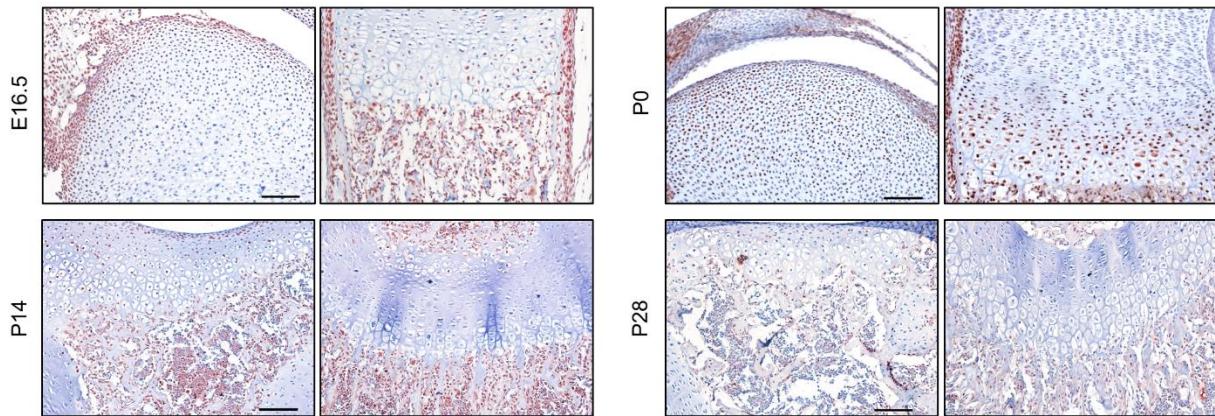


Supplemental Information

Metabolic rewiring during bone development underlies tRNA m⁷G-associated primordial dwarfism

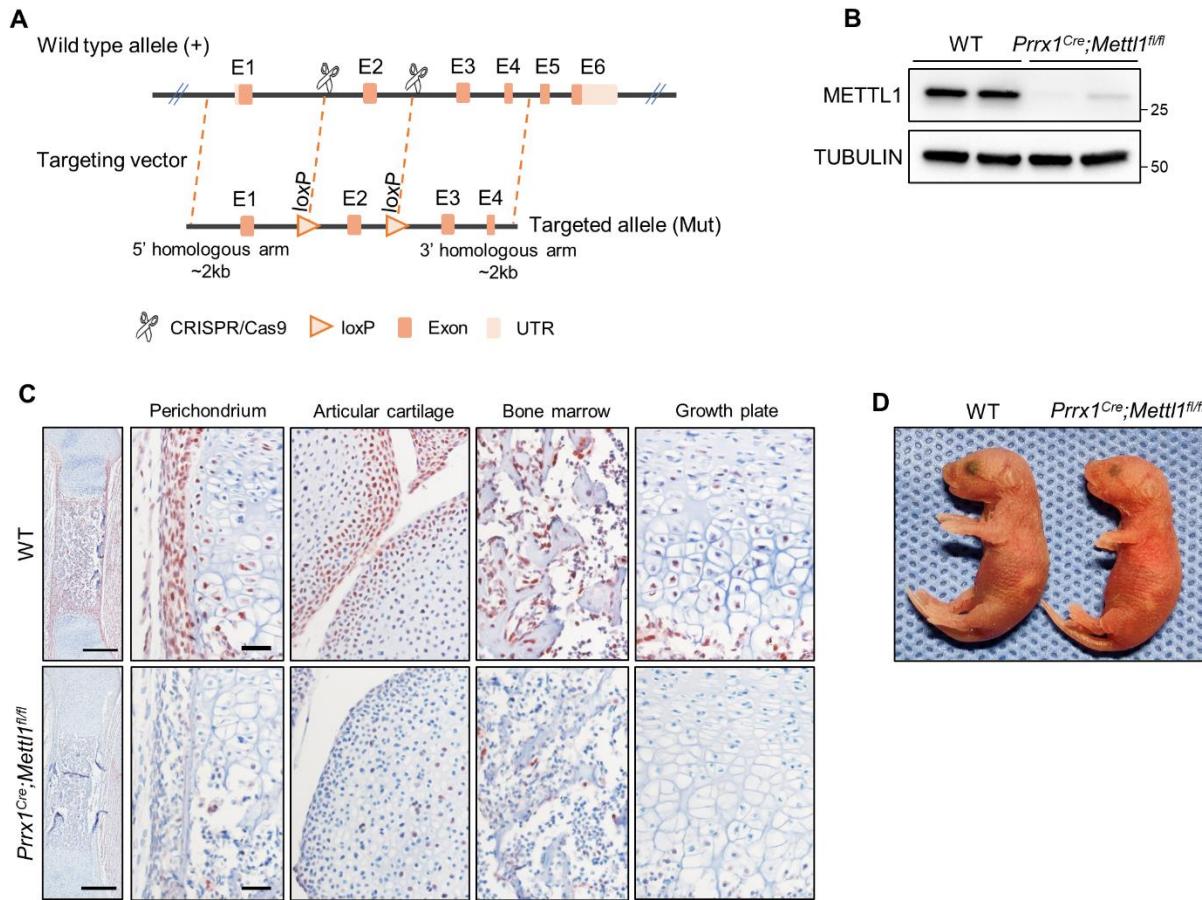
Qiwen Li^{1,5}, Shuang Jiang^{1,5}, Kexin Lei¹, Hui Han², Yaqian Chen¹, Weimin Lin¹, Qiuchan Xiong¹, Xingying Qi¹, Xinyan Gan¹, Rui Sheng¹, Yuan Wang¹, Yarong Zhang¹, Jieyi Ma², Tao Li³, Shuibin Lin², Chenchen Zhou^{1,*}, Demeng Chen^{4,*} and Quan Yuan^{1,*}

¹State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University


²Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.

³West China-Washington Mitochondria and Metabolism Center and Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.

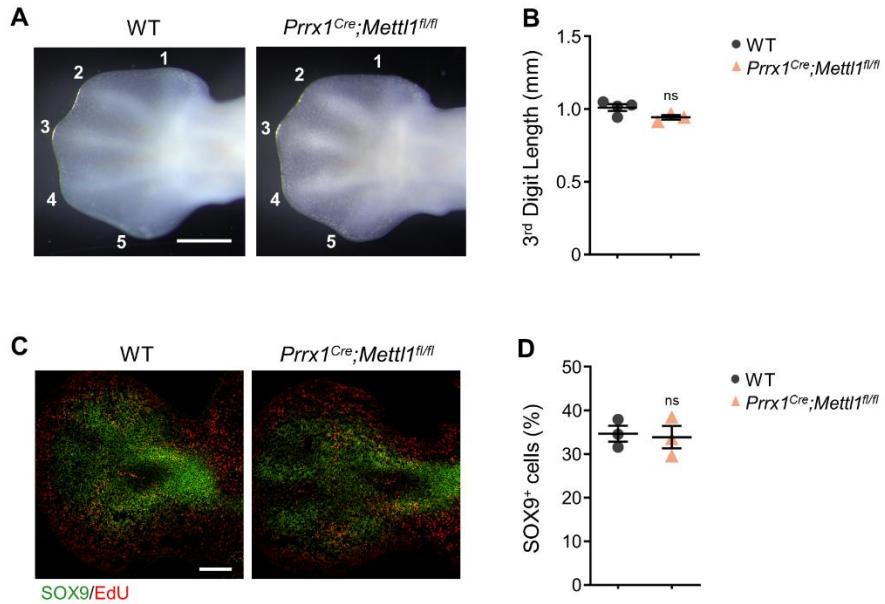
⁴Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.


⁵These authors contributed equally.

*Correspondence to Quan Yuan (lead contact, yuanquan@scu.edu.cn), Demeng Chen (chendm29@mail.sysu.edu.cn) and Chenchen Zhou (chenchenzhou5510@scu.edu.cn).

Figure S1 METTL1 expression in mouse long bone

Representative immunohistological staining of METTL1 expression in femur at different time points. Scale bar, 50 μ m.

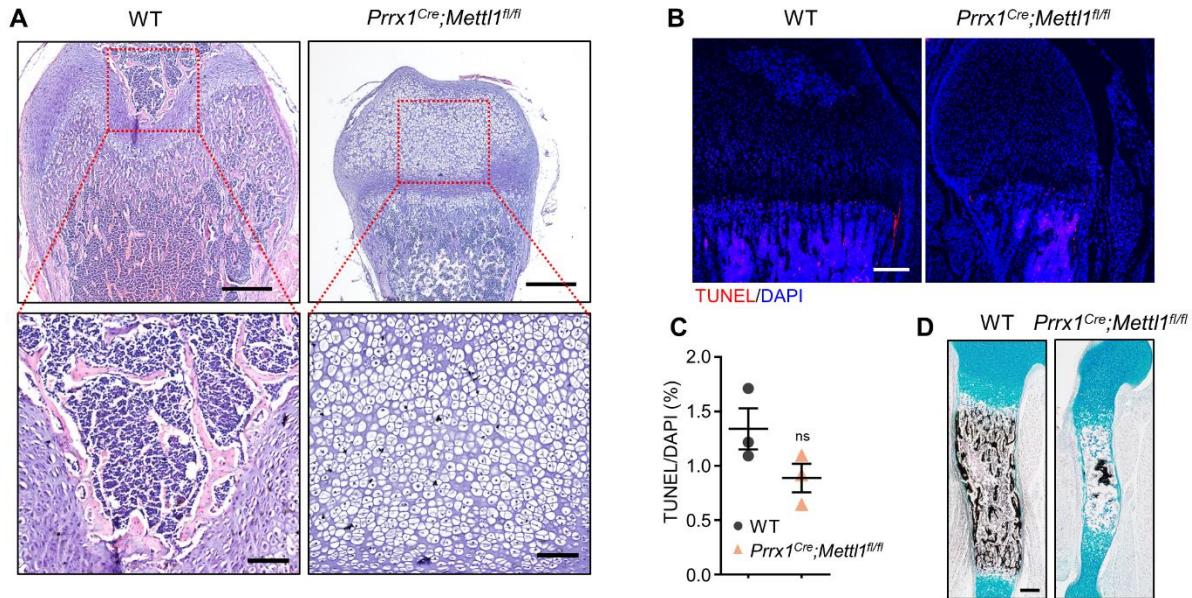

Figure S2 Construction of *Prrx1*^{Cre};Mettl1^{fl/fl} mice

(A) Schematic representation of *Mettl1* conditional knockout strategy. Exon 2 is deleted upon Cre-mediated recombination.

(B) Western blot analysis of METTL1 expression in WT and *Prrx1*^{Cre};Mettl1^{fl/fl} mouse limb tissue lysates at E14.5.

(C) Representative immunohistological staining of METTL1 in WT and *Prrx1*^{Cre};Mettl1^{fl/fl} mouse femur at P0. Scale bar, 200 μ m (left) and 20 μ m (right).

(D) Representative images of WT and *Prrx1*^{Cre};Mettl1^{fl/fl} mice at P0.

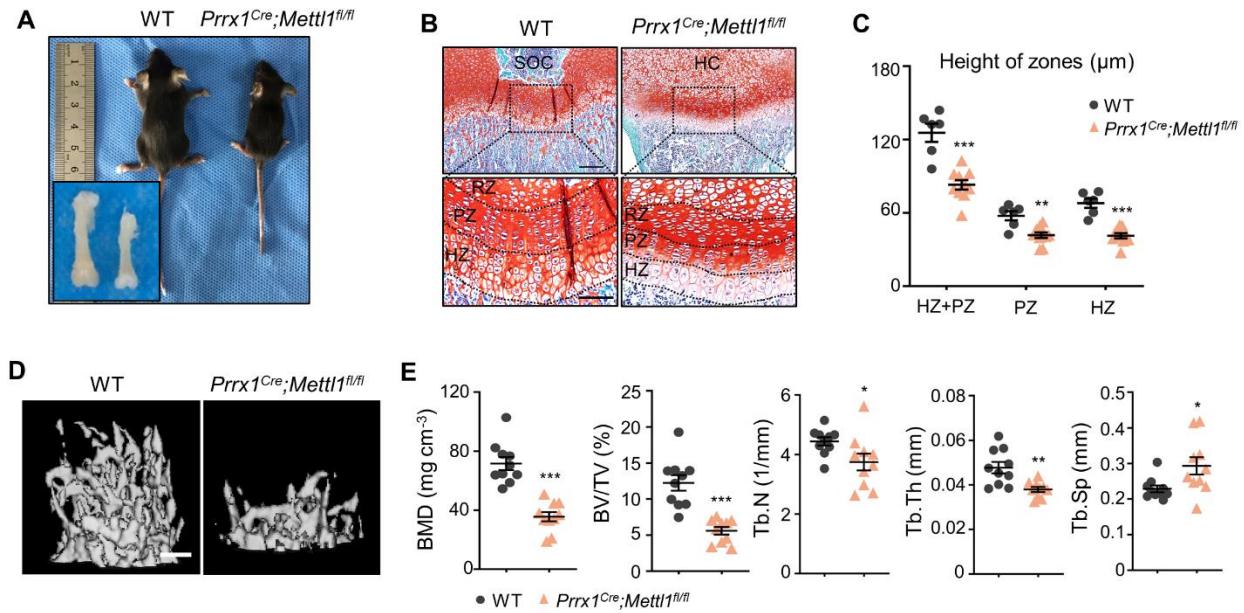

Figure S3 Deletion of Mettl1 does not impair limb patterning

(A) Representative images of WT and *Prrx1*^{Cre};Mettl1^{fl/fl} mouse forelimb bud at E12.5. Scale bar, 500 μ m.

(B) Quantification of third digit length of WT and *Prrx1*^{Cre};Mettl1^{fl/fl} mouse forelimb bud at E12.5. n = 4 (WT) or 3 (*Prrx1*^{Cre};Mettl1^{fl/fl}).

(C & D) Representative immunostaining and quantification of SOX9 in WT and *Prrx1*^{Cre};Mettl1^{fl/fl} mouse forelimb bud at E12.5. Scale bar, 200 μ m. n = 3.

Data are expressed as mean \pm s.e.m; P value was calculated by two-tailed Student's *t* test. ns, not significant.

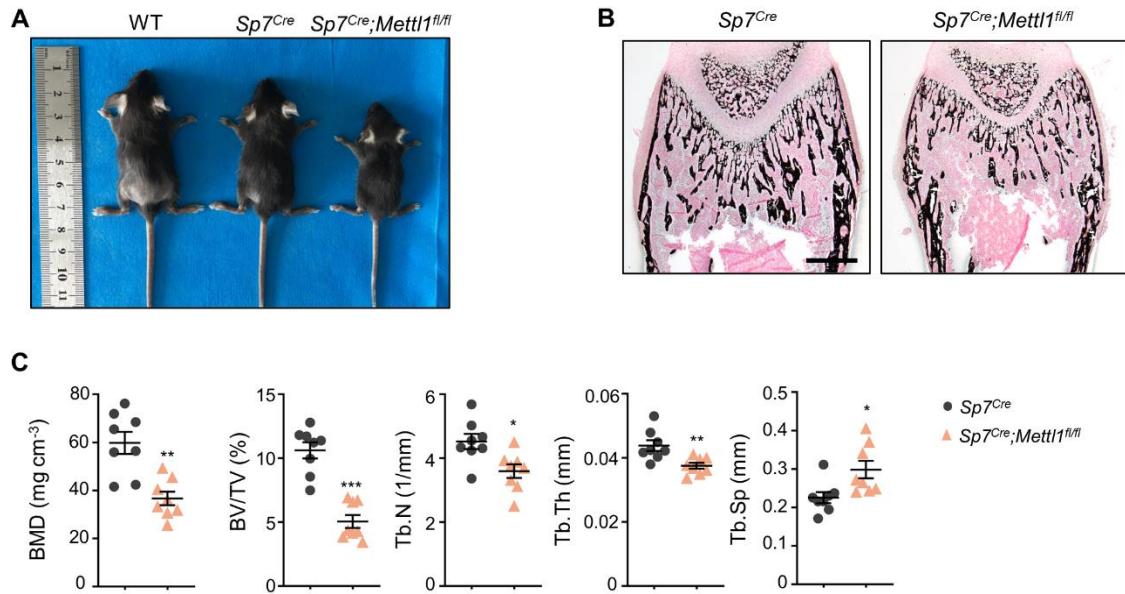

Figure S4 Deletion of *Mettl1* inhibits bone formation

(A) H&E staining of WT and *Prrx1*^{Cre};Mettl1^{fl/fl} mouse femur at P21. Scale bar, 200 μ m (upper) and 50 μ m (lower).

(B & C) Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and quantification of WT and *Prrx1*^{Cre};Mettl1^{fl/fl} mouse humerus at P9. Scale bar, 200 μ m. n = 3.

(D) Representative Alcian blue/von kossa staining of WT and *Prrx1*^{Cre};Mettl1^{fl/fl} mouse humerus at E18.5. Scale bar, 100 μ m.

Data are expressed as mean \pm s.e.m; P value was calculated by two-tailed Student's *t* test. ns, not significant.

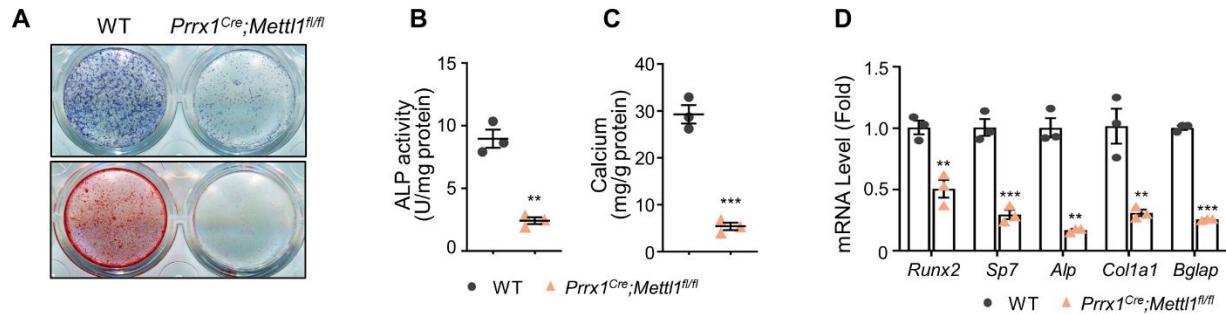

Figure S5 Deletion of Mettl1 inhibits bone growth and reduces bone mass

(A) Representative images of WT and *Prrx1*^{Cre};Mettl1^{fl/fl} mice at 3 weeks of age. Inserted image was femur of WT and *Prrx1*^{Cre};Mettl1^{fl/fl} mice.

(B & C) Representative Safranin O staining and quantification of WT and *Prrx1*^{Cre};Mettl1^{fl/fl} mouse growth plate of the distal femur at 3 weeks of age. Boxed areas were magnified. SOC, secondary ossification center; RZ, resting zone; PZ, proliferating zone; HZ, hypertrophic zone. Scale bar, 100 μm (upper) and 50 μm (lower). n = 6 for WT and n = 10 for *Prrx1*^{Cre};Mettl1^{fl/fl}.

(D & E) Representative μCT images and quantification of femurs from WT and *Prrx1*^{Cre};Mettl1^{fl/fl} mice at 3 weeks of age. Scale bar, 200 μm. n = 10.

Data are expressed as mean ± s.e.m; *P < 0.05, **P < 0.01, ***P < 0.001 by two-tailed Student's t test.


Figure S6 Deletion of *Mettl1* in osteoblast precursors inhibits bone growth

(A) Representative images of WT, $SP7^{Cre}$ and $Sp7^{Cre};Mettl1^{fl/fl}$ mice at 3 weeks of age.

(B) Representative von kossa staining of femurs from $Sp7^{Cre}$ and $Sp7^{Cre};Mettl1^{fl/fl}$ mice at 3 weeks of age. Scale bar, 200 μ m.

(C) Representative μ CT quantification of femurs from $Sp7^{Cre}$ and $Sp7^{Cre};Mettl1^{fl/fl}$ mice at 3 weeks of age. n = 8.

Data are expressed as mean \pm s.e.m; *P < 0.05, **P < 0.01, ***P < 0.001 by two-tailed Student's t test.

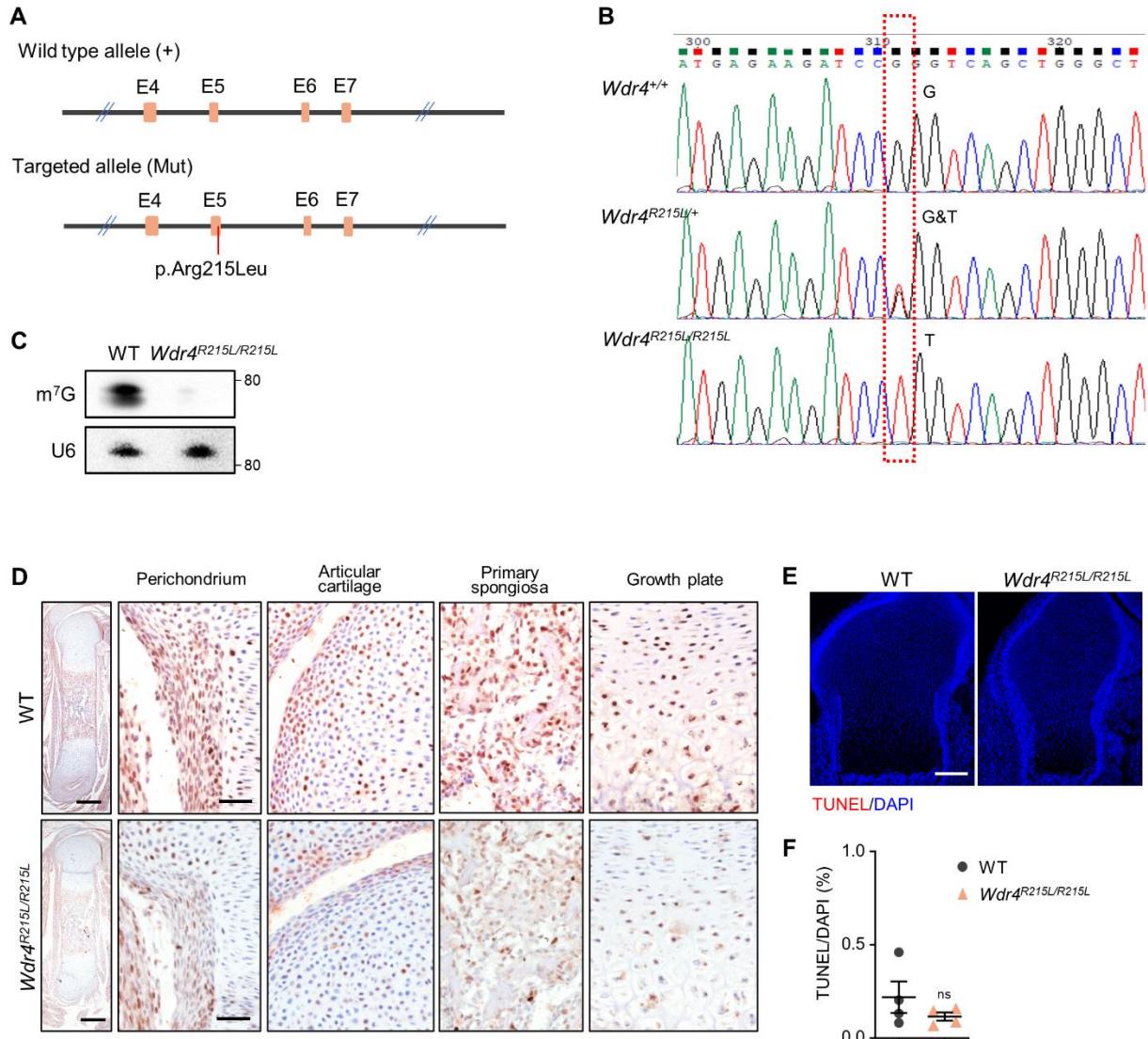


Figure S7 Deletion of *Mettl1* inhibits osteogenesis

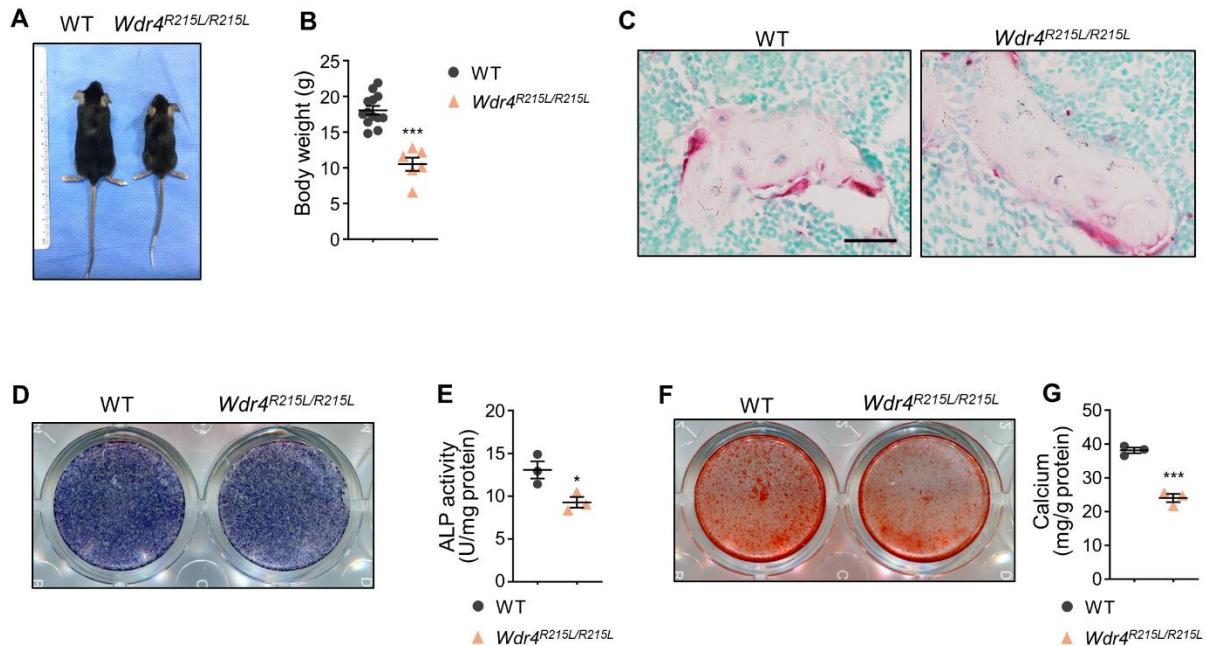
(A-C) Representative images and quantification of alkaline phosphatase (ALP) and alizarin red S (ARS) staining of bone marrow SSCs isolated from WT and *Prrx1*^{Cre}; *Mettl1*^{fl/fl} mice at 3 weeks of age. n = 3 from independent experiments.

(D) qRT-PCR analyses of the expression of *Runx2*, *Sp7*, *Alp*, *Col1a1* and *Bglap* after osteogenic induction of WT and *Prrx1*^{Cre}; *Mettl1*^{fl/fl} SSCs for 5 days. n = 3 from independent experiments.

Data are expressed as mean \pm s.e.m; *P < 0.05, **P < 0.01, ***P < 0.001 by two-tailed Student's t test.

Figure S8 Construction of *Wdr4*^{R215L/R215L} mice

(A) Schematic representation of *Wdr4* mutation.


(B) Representative DNA sequencing results of WT, *Wdr4*^{R215L/+} and *Wdr4*^{R215L/R215L} mice. Boxed areas were mutation site.

(C) m⁷G northwestern blot of WT and *Wdr4*^{R215L/+} mouse limb mesenchymal progenitors. U6 snRNA was used as loading control.

(D) Representative immunohistological staining of METTL1 in WT and *Wdr4*^{R215L/R215L} mouse femur at P0. Scale bar, 200 μm (left) and 20 μm (right).

(E & F) TUNEL assay and quantification of WT and *Wdr4*^{R215L/R215L} mouse femur at E18.5. Scale bar, 200 μm.

Data are expressed as mean ± s.e.m; *P* value was calculated by two-tailed Student's *t* test. ns, not significant.

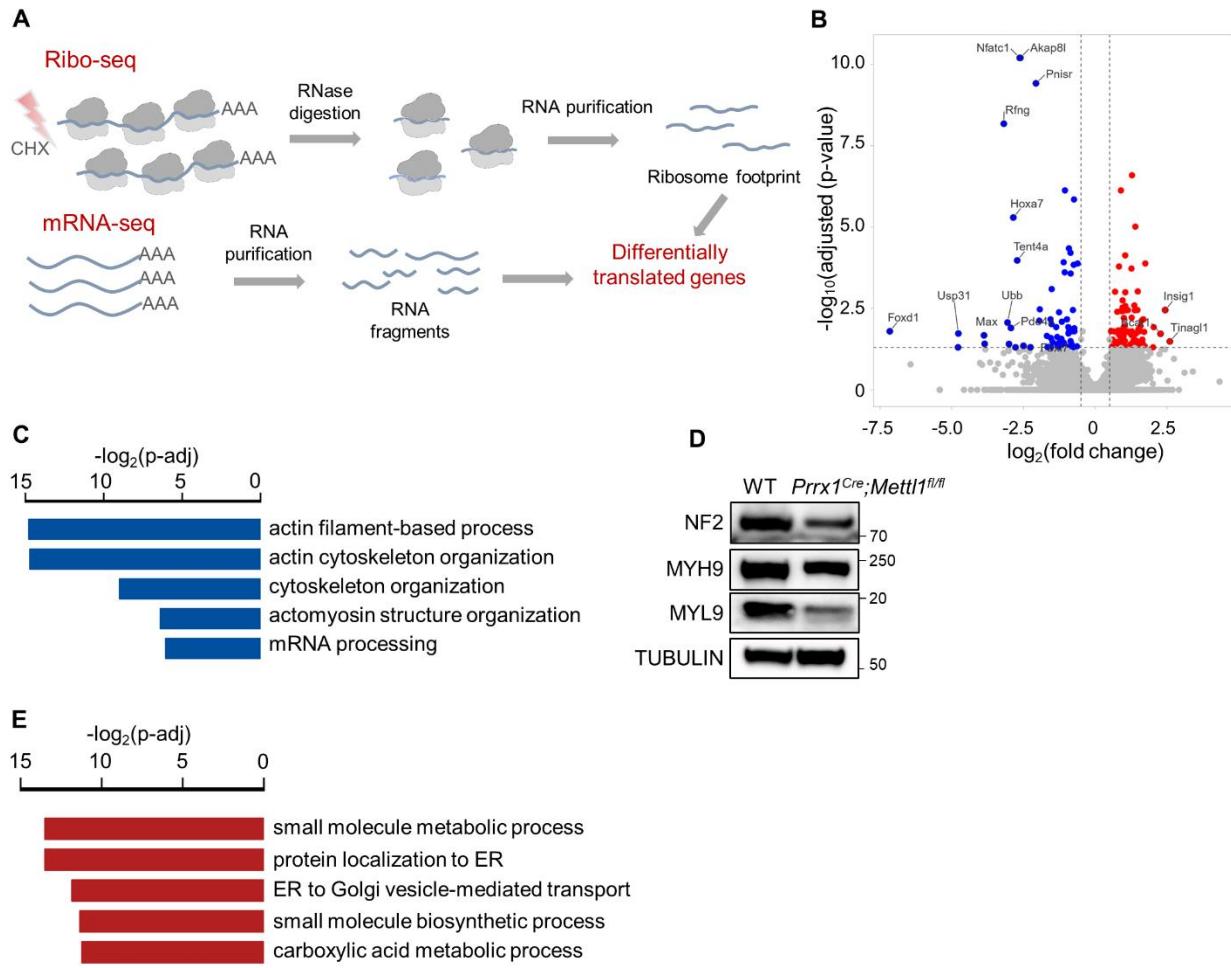


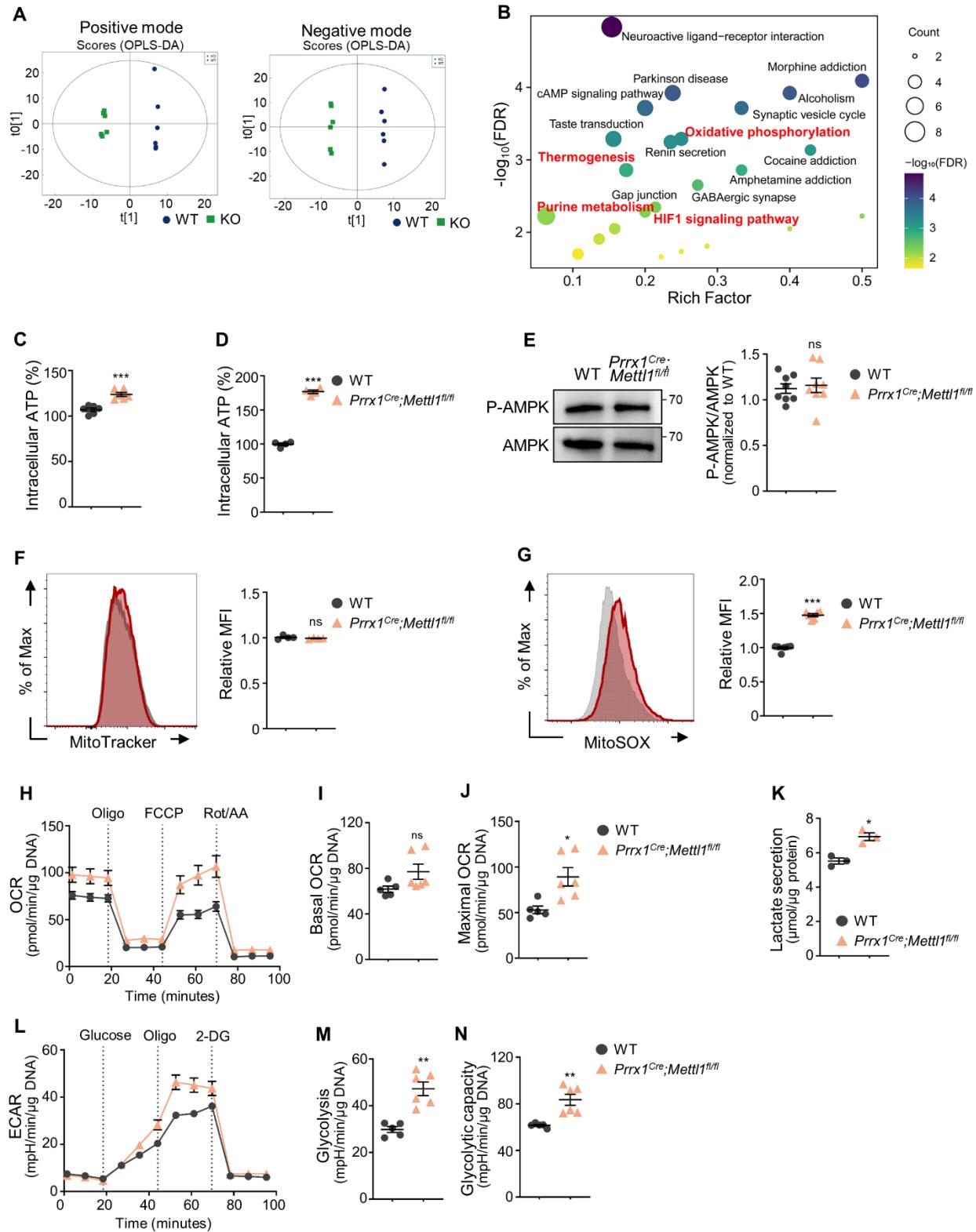
Figure S9 Homozygous *Wdr4*^{R215L} mutation inhibits osteogenesis

(A & B) Representative image and body weight of WT and *Wdr4*^{R215L/R215L} mice at 6 weeks of age. n = 13 for WT and n = 6 for *Wdr4*^{R215L/R215L} mice.

(C) Representative TRAP staining of WT and *Wdr4*^{R215L/R215L} mouse femur at 6 weeks of age. Scale bar, 20 μ m.

(D-G) Representative images and quantification of ALP and ARS staining of bone marrow SSCs isolated from WT and *Wdr4*^{R215L/R215L} mice at 6 weeks of age. n = 3 from independent experiments. Data are expressed as mean \pm s.e.m; * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ by two-tailed Student's *t* test.

Figure S10 Ribosome profiling of *Mettl1*-deficient cells


(A) Schematic representation of ribosome profiling.

(B) Volcano plot of differentially translated genes in *Prrx1*^{Cre}; *Mettl1*^{fl/fl} limb mesenchymal progenitors at E14.5.

(C) Gene ontology (GO) analysis of down-translated genes in *Prrx1*^{Cre}; *Mettl1*^{fl/fl} limb mesenchymal progenitors.

(D) Western blot analysis of cytoskeleton proteins in WT and *Prrx1*^{Cre}; *Mettl1*^{fl/fl} chondrocytes.

(E) GO analysis of up-translated genes in *Prrx1*^{Cre}; *Mettl1*^{fl/fl} limb mesenchymal progenitors.

Figure S11 Mettl1 deletion promotes cellular respiration

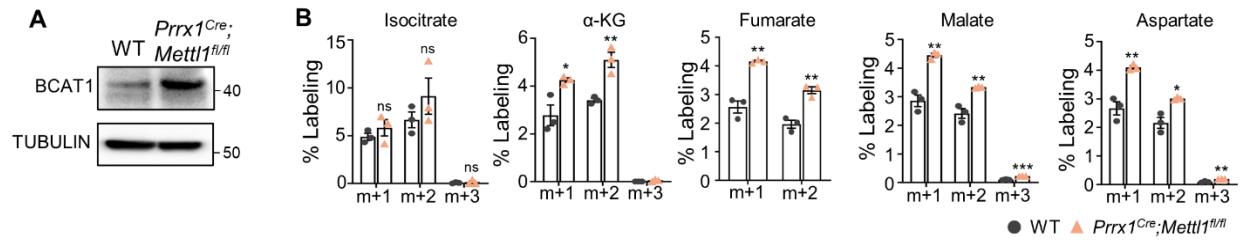
(A) OPLS-DA analysis of WT and *Prrx1*^{Cre}; *Mettl1*^{fl/fl} group.

(B) Pathway enrichment analysis of differential metabolites upon *Mettl1* removal.

(C) Quantification of intracellular ATP levels in WT and *Prrx1*^{Cre}; *Mettl1*^{fl/fl} limb mesenchymal progenitors at E14.5. n = 6.

(D) Quantification of intracellular ATP levels in WT and *Prrx1*^{Cre}; *Mettl1*^{fl/fl} chondrocytes at P0. n = 4.

(E) Western blot analysis and quantification of phospho-AMPK and AMPK levels. n = 8.


(F) Flow cytometry analysis of WT and *Prrx1*^{Cre}; *Mettl1*^{fl/fl} cells stained with MitoTracker. n = 4.

(G) Flow cytometry analysis of WT and *Prrx1*^{Cre}; *Mettl1*^{fl/fl} cells stained with MitoSOX. n = 6.

(H-J) Representative graph of oxygen consumption rate (OCR) and quantification at baseline and with indicated drugs. Oligo, oligomycin; FCCP, Carbonyl cyanide-4 (trifluoromethoxy) Phenylhydrazone; Rot/AA, rotenone and antimycin A. n = 5 (WT) or 6 (*Prrx1*^{Cre}; *Mettl1*^{fl/fl}).

(K) Quantification of lactate secretion in WT and *Prrx1*^{Cre}; *Mettl1*^{fl/fl} limb mesenchymal progenitors.

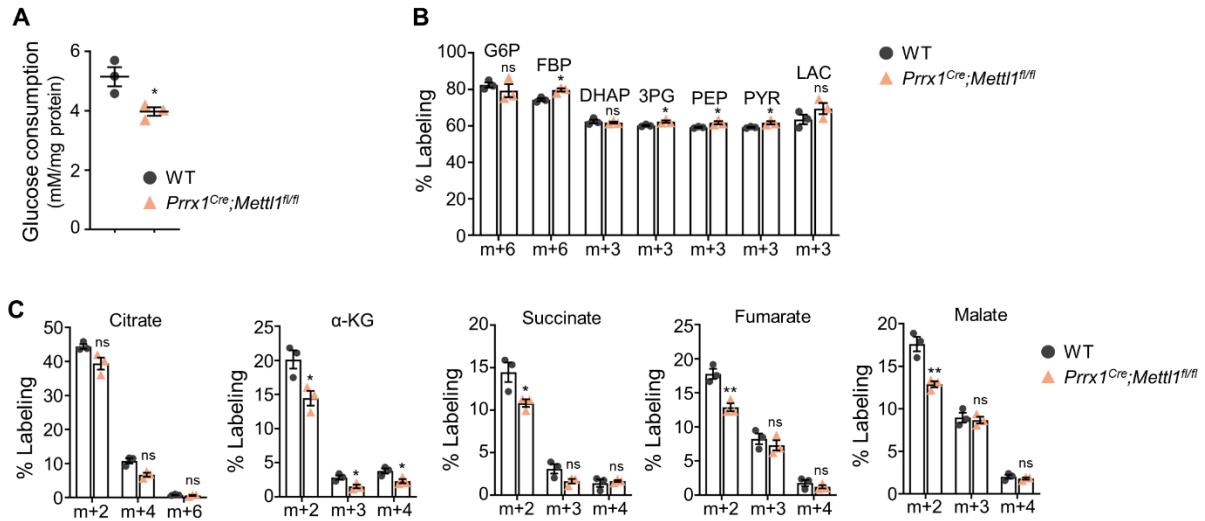
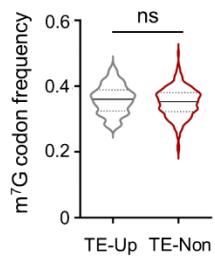

(L-N) Representative graph of extracellular acidification rate (ECAR) and quantification at baseline and with indicated drugs. 2-DG, 2-deoxy-glucose. n = 5 (WT) or 6 (*Prrx1*^{Cre}; *Mettl1*^{fl/fl}). Data are expressed as mean \pm s.e.m; *P < 0.05, **P < 0.01, ***P < 0.001 by two-tailed Student's t test. ns, not significant.

Figure S12 *Mettl1* deletion promotes BCAA catabolism

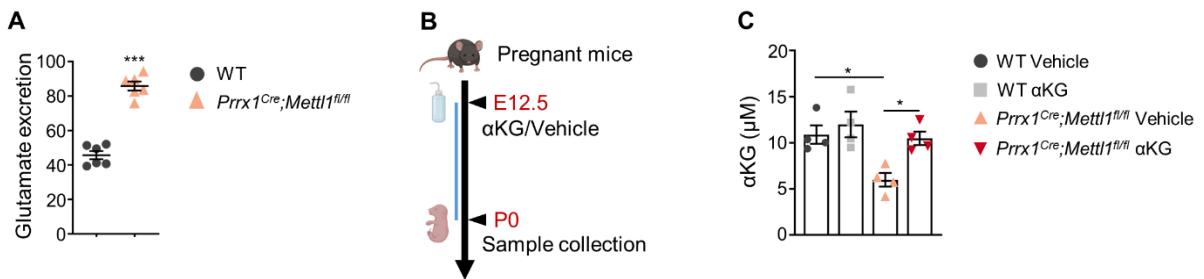
(A) Western blot analysis of BCAT1 levels in WT and *Prrx1*^{Cre}; *Mettl1*^{fl/fl} limb mesenchymal progenitors.

(B) Abundance of ¹³C-labeled intermediate metabolites in TCA cycle of cells treated with ¹³C, ¹⁵N-L-Leucine. n = 3. Data are expressed as mean \pm s.e.m; *P < 0.05, **P < 0.01, ***P < 0.001 by two-tailed Student's t test. ns, not significant.


Figure S13 Mettl1 deletion inhibits glucose metabolism

(A) Measurement of glucose consumption in WT and *Prrx1*^{Cre};Mettl1^{fl/fl} limb mesenchymal progenitors at E14.5. n = 3 from independent experiments.

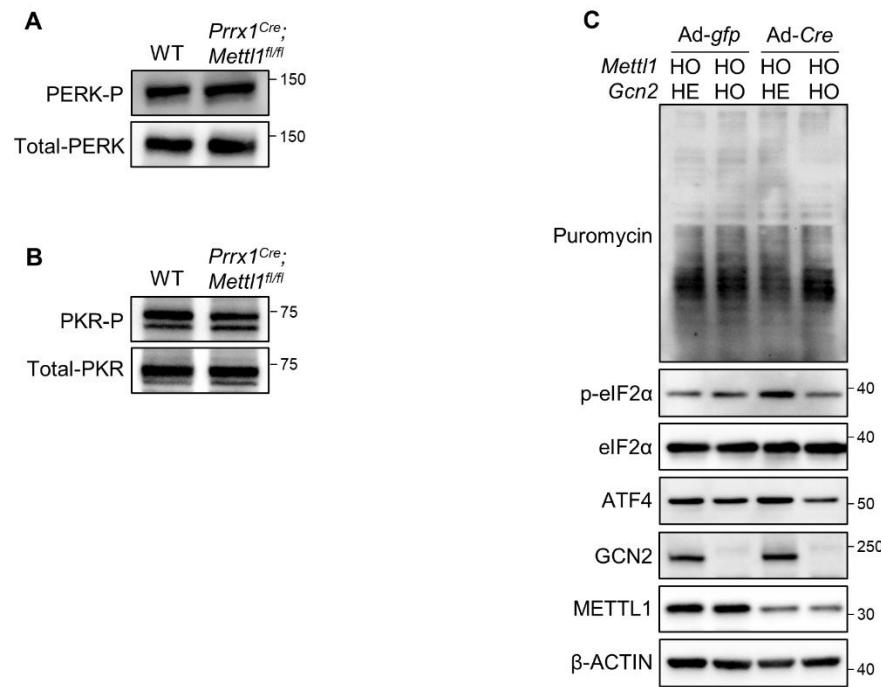
(B) Abundance of ¹³C-labeled glycolytic metabolites of cells treated with ¹³C-glucose. n = 3.


(C) Abundance of ¹³C-labeled intermediate metabolites in TCA cycle of cells treated with ¹³C-glucose. n = 3.

Data are expressed as mean \pm s.e.m; *P < 0.05, **P < 0.01, ***P < 0.001 by two-tailed Student's t test. ns, not significant.

Figure S14 Codon frequency analysis of m^7G -tRNA decoded codons

Frequency analysis of m^7G -tRNA decoded codons in genes with increased translation (TE-up) and without translational change (TE-none) in *Prrx1*^{Cre}; *Mettl1*^{fl/fl} limb mesenchymal progenitors. *P* value was calculated by Mann–Whitney U test. ns, not significant.


Figure S15 Supplementation of α KG to pregnant mice

(A) Measure of glutamate level in culture medium of WT and *Prrx1*^{Cre};Mettl1^{fl/fl} limb mesenchymal progenitors. n = 6.

(B) Schematic representation of α KG supplementation.

(C) Measure of α KG level of cartilage tissue isolated from WT and *Prrx1*^{Cre};Mettl1^{fl/fl} newborn mouse, supplemented with vehicle or α KG.

Data are expressed as mean \pm s.e.m; *P < 0.05, **P < 0.01, ***P < 0.001 by two-tailed Student's *t* test (A) or one-way ANOVA with Tukey's post hoc test (C).

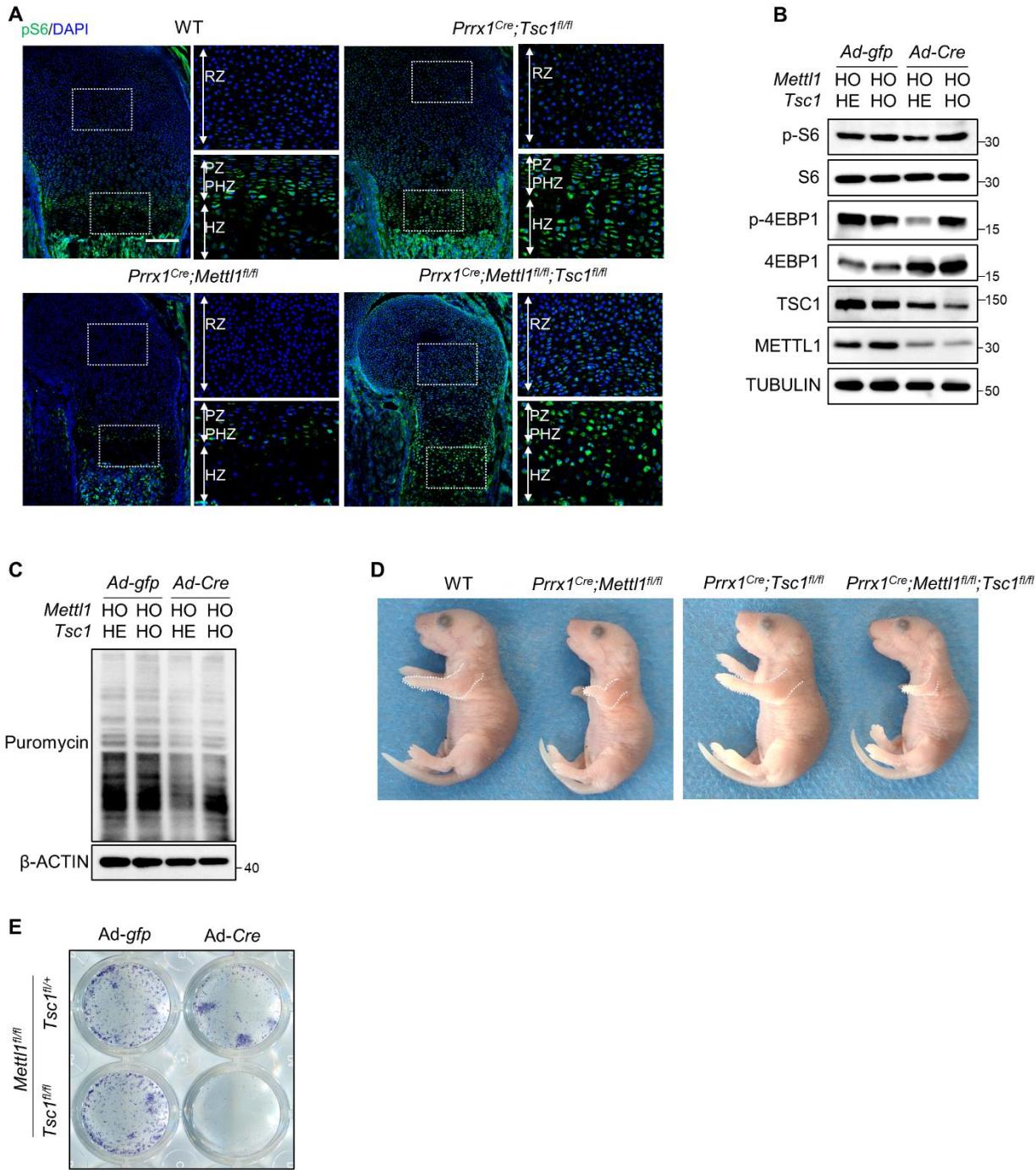


Figure S16 *Mettl1* removal activates ISR via GCN2

(A) Western blot analysis of phospho-PERK and PERK levels in WT and *Prrx1*^{Cre}; *Mettl1*^{fl/fl} limb mesenchymal progenitors.

(B) Western blot analysis of phospho-PKR and PKR levels in WT and *Prrx1*^{Cre}; *Mettl1*^{fl/fl} limb mesenchymal progenitors.

(C) Western blot analysis of ISR signaling and puromycin incorporation into nascent peptides in bone marrow SSCs isolated from *Mettl1*^{fl/fl}; *Gcn2*^{+/+} and *Mettl1*^{fl/fl}; *Gcn2*^{-/-} mice at 4 weeks of age, and infected with Ad-*gfp* or Ad-*Cre*. HE, heterozygous; HO, homozygous.

Figure S17 Promoting translation by mTORC1 activation aggravates bone defect of *Mettl1*-knockout mice

(A) Immunostaining of phospho-S6 in WT, *Prrx1*^{Cre}, *Tsc1*^{fl/fl}, *Prrx1*^{Cre}, *Mettl1*^{fl/fl} and *Prrx1*^{Cre}, *Mettl1*^{fl/fl}; *Tsc1*^{fl/fl} mouse humerus at P0. Boxed areas were magnified. RZ, resting zone; PZ, proliferating zone; PHZ, pre-hypertrophic zone; HZ, hypertrophic zone. Scale bar, 200 μ m.

(B) Western blot analysis of S6, p-S6, 4EBP1, p-4EBP1, TSC and METTL1 in bone marrow SSCs isolated from *Mettl1*^{fl/fl}; *Tsc1*^{fl/+} and *Mettl1*^{fl/fl}; *Tsc1*^{fl/fl} mice at 4 weeks of age, and infected with Ad-gfp or Ad-Cre. HE, heterozygous; HO, homozygous.

(C) Western blot analysis of puromycin incorporation into nascent peptides in bone marrow SSCs isolated from *Mettl1*^{fl/fl}; *Tsc1*^{fl/+} and *Mettl1*^{fl/fl}; *Tsc1*^{fl/fl} mice at 4 weeks of age, and infected with Ad-*gfp* or Ad-*Cre*. HE, heterozygous; HO, homozygous.

(D) Representative images of WT, *Prrx1*^{Cre}; *Tsc1*^{fl/fl}, *Prrx1*^{Cre}; *Mettl1*^{fl/fl} and *Prrx1*^{Cre}; *Mettl1*^{fl/fl}; *Tsc1*^{fl/fl} mice at P0.

(E) Representative images of ALP staining of bone marrow SSCs isolated from *Mettl1*^{fl/fl}; *Tsc1*^{fl/+} and *Mettl1*^{fl/fl}; *Tsc1*^{fl/fl} mice at 4 weeks of age, and infected with Ad-*gfp* or Ad-*Cre*.

Supplementary Table 1

Genes	Primers	Sequence (5'-3')	Product size
<i>Prrx1</i> ^{Cre} / <i>Sp7</i> ^{Cre} WT	Forward	ACTGGGATCTCGAACTCTTGGAC	WT = 397 bp
	Reverse	GATGTTGGGGCACTGCTCATTCA	
<i>Prrx1</i> ^{Cre} / <i>Sp7</i> ^{Cre} Mut	Forward	CCATCTGCCACCAGCCAG	Mut = ~300 bp
	Reverse	TCGCCATCTCCAGCAGG	
<i>Mettl1</i> - <i>flox</i>	Forward	ATACACACTCCTGCCACTCCTTGT	WT = 379 bp Mut = 465 bp
	Reverse	CCCTGGCTTCTAGGGTGTGAATCAG	
<i>Wdr4</i> p.mut	Forward	GGGAGCGGTGCAGCAGGTAT	WT = 585 bp Mut = 585 bp
	Reverse	GCAGCCCACAGCCCTGGATT	
<i>Gcn2</i> WT	Forward	AAGCACTCAAGAACGCTGACATCACC	WT = 321 bp
	Reverse	ATCTATGCACGCTCTCTCAAGAACG	
<i>Gcn2</i> Mut	Forward	GATCATCTGCCCTCTAGTCTGTATG	Mut = 273 bp
	Reverse	TGTAGCCTGTCATCTCCATTCTAG	
<i>Tsc1</i> - <i>flox</i>	Forward	GTCACGACCGTAGGAGAAGC	WT = 193 bp Mut = 230 bp
	Reverse	GAATCAACCCCACAGAGCAT	

Supplementary Table 2

Genes	Sequence
tRNA-Val-AAC	TGTTTCCGCCCGGTTTCGAA
tRNA-Lys-CTT	AACGTGGGGCTCGAACCCAC
U6 snoRNA	TGGAACGCTTCACGAATTG

Supplementary Table 3

Genes	Primers	Sequence (5'-3')
<i>Gapdh</i>	Forward	TCATTGACCTCAACTACATG
	Reverse	TCGCTCCTGGAAGATGGTGAT
<i>Runx2</i>	Forward	GGTACTTCGTCAGCATCCTATCAG
	Common	GCTTCCGTCAGCGTCAACAC
<i>Sp7</i>	Forward	ATGGCGTCCTCTCTGCTTG
	Reverse	TGAAAGGTCAGCGTATGGCTT
<i>Bglap</i>	Forward	TTGGTGCACACCTAGCAGAC
	Reverse	ACCTTATTGCCCTCCTGCTT
<i>Alp</i>	Forward	AACCCAGACACAAGCATTCC
	Reverse	GCCTTGAGGTTTTGGTCA
<i>Colla1</i>	Forward	TAGGCCATTGTGTATGCAGC
	Reverse	ACATGTTCAGCTTGTGGACC
<i>Col2a1</i>	Forward	AGAACATCACCTACCACTGTAAGAAC
	Reverse	TGACGGTCTTGCCCCACTT
<i>Colla1</i>	Forward	CCTTCTGCTGCTAATGTTCTTGA
	Reverse	ATGCCTTGTCTCCTCTTACTGGA
<i>Mmp13</i>	Forward	ACTTCTACCCATTGATGGACCTT
	Reverse	AAGCTCATGGCAGCAACA

Supplemental Methods

Antibodies	Source	Catalog
METTL1	Proteintech	Cat #:14994-1-AP; RRID: AB_2142013
Col10	Abcam	Cat #: ab58632; RRID: AB_879742
MMP13	Abcam	Cat #: ab39012; RRID:AB_776416
Sp7	Abcam	Cat #: ab209484; RRID:AB_2892207
TUBULIN	Proteintech	Cat #: 11224-1-AP; RRID:AB_2210206
WDR4	Proteintech	Cat #: 14766-1-AP; RRID:AB_2215387
Puromycin	Millipore	Cat #: MABE343; RRID:AB_2566826
7-methylguanosine (m7G)	MBL International	Cat #: RN017M; RRID:AB_2725740
Phospho-eIF2 α (Ser51)	CST	Cat #: 3398; RRID:AB_2096481
eIF2 α	CST	Cat #: 5324; RRID:AB_10692650
ATF4	Huabio	Cat #: ET1612-37
Phospho-GCN2	Abcam	Cat #: 75836; RRID:AB_1310260
GCN2	CST	Cat #: 3302S; RRID: AB_2277617
Phospho-PERK	Immunoway	Cat #: YP1005
PERK	CST	Cat #: 3192S; RRID:AB_2095847
Phospho-PKR	Abcam	Cat #: 32036; RRID:AB_777310
PKR	Proteintech	Cat #: 18244-1-AP; RRID:AB_2246451
β -ACTIN	Proteintech	Cat #: 20536-1-AP; RRID:AB_10700003
Phospho-S6 Ribosomal Protein (Ser235/236) (D57.2.2E)	CST	Cat #: 4858; RRID:AB_916156
Ribosome Protein S6	Santa cruz	Cat #: sc-74459; RRID:AB_1129205
Phospho-4E-BP1 (Thr37/46) (236B4)	CST	Cat #: 2855; RRID:AB_56083
4EBP1	Huabio	Cat #: ER62532

TSC1	Proteintech	Cat #: 29906-1-AP; RRID:AB_2918352
phospho-AMPK α (Thr172)	CST	Cat #: 2535; RRID:AB_331250
AMPK α	CST	Cat #: 2532; RRID:AB_330331
BCAT1	Proteintech	Cat #: 13640-1-AP; RRID:AB_2063569
NF2	Proteintech	Cat #: 21686-1-AP; RRID:AB_10792410
MYL9	Proteintech	Cat #: 15354-1-AP; RRID:AB_2147773
MYH9	Proteintech	Cat #: 11128-1-AP; RRID:AB_2147294
Alexa Fluor 488 Phalloidin	Thermo Fisher Scientific	Cat #: A12379; RRID:AB_2315147
Goat anti-Rabbit IgG secondary Ab HRP conjugated	Signalway	Cat #: L3012; RRID:AB_895483
Goat anti-mouse IgG secondary Ab HRP conjugated	Signalway	Cat #: L3032; RRID:AB_895481
Goat Anti-rabbit IgG (Cy3)	The Jackson ImmunoResearch	Cat #: 111-165-003; RRID:AB_2338000
Goat Anti-rabbit IgG (Alexa Fluor® 488)	The Jackson ImmunoResearch	Cat #: 111-545-003; RRID:AB_2338046
Goat Anti-rabbit IgG (Alexa Fluor® 647)	The Jackson ImmunoResearch	Cat #: 111-605-003; RRID:AB_2338072

Bacterial and virus strains

Adeno-Cre	Genechem	N/A
Adeno-gfp	Genechem	N/A

Chemicals, peptides and recombinant proteins

Puromycin	Sigma-Aldrich	Cat#P8833
Cycloheximide	Sigma-Aldrich	Cat#C7698
Alpha-ketoglutaric acid	Sigma-Aldrich	Cat#K1128

Alcian blue 8GX	Solarbio	Cat# A8140
Alizarin S	Sigma-Aldrich	Cat#A5533
EdU	Carbosynth	Cat#NE08701
Sulfo-Cyanine3 azide	Lumiprobe	Cat#D1330
Collagenase type II	Worthington-Biochem	Cat#LS004176
Dispase I	Sigma-Aldrich	Cat#D4693
Safranin O	Sigma-Aldrich	Cat#S2255
Fast Green	Sigma-Aldrich	Cat#F7252
Silver nitrate	Sigma-Aldrich	Cat#85193
Mitotracker Red CMXRos	Yeasen	Cat#40741ES50
MitoSOX	Invitrogen	Cat#M36008
TRIzol reagent	Invitrogen	Cat#15596026
NSC23766 trihydrochloride	MedChemExpress	Cat#HY-15723A
CN04 (Rho/Rac/Cdc42 Activator I)	Cytoskeleton	Cat#CN04-A

Critical commercial assays

TUNEL assay kit	Promega	Cat#G3250
BCIP/NBT staining kit	Beyotime	Cat#C3206
ALP assay kit	Beyotime	Cat#P0321
PrimeScript RT reagent Kit with gDNA Eraser	Takara	Cat#RR047A
SYBR Premix Ex Taq II	Takara	Cat#1725121
	Nanjing jiancheng	
Glucose assay kit	Bioengineering Institute	Cat#F006-1-1
aKG assay kit	Abcam	Cat#ab83431

Alcian blue staining kit	Solarbio	Cat#G1560
H&E staining kit	Solarbio	Cat#G1120
Seahorse XF cell mito stress test kit	Agilent	Cat#103015-100
Seahorse XF glycolytic rate assay kit	Agilent	Cat#103344-100

Deposited data

TRAC-seq of limb progenitors from WT and <i>Prrx1</i> ^{Cre} ; <i>Mettl1</i> ^{fl/fl} mice	This paper	https://ngdc.cncb.ac.cn/gsa/browse/CRA012901
Ribosome profiling results	This paper	https://ngdc.cncb.ac.cn/gsa/browse/CRA012883
Untargeted metabolomics	This paper	https://ngdc.cncb.ac.cn/omix : accession no. OMIX005049

Experimental models: Organisms/strains

<i>Mettl1</i> ^{fl/+} mice	Biocytogen	N/A
<i>Wdr4</i> ^{R215L/+} mice	Biocytogen	N/A
<i>Prrx1</i> ^{Cre} mice	The Jackson Laboratory	Stock No: 005584
<i>Sp7</i> ^{Cre} mice	The Jackson Laboratory	Stock No: 035391
<i>Gcn2</i> ^{+/-} (<i>Eif2ak4</i> ^{+/-}) mice	GemPharmatech	Stock No: T012642
<i>Tsc1</i> ^{fl/+} mice	The Jackson Laboratory	Stock No: 005680

Oligonucleotides

See Table S1-S3 for a list of primers.

Software and algorithms

Fiji/ImageJ	ImageJ	https://imagej.nih.gov/ij/
FV10-ASW 3.1	Olympus	http://www.olympus.com.cn/
FlowJo 10	BD Biosciences	https://www.flowjo.com/

µCT50	SCANCO Medical	N/A
ChemiDoc	Biorad	https://www.bio-rad.com/en-jp/category/chemidoc-imaging-systems?ID=NINJ0Z15
GraphPad Prism	Prism	https://www.graphpad-prism.cn/prism.html
SPSS 20.0	IBM	https://www.ibm.com/spss
Imaris 8.1	Nikon	https://imaris.oxinst.com/
OsteoMeasure	OsteoMetrics	https://www.osteometrics.com/
Seahorse Wave	Agilent	https://www.agilent.com/en/product/cell-analysis/real-time-cell-metabolic-analysis/xf-software/seahorse-wave-desktop-software-740897
