disease 
groups, we observed striking variations. MS was characterized by a 
higher frequency of  naive CD8+ T cells, accompanied by a notable 
reduction in MAIT CD8+ cells (Figure 8F). Intriguingly, the INF 
disease group exhibited a reduction in HLA-DR+ CD8+ T cells com-
pared with HC, intimating a compromised inflammatory response 
against viral pathogens. Additionally, we observed an accumula-
tion of  CSF CD8+ Tem GZMB+ cells in the ND group compared 
with HC, suggesting a tendency toward inflammatory responses by 
the adaptive immune system in neurodegeneration. These findings 
highlight the potential involvement of  specific CD8+ T cell subsets 
in CNS disease pathogenesis and immune dysregulation.

Characterization of  PBMC and CSF γδ T cells in neurologic disease. 
Shifting our focus to γδ T cells, a smaller but distinct subset com-
prising 6,271 total cells (4,158 PBMCs and 2,113 CSF cells) cap-
tured our attention (Figure 8, G–I). This cluster exhibited a clear 
demarcation into 2 subsets: GZMB+ (GZMB, FCGR3A, and GZMH) 
and GZMK+ (GZMK, IL7R, and LTB) (Figure 8J). Similar to the 
Tem GZMB+ CD8+ T cell cluster, GZMB+ γδ T cells were almost 
exclusively located in the PBMCs, while GZMK+ γδ T cells were 
noticeably enriched in the CSF (Figure 8K). Interestingly, no statis-
tically significant differences in γδ T cell frequency within the CSF 
were observed among disease groups, suggesting a potential role for 
these subsets in immune surveillance rather than disease-specific 
responses (Figure 8L). Notably, others have reported an additional 
γδ T cell subcluster expressing TRDV1 in PBMCs (48). We did not 
find this population in either the CSF or blood, perhaps owing to 
quality control measures (see Methods). Nevertheless, the clusters 
of  Vδ2+ T cells remained diverse and compartmentalized.

Identification of  NK cell subclusters represented across neurologic dis-
eases. We characterized the NK cell population, analyzing a total 
of  29,894 cells (21,603 from PBMCs and 8,291 from CSF) (Figure 
9, A–C). By using established markers reported in the literature 
(49), we distinguished 5 populations of  NK cells: CD56dimLAG3– 
(FGFBP2, SPON2, and CX3CR1), CD56dimLAG3+ (LAG3, HLA-

Figure 5. Cell type diversity and statistical comparison of B cells and 
plasmablasts in PBMCs and CSF between 5 main disease groups. (A) 
Overall UMAP of B cells in both tissues combined. (B and C) UMAP of B 
cells and plasmablasts in PBMCs (B) and CSF (C) colored by the main clus-
ters. (D) Selection of marker genes represented by dot plot for each respec-
tive cluster of B cells and plasmablasts. (E) Percentage of major clusters 
of B cells and plasmablasts in both PBMCs and CSF. (F) Cell proportions 
in CSF B cell and plasmablast populations across 5 disease groups. (G) 
UMAP of plasmablast subcluster in both tissues combined. (H and I) 
UMAP of plasmablast subcluster in PBMCs (H) and CSF (I). (J) Selection 
of marker genes represented by dot plot for each plasmablast subcluster. 
(K) Comparison of plasmablast subcluster percentages between PBMCs 
and CSF. (L) Cell proportions of each CSF plasmablast subcluster across 5 
disease groups. In E and K, the test of pairwise comparisons of cell type 
percentages in PBMCs and CSF was determined by post hoc Dunn’s test 
with Benjamini-Hochberg adjustment. In F and L, significance for pairwise 
comparisons between HC and all other disease groups was determined by 
post hoc Dunn’s test with Benjamini-Hochberg adjustment. *Padj < 0.05, 
**Padj < 0.01, ****Padj < 0.0001.
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Figure 6. Cell type diversity and statistical comparison of CD4+ T cells in PBMCs and CSF between 5 disease groups. (A) Overall UMAP of CD4+ 
T cells in both PBMCs and CSF combined. (B and C) UMAP of CD4+ T cells in PBMCs (B) and CSF (C). (D) Dot plot of select marker genes for each 
respective cluster. (E) Percentages of major clusters in both PBMCs and CSF compartments. (F) Proportion of each CSF CD4+ T cell cluster across 
disease groups. In E, the test of pairwise comparisons of cell type percentages in PBMCs and CSF was determined by post hoc Dunn’s test with 
Benjamini-Hochberg adjustment. In F, significance for pairwise comparisons between HC and all other disease groups was determined by post hoc 
Dunn’s test with Benjamini-Hochberg adjustment. *Padj < 0.05, ****Padj < 0.0001.
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Figure 7. Cell type diversity and statistical comparison of Th CD4+ cells in PBMCs and CSF between 5 main disease groups. (A) Overall UMAP of Th cells 
in both PBMCs and CSF combined. (B and C) UMAP of Th cells in PBMCs (B) and CSF (C). (D) Dot plot of marker genes for each respective cluster of Th 
cells. (E) Enrichment score of the transcriptional signatures obtained from human Th subsets of Th1, Th17, Tfh, Th2, and Th22 cells and initially derived 
from ref. 46 and ref. 47 by Ostkamp et al., displayed on the CD4+ Th cell subcluster UMAP. (F) Percentages of each CD4+ Th cell subcluster in both PBMC 
and CSF compartments. (G) Proportion of each CSF CD4+ Th cell cluster across disease groups. Statistical significance of the Th Ifn cluster of the INF 
group is driven by one outlier (Padj = 0.0091). In F, the test of pairwise comparisons of cell type percentages in PBMCs and CSF was determined by post 
hoc Dunn’s test with Benjamini-Hochberg adjustment. In G, significance for pairwise comparisons between HC and all other disease groups was deter-
mined by post hoc Dunn’s test with Benjamini-Hochberg adjustment. *Padj < 0.05, **Padj < 0.01, ****Padj < 0.0001.
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stands to reason that CSF microglia-like cell numbers could be 
maintained from anatomically proximal sources and be rapid-
ly tuned to events within the CNS compartment independent of  
exposure to the peripheral blood circulation. Thus, the overall low-
er frequency of  CSF microglia-like cells in MS compared with HC 
could signify an effort to limit entry of, and/or conversion from, 
monocytes in the CNS, since marrow production has been shown 
to be skewed toward monocytes in patients with MS (57). Under-
standing the elements within bone marrow, border tissues, and CSF 
that influence differentiation of  these myeloid subsets will be cru-
cial in determining the ability to modulate CSF microglia-like cells 
and each of  their subsets in various disease states.

The striking differential distribution of  γδ T cell subclusters 
between the CSF and blood is also consistent with the concept that 
the CSF selects subsets of  immune cells via differentiation, traf-
ficking, and/or retention. We were able to delineate two γδ T cell 
populations based on expression of  GZMK and GZMB (45). While 
GZMB+ γδ T cells expressed the CNS-homing adhesion molecule 
ITGAM (data not shown), they remained in the blood, suggesting 
an effective retention signal in the periphery or lack of  chemokine 
in the CSF needed for recruitment to the CNS compartment. While 
GZMB+ γδ T cells resembled a γδ T cell effector population through 
expression of  molecules such as GZMB, GZMH, GNLY, FGFBP2, 
and NKG7 (45), the subset of  GZMK+ γδ T cells mostly present 
in the CSF compartment transcriptionally aligns with a memory 
subset of  γδ T cells (58) and expressed migration/tissue-homing 
receptors such as CXCR3, CXCR4, CXCR6, and CCR5. While no rel-
ative differences in GZMK+ γδ T cells were observed across disease 
states versus HC, ligands for these trafficking receptors have been 
described as elevated in MS (59) and inflammatory diseases (60). 
Additionally, since GZMK can be employed by CD4+ and CD8+ T 
cells along with γδ T cells (61), a summative effect of  multiple cell 
types producing this enzyme could differentially influence neuroin-
flammation in various neurologic diseases.

Our study also provides important insights into the contribu-
tion of  B cell subsets in MS. Atypical memory B cells (defined by 
elevated expression of  TBX21, ITGAX, and FCRL5; refs. 62, 63) 
and plasmablasts were found in the CSF at higher frequencies in 
MS subjects compared with HC. Atypical memory B cells are com-
monly associated with infections and autoimmune diseases (38). 
One study linked CD19+CD11c+T-bet+ atypical B cells to the devel-
opment of  clinically isolated syndrome (CIS) in de novo Epstein-
Barr virus–positive (EBV-positive) patients (64). It is intriguing to 
consider whether EBV, postulated to be required for the develop-
ment of  MS (65), may have a role in triggering an atypical memory 
B cell signature, or alternatively whether these cells may facilitate 
EBV persistence or reactivation. Additionally, our findings revealed 
that the B cell abundance in MS CSF was primarily driven by the 
plasmablast cluster. The distribution of  plasmablasts was divided 
into IgG+ cells populating the CSF and IgA+ cells virtually exclu-
sive to PBMCs. IgA-secreting B cells are present mostly at muco-
sal surfaces but have been identified in the CSF of  subjects with 
active neuroinflammatory diseases including relapsing MS (66). 
However, during non-active inflammatory CNS disorders, IgA-ex-
pressing B cells were not found in the brain, resulting in lower lev-
els of  IgA in the CSF compartment (66). This is consistent with 
our data showing an absence of  IgA+ B cells in the CSF of  MS  

expression was seen in a subset of  parenchymal microglia during 
the demyelination phase of  the cuprizone model of  MS in mice 
(32) and SPP1 was expressed in a subset of  brain microglia associ-
ated with MS (32), it is possible that SPP1+ MG found in the CSF 
are correlates of  parenchymal microglia designated for handling 
myelin debris. It would be interesting to define the capability of  
and consequences of  phagocytosis and processing of  myelin by 
CSF SPP1+ MG. Likewise, further studies are required to define 
any phenotypic and/or functional differences in each microglial 
subcluster specific to individual neurologic diseases.

Another striking finding was the discrimination of  seven DC 
populations (in addition to pDCs) in the CSF, five of  which were 
increased in MS relative to HC. Two of  these, CD32B+ and CD36+ 
cDC2s (also referred to by others as CD1C_A/DC2 and CD1C_B/
DC3, respectively), were previously identified in peripheral blood 
(24), the former of  which we found to be substantially elevated in 
the CSF of  subjects with MS. AREG+ cDC2s represent what we 
believe to be a new cDC2 subset found exclusively in the CSF. Suc-
cessful identification of  this population of  cells by flow cytometry 
lends more credence to the unique, distinct discrimination between 
DC subsets afforded by scRNA-Seq. Functionally, AREG can be 
derived from several cellular sources, including myeloid cells and 
T cells (54). AREG acting on Tregs has been shown to promote 
their suppression of  inflammation, and more recently CD8+ T cell–
derived AREG was demonstrated to mediate tissue repair (55). The 
role of  cDC2-derived AREG within the CSF remains to be deter-
mined. While we believe that AREG+ cDC2s represent a bona fide 
cDC population based on their high expression of  FLT3 and low 
expression of  monocyte markers, determining whether they derive 
from a cDC progenitor or a monocyte precursor will also be an 
important future step.

While further studies will be needed to more carefully lin-
eage-trace myeloid populations occupying the CSF and identify the 
cues dictating their differentiation, our trajectory analysis suggests 
that CSF microglia-like cell subsets are derived from monocyte pro-
genitors, proceeding through a BAM intermediate. As such, border 
tissues such as the meninges are likely very important for dictating 
the quantity and phenotype of  CSF BAMs and CSF microglia-like 
cells, and perhaps facilitate exchange between CNS compartments. 
With a recent demonstration that CNS myeloid populations can 
be derived from skull and spine bone marrow progenitors (56), it 

Figure 8. Cell type diversity and statistical comparison of CD8+ and 
γδ T cells in PBMCs and CSF between neurologic disease groups. (A) 
Overall UMAP representation of CD8+ T cells in both tissues combined. (B 
and C) UMAP of CD8+ T cells in PBMCs (B) and CSF (C). (D) Marker genes 
represented by dot plot for each respective cluster of CD8+ T cells. (E) 
Percentage of major subclusters of CD8+ T cells in both PBMCs and CSF. 
(F) Proportions of CSF CD8+ T cell subclusters across 5 subject groups. (G) 
UMAP of γδ T cell subclusters in both PBMCs and CSF combined. (H and I) 
UMAP of γδ T cell subclusters in PBMCs (H) and CSF (I). (J) Marker genes 
represented by dot plot for each γδ T cell subcluster. (K) Comparison of γδ 
T cell subcluster percentages between PBMCs and CSF. (L) Proportions of 
each CSF γδ T cell subcluster across 5 subject groups. In E and K, the test 
of pairwise comparisons of cell type percentages in PBMCs and CSF was 
determined by post hoc Dunn’s test with Benjamini-Hochberg adjustment. 
In F and L, significance for pairwise comparisons between HC and all other 
disease groups was determined by post hoc Dunn’s test with Benjami-
ni-Hochberg adjustment. *Padj < 0.05, ****Padj < 0.0001.
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using different technologies and platforms because they are effi-
cient and scalable and improve the accuracy of  integration with 
biological meaning and disease context. Based on benchmarking of  
single-cell, atlas-level data integration, Harmony was shown to be 
highly accurate in terms of  batch correction while conserving the 
majority of  biological variation (70). Our robust integration pro-
vided the ability to ensure quality control but, as a consequence, 
led to exclusion of  some genes and cells from downstream anal-
ysis. Second, we chose to divide our categories of  subjects into  

subjects who did not have active disease at the time of  the CSF col-
lection, and leaves open the possibility that egress of  IgA-producing 
plasmablasts from the gut that are capable of  immunomodulation 
in the CNS occurs during an inflammatory relapse, as proposed by  
Rojas and colleagues (67).

Our study has several important limitations, including compu-
tational and study design factors (Supplemental Figure 11). First, 
we relied on Seurat with canonical correlation analysis (68) and 
Harmony (69) for integration of  scRNA-Seq datasets obtained 

Figure 9. Cell type diversity and statistical comparison of NK cells in PBMCs and CSF between 5 subject groups. (A) Overall UMAP of NK cells in PBMCs 
and CSF combined. (B and C) UMAP of NK cells in PBMCs (B) and CSF (C). (D) Dot plot of select marker genes for each respective subcluster. (E) Percentag-
es of major NK subclusters in PBMC and CSF compartments. (F) Proportion of each CSF NK cell subcluster across subject groups. In E, the test of pairwise 
comparisons of cell type percentages in PBMCs and CSF was determined by post hoc Dunn’s test with Benjamini-Hochberg adjustment. In F, significance 
for pairwise comparisons between HC and all other disease groups was determined by post hoc Dunn’s test with Benjamini-Hochberg adjustment. **Padj < 
0.01, ***Padj < 0.001, ****Padj < 0.0001.
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and unknown — in relation to therapeutic intervention for their neuro-

logic disease (Supplemental Table 6). For the 11 subjects newly recruited 

to this study, blood and/or CSF was collected and processed as previous-

ly described (18). scRNA-Seq was performed on all samples new to the 

current study using Chromium Single Cell 5′ v2 Reagent Kits from 10x 

Genomics according to the manufacturer’s protocol. scRNA libraries were 

sequenced using Illumina sequencers. For a more detailed description of  

the 125 subjects whose data were derived from 8 published studies, please 

refer to Supplemental Table 6, which includes Gene Expression Omnibus 

(GEO) GSE or Database of Genotypes and Phenotypes (dbGaP) acces-

sion numbers for all samples that were sequenced from these subjects.

Samples were categorized into 5 main cohorts based on their 

diseases as follows: (a) healthy controls (disease group name HC), 

composed of  healthy individuals (HC), healthy control twin subjects 

whose twin had MS (HCTW), and subjects with idiopathic intracrani-

al hypertension (IIH); (b) multiple sclerosis (disease group name MS), 

composed of  subjects with relapsing MS (RMS) and clinically isolated 

syndrome (CIS); (c) neurodegenerative diseases (disease group name 

ND), composed of  subjects with Alzheimer’s disease (AD), mild cog-

nitive impairment (MCI), Parkinson’s disease (PD), and dementia with 

Lewy bodies (DLB); (d) infectious CNS diseases (disease group name 

INF), composed of  subjects with viral encephalitis (VE), SARS-CoV-2–

associated neurologic disease (COVID), and human immunodeficiency 

virus–associated neurologic disease (HIV); and (e) other inflammatory 

diseases of  the CNS (disease group name OID), composed of  subjects 

with myelin oligodendrocyte glycoprotein antibody disease (MOGAD), 

uveitis (OID), autoimmune encephalitis (AIME), and neuromyelitis 

optica spectrum disorder (NMO).

scRNA-Seq analysis. For samples sequenced from the 11 subjects 

new to the current study, Cell Ranger pipeline v7.0.0 (10x Genomics 

website) was used for processing raw sequencing data. Specifically, 

raw base call (BCL) files were demultiplexed by applying Cell Rang-

er mkfastq workflow. After that, reads were aligned to the reference 

genome GRCh38, and subsequently, their gene expression was quanti-

fied using Cell Ranger count pipeline with standard parameters. Down-

stream single-cell analysis was performed in RStudio environment 

v4.0.2 using Seurat package v4.2.0 (72).

Initial processing of  data from individual studies. We treated the 

scRNA-Seq data from the 3 subjects (6 samples) in our own previ-

ously published work (18) combined with the scRNA-Seq data from 

the 11 subjects newly recruited to the current study (17 samples) as a 

single dataset. Quality control steps on individual samples from each 

study were performed as follows. Genes expressed in fewer than 3 

cells as well as cells expressing fewer than 200 genes were excluded 

from our analysis. Cells with a mitochondrial fraction of  more than 

the 97.5% confidence interval for a scaled mitochondrial percentage 

were removed, resulting in cells with a mitochondrial content of  more 

than 20% being excluded. Filtered matrices were normalized using 

the SCTransform function in Seurat with mitochondrial percent as a 

parameter to regress out.

For integration of  individual samples into a study-level object, 

variable genes were selected using the SelectIntegration Features func-

tion with the number of  features equal to 2,000. Subsequently, each 

object was prepared for integration by the PrepSCTIntegration func-

tion, anchors were identified using the FindIntegrationAnchors func-

tion, and samples were integrated into study-level objects by the Inte-

grateData function. Further principal component analysis was applied 

disease groups rather than specific diseases (aside from MS). While 
broad categories of  neurologic disease states were still associated 
with pronounced differences in multiple subsets of  CSF immune 
cells, broadly categorizing disease groups may have introduced bias 
and obscured meaningful distinctions between individual diseases. 
Third, the age of  subjects in the different disease groups is another 
factor that may have complicated the analysis. It is possible that 
cellular senescence results in changes in immune cell composition 
with age. However, one recent study did not identify such changes 
in healthy controls and cognitively impaired individuals between 
47 and 82 years old (71). Fourth, in some of  the disease groups, 
portions of  subjects were actively or previously treated with dis-
ease-modifying therapies. Such treatments may have impacted on 
the quantity and profile of  immune cells in the peripheral circula-
tion and/or CSF. Future studies will need to more fully characterize 
the effects of  these treatments. For MS specifically, disease activity 
is also an important variable. Fifth, our annotation is based on tran-
scriptomic data. Many of  the marker genes for immune cell subsets 
that we identified are often expressed among related cell types. In 
response, we used a rigorous approach based on the combination 
of  multiple genes rather than any single marker gene to gain greater 
certainty for discrimination. Also, in acknowledgement that gene 
expression and protein expression do not correlate in all cases, we 
have validated our finding of  an apparently new DC subset using 
flow cytometry. This represents an important next step in solidify-
ing the classification of  CSF immune cell populations in the present 
work and in the future. A sixth factor that may have had an impact 
on our discrimination of  cell subtypes is the low numbers of  cells 
available for analysis. This is a surmountable issue, as there contin-
ues to be a constant influx of  scRNA-seq data from CSF studies 
being deposited into the public domain.

In summary, our discovery of  the presence of  different immune 
cell populations in the CSF, including DC subsets and microglia-like 
cells, highlights the unique nature of  this compartment as an immu-
nologic territory in relation to the CNS. Further, characterization of  
subclusters among disease states, such as CSF FN1+ microglia-like 
cells increased in neurodegenerative conditions, provides substantial 
evidence for the specialization of  specific myeloid populations in 
CNS immunity and potential contribution of  such cells to selective 
neurologic diseases. More broadly, our study not only provides a ref-
erence map of  the CSF cellular landscape and its unique composi-
tion, but also gives insights into compartment-specific differences of  
immune populations in neurodegenerative and neuroinflammatory 
diseases at the unprecedented depth of  single-cell resolution and 
with potential for future biomarker development.

Methods
Sex as a biological variable. Our human study included both male and 

female subjects without explicit analysis dedicated to determination of  

sex as a biological variable.

Study design and subjects. We curated a set of scRNA-Seq datasets 

derived from 3 subjects from our previous study (2 MS and 1 myelin oli-

godendrocyte glycoprotein antibody disease [MOGAD]) (18), 11 subjects 

new to the current study (6 MS, 2 AD, 2 CIS, and 1 MOGAD) (Supple-

mental Table 1), and 125 subjects from published studies that included 

controls and those with neurologic diseases (Table 1). Patients were cate-

gorized into 4 groups — untreated, previously treated, ongoing treatment, 
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with the Seurat R package. P values were adjusted using Bonferroni 

correction. The following parameters were specified: minimal fraction 

of  cells per cluster expressing a gene equals 0.1, and the threshold for 

logarithmic fold change in gene expression equals 0.25.

Trajectory analysis. CD14+ CSF Monos, BAMs, and microglia-like 

cells were subclustered from CSF myeloid cells. The new subclustered 

object was reprocessed as described above. The trajectory analysis and 

pseudotime were computed using the Slingshot container available 

through the dynverse package (https://github.com/dynverse/dyno) 

with normalized count matrices. The Seurat dataset was converted 

to a wrapped object to make it suitable for input into the dynverse 

pipeline. The principal graph was created using the default minimum 

spanning tree method. The CSF CD14+ Mono cluster was set as the 

root for the trajectory analysis.

Flow cytometry. Flow cytometry was performed using the following 

anti-human antibodies or conjugates: Super Bright 436–AXL (clone 

DS7HAXL, eBioscience), BV480–HLA-DR (clone G46-6, BD Biosci-

ences), BV711-CD33 (clone P67.6, BioLegend), BV785-CD1c (clone 

L161, BioLegend), Spark Blue 550–CD16 (clone 3G8, BioLegend), 

PerCP–eFluor 710–CLEC9A (clone 9A11, eBioscience), biotin-AREG 

(polyclonal goat IgG; R&D Systems), PE/Dazzle 594–CD32B/C 

(clone S18005H, BioLegend), PE-Cyanine7–FCER1A (clone AER-

37, eBioscience), PE/Fire 810–XCR1 (clone S15046E, BioLegend), 

APC-Siglec6 (clone 767329, R&D Systems), Spark NIR 685–CD14 

(clone 63D3, BioLegend), APC/Cyanine7–BDCA-2 (clone 201A, Bio-

Legend), Alexa Fluor 700–CD3 (clone SK7, BioLegend), Alexa Fluor 

700–CD19 (clone HIB19, Biolegend), and PE-streptavidin (BioLeg-

end). Three million PBMCs (isolated with Ficoll-Paque PLUS, Cytiva) 

and between 30,000 and 300,000 CSF cells were incubated with human 

BD Fc block (BD Biosciences) in staining buffer (PBS plus 0.5% BSA 

plus 2 mM EDTA plus 0.02% sodium azide) for 5 minutes at 4°C and 

then with biotin-AREG antibody for 20 minutes at 4°C. Subsequently, 

samples were washed with staining buffer and stained with conjugated 

antibodies and PE-streptavidin for 20 minutes at 4°C. Samples were 

washed again, and in some cases fixed in 4% methanol-free parafor-

maldehyde for 20 minutes at 4°C. Before flow cytometry, cells were 

resuspended in staining buffer and then run on a 4-laser Cytek Aurora 

flow cytometer (violet, blue, yellow-green, and red; Cytek Biosciences). 

Data were analyzed using FlowJo software (FlowJo LLC).

Statistics. Dot and feature plots were generated using the dot-

plot and umap functions from the Scanpy package. For bar, box, and 

volcano plots, we used the ggplot2 package. Heatmaps were created 

using the DoHeatmap function from the Seurat package. Statistical 

tests were performed using RStudio.

For pairwise comparisons of  cell type percentages from scRNA-

Seq data, we used the non-parametric post hoc Dunn’s test with Ben-

jamini-Hochberg adjustment for control of  false discovery rate to cor-

rect for multiple-comparison testing. When comparing the frequency 

of  AREG+ DCs in blood versus CSF from flow cytometry data, we 

used a 2-tailed paired t test

Study approval. Eleven subjects were newly recruited to this study. 

Written informed consent was obtained as part of  institutional review 

board–reviewed study protocols approved by the Human Research 

Protection Office (HRPO) of  Washington University in St. Louis 

(WUSTL). CSF cells from 2 subjects with AD from among these 11 

subjects were provided to us in a deidentified fashion via a study proto-

col approved by the HRPO of  WUSTL that allowed us to obtain these 

for dimensionality reduction, and the first 30 principal components 

were used to obtain UMAP by the RunUMAP function. The shared 

nearest neighbor graph was calculated using 30 principal components 

through the FindNeighbors function. Graph-based clustering was 

performed using the FindClusters function in a range of  resolutions 

(from 0.2 to 1.0 with steps of  0.2). In some cases, doublets were fil-

tered out based on the high expression level of  more than one canon-

ical cell type–specific gene. Clusters composed of  red blood cells and 

platelets were excluded based on the expression of  HBB, HBA1, PF4, 

and PPBP. This full pipeline was repeated for analysis of  each of  the 

8 published studies on CSF and PBMCs from controls and subjects 

with a variety of  neurologic diseases. Four overlapping CSF samples 

from Heming et al. (10) and Schafflick et al. (12) were included from 

both in the construction of  our overall object. We removed sample 

GSM5264668 from GSE133028 because it represented a duplicate 

within this study, and samples MS19270, MS49131, MS58637, and 

MS71658 from GSE163005 as these represented duplicates already 

utilized in GSE138266. As a result of  specialized processing of  T cells 

in the study by Beltrán et al. (15), these cells were omitted from statisti-

cal analysis only at the atlas level. In our initial compilation of  samples 

we included 5 PBMC specimens from GSE141578 (11) that were later 

excluded from the analysis because of  low cell numbers and substantial 

differences in sample preparation.

Whole dataset assembly. These 9 Seurat study-level objects were 

converted into h5ad format with SaveH5Seurat and Convert functions 

from the SeuratDisk package (https://github.com/mojaveazure/seur-

at-disk/) (Supplemental Figure 11). Downstream analysis was conduct-

ed in Python (v3.9.13) (https://www.python.org/downloads/) using 

the Scanpy package (v1.9.1). Raw count matrices were concatenated 

from all 9 objects into a whole object. Next, data were normalized by 

a scale factor of  10,000 and log-transformed. Highly variable genes 

(HVGs) were selected using default parameters within each batch. Sub-

sequently, HVGs present in fewer than 6 batches were filtered out from 

the analysis. The whole object was regressed out based on the total num-

ber of  counts and the percentage of  mitochondrial genes, and subse-

quently scaled. The different batches were integrated using the Harmony 

correction algorithm v1.0 (69). The shared nearest neighbor graph and 

UMAP were calculated using Harmony embeddings. For the neighbor 

graph, 30 principal components and 10 nearest neighbors were applied. 

Cell clusters were obtained by application of  the Leiden algorithm in a 

range of  resolutions from 0.4 to 1.0 with 0.2 as a step. Next, cell clus-

ters were manually annotated with well-known markers to discriminate 

cell types including CD4+ T cells, CD8+ T cells, B cells, NK cells, γδ T 

cells, pDCs, and myeloid cells. Deeper annotation of  specific subpop-

ulations was obtained by subclustering of  Th cells from CD4+ T cells, 

microglia-like cells from myeloid cells, and plasmablasts from B cells. 

Subsequently, transcriptional signatures were used to confirm the results 

of  annotation for some cell types. In particular, for Th analysis, gene 

lists taken from Ostkamp et al. (6) were used to selectively differentiate 

subsets of  Th cells, namely Th1, Th2, Th22, Th17, and Tfh cells. Addi-

tionally, markers from a gene set from Van Hove et al. (31) or the BAM 

subcluster were manually preselected as shown in Supplemental Table 5.

To perform differential expression analysis (DEA) between clus-

ters, we first generated pseudobulk data using the AggregateExpression 

function in RStudio. This returned summed expression values of  raw 

counts by cell type, organ, and sample categories. Subsequently, DEA 

was carried out with the FindAllMarkers function (MAST method) 
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