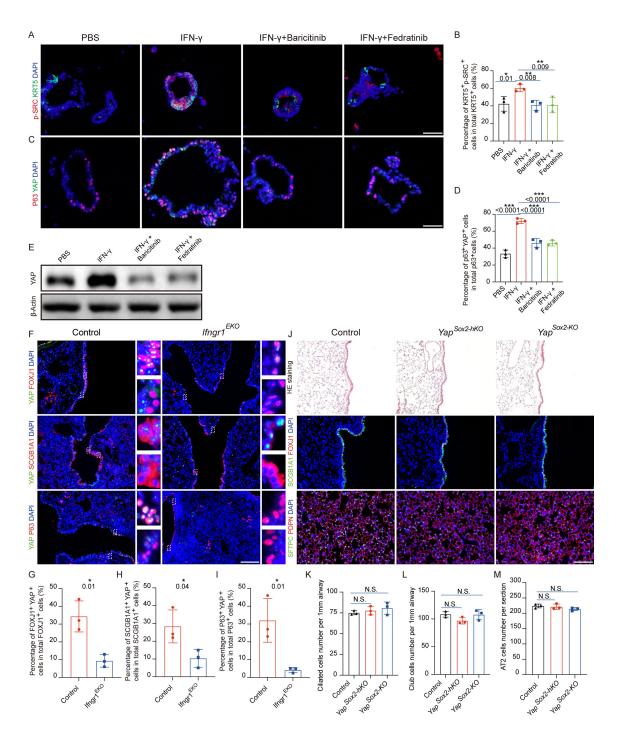
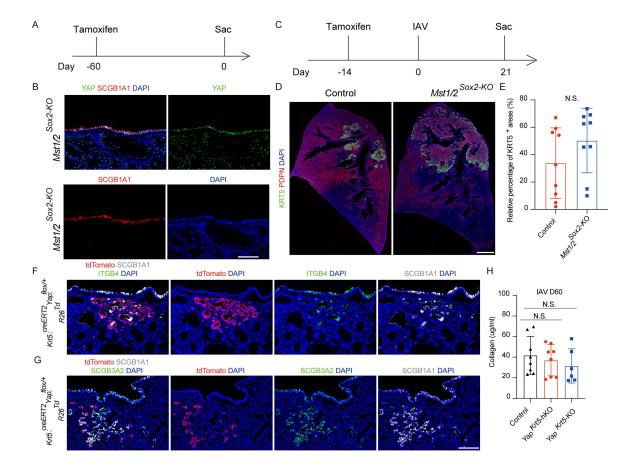
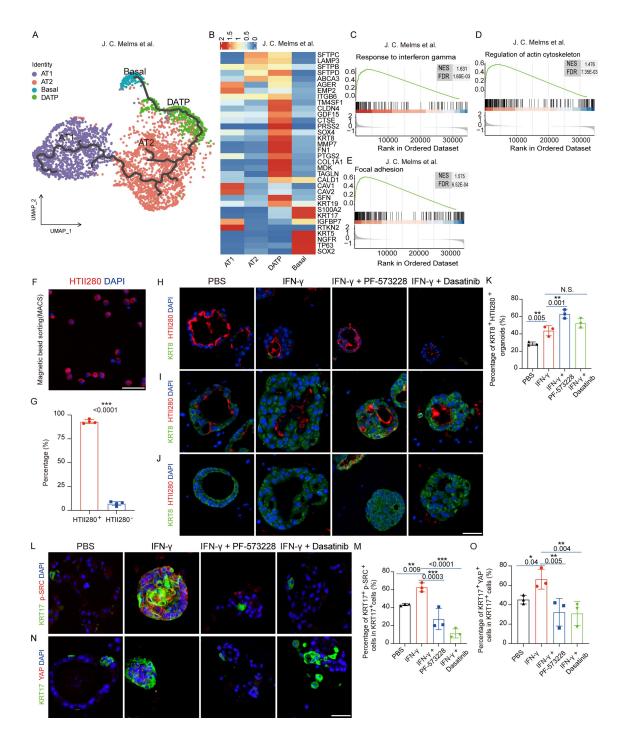

Supplemental Figure 1. CD8⁺ T cells persist in the KRT5⁺ alveolar area after IAV infection. (A-B) Hematoxylin and eosin (H&E) staining and quantification of remodeling alveolar areas in IAV and bleomycin model (n = 12 mice per group). Scale bars: 500 µm. (C-D) Immunofluorescence analysis and quantification of percentages of PDPN⁺ KRT5⁻ areas in whole left lung areas (DAPI⁺) in IAV and bleomycin model (n = 12 mice per group). Scale bars: 500 μm. (**E**) Inflammatory cytokines in BAL from IAV and bleomycin mice lung (n = 4 mice per group). (F) Inflammatory cytokines in IAV and bleomycin injured lung homogenate (n = 4 mice per group). (G) Representative plots for analyzing total lymphocytes, NK cells, CD4+ T cells, CD8+ T cells, alveolar macrophages, and monocyte-derived inflammatory macrophages. Immunofluorescence images of CD8⁺ T cells with KRT5⁺ cells at indicated time points after IAV challenge. Data are representative of sections from 3 mice at each time point. Scale bars: 50 μ m. * for P < 0.05; ** for P < 0.01; *** for P < 0.001. Error bars represent means ± SEM. Two-tailed Student's t test for **B** and **D**; Multiple t test for **E** and **F**.


Supplemental Figure 2. The role of interferon signaling in homeostasis and in regulated dysplastic alveolar remodeling following IAV or bleomycin injury. (A-**E)** Ifngr1^{EKO} mutant mice showed comparable number of SCGB1A1⁺ club cells, FOXJ1⁺ ciliated cells, SFTPC⁺ AT2 cells, and PDPN⁺ AT1 cells as control mice (n = 3 mice per group). Scale bars: 50 µm. (F) Illustration of influenza A virus (IAV; PR8 strain) infection model. (G) PAS staining showing goblet cells hyperplasia in the airway in both control and Ifngr1EKO mice after IAV challenge. Data are representative of sections from 3 mice respectively. Scale bars: 50 µm. (H) Expression of influenza specific genes, nucleoprotein (NP) and Non-Structural Protein 1 (NS1), as assayed by gRT-PCR in control and *Ifngr1*^{EKO} mice after IAV challenge at indicated time points (n = 3 mice per group). (I) Illustration of repetitive bleomycin challenge induced lung injury model. (J) Immunofluorescence images of dysplastic KRT5⁺ cells and PDPN⁺ AT1 cells in control, and Ifngr1^{EKO} mice lungs after repetitive bleomycin treatment. Scale bars: 500 μm (top row) and 50 µm (bottom row). (**K**) Quantification of percentages of KRT5⁺ alveolar area in total damaged lung area (PDPN and KRT5+) in control and Ifngr1EKO mice after bleomycin treatment (n = 6 mice per group). * for P < 0.05; ** for P < 0.01; *** for P < 0.001. Error bars represent means ± SEM.Two-tailed Student's t test for C-E; Multiple t test for H; two-tailed Mann-Whitney U test for K.


Supplemental Figure 3. IFN-γ regulates lung dysplastic remodeling in a *Stat1* **independent manner.** (**A-B**) Immunofluorescence staining and quantification of percentages of KRT5⁺ p63⁺ cells in total p63⁺ cells of PBS, IFN-γ, IFN-γ and Baricitinib, or IFN-γ and Fedratinib treated organoids (n = 3 technical replicates, experiment repeated twice). Scale bars: 25 μm. (**C-E**) Experiment design and quantification of percentages of KRT5⁺ dysplastic cell areas in damage alveolar areas (PDPN⁻ and KRT5⁺) in control and Baricitinib mice at 14 dpi (n = 9 mice per group). Scale bars: 500 μm. (**F-H**) Experiment design and quantification of percentages of KRT5⁺ dysplastic cell areas in damage alveolar areas (PDPN⁻ and KRT5⁺) in control and *Stat1*^{EKO} mutant mice at 14 dpi (n = 9 mice per group). Scale bars: 500 μm. * for P < 0.05; ** for P < 0.01; *** for P < 0.001. Error bars represent means ± SEM. One-way ANOVA for **B**; two-tailed Mann–Whitney U test for **E** and **H**.


Supplemental Figure 4. Single-cell analysis of lung epithelial cells from IAV infected lungs. (A) t-SNE showing the expression of marker genes in each cell cluster. (B) Dot plot showing the expression of integrin and focal adhesion related genes in all epithelial cells. (C-D) Immunofluorescence staining and quantification of percentages of YAP+pSRC+ cells in pSRC+ cells or YAP+pSRC+ cells in YAP+ cells in each individual pods at 12 dpi (n = 13 pods from 5 mice). Scale bars: $50 \mu m$. * for P < 0.05; ** for P < 0.01; *** for P < 0.001. Error bars represent means \pm SEM. Two-tailed Mann–Whitney U test for E.

Supplemental Figure 5. IFN-y promote p-SRC and YAP activation. (A-B) Immunofluorescence staining and quantification of KRT5⁺ pSRC⁺ cells in KRT5⁺ cells treated with PBS, IFN-y, IFN-y and JAK inhibitor Baricitinib or Fedratinib (n = 3 technical replicates, experiment repeated twice). Scale bars: 25 µm. (C-D) Immunofluorescence images and quantification of the number of YAP+ p63+ cells in cultured mouse intrapulmonary p63⁺ cells treated with PBS, IFN-γ, IFN-γ and JAK inhibitor Baricitinib or Fedratinib (n = 3 technical replicates, experiment repeated twice). Scale bars: 25 µm. (E) Western blot analysis of YAP protein in cultured intrapulmonary p63⁺ cells treated with PBS, IFN-y, IFN-y and Baricitinib, IFN-y and Fedratinib. (F-I) Immunofluorescence staining and quantification of cells expressing nuclear YAP in control and Ifngr1^{EKO} mice at 14 dpi (n = 3 mice per group). Scale bars: 50 µm. (J) H&E staining or immunofluorescence images of SCGB1A1⁺ club cells, FOXJ1⁺ ciliated cells, SFTPC⁺ AT2 cells, and PDPN⁺ AT1 cells in control and mutant mice at homeostasis. Scale bars: 50 µm. (K-M) Quantification of number of SCGB1A1* club cells, FOXJ1* ciliated cells, and SFTPC+ AT2 cells in control and mutant mice at homeostasis (n = 3 mice per group). * for P < 0.05; ** for P < 0.01; *** for P < 0.001. Error bars represent means ± SEM. One-way ANOVA for **B** and **D**, **K-M**; two-tailed Student's t test for **G-I**.

Supplemental Figure 6. Further validation of YAP function in regulating dysplastic cells. (A-B) Experiment design and immunofluorescence images of YAP and SCGB1A1 in Mst1/Mst2^{Sox2-KO} mutant mice at homeostasis. Data are representative of sections from 3 mice. Scale bars: 50 µm. (C-D) Experiment design and immunofluorescence images of dysplastic KRT5+ cells and PDPN+ AT1 in control and Mst1/Mst2^{Sox2-KO} mutant mice lungs after IAV challenge. Scale bars: 500 µm. (**E**) Quantification of the percentages of KRT5⁺ alveolar area in total damaged lung area (PDPN- and KRT5+) in control and Mst1/Mst2^{Sox2-KO} mutant mice lungs after IAV challenge (n = 9 mice per group). (F-G) Representative IHC showing ITGB4 and SCGB3A2 expressing in lineage-traced SCGB1A1+ cells in Krt5^{creERT2/+}; Yap^{flox/+}; R26^{Td} mice at 35 dpi. Data are representative of sections from 3 mice respectively. Scale bars: 50 µm. (H) Quantitative analysis of collagen content in lung homogenates from control, $Yap^{Krt5-hKO}$, and $Yap^{Krt5-KO}$ mice at 60 dpi (Tamoxifen at day 21 post infection) (n \geq 6 mice per group). * for P < 0.05; ** for P < 0.01; *** for P < 0.001. Error bars represent means ± SEM. Two-tailed Mann–Whitney U test for E; One-way ANOVA for H.

Supplemental Figure 7. SC-RNA seg analysis for Covid19 lung epithelial and human organoid culture. (A) Single-cell RNA-Seq t-SNE clustering of lung epithelial cells from Covid-19 patient. (B) Heatmap showing marker genes expression in each cell cluster. (C-E) Gene Set Enrichment Analysis (GSEA) revealed that in Covid-19 lungs, response to IFN-y, regulation of actin cytoskeleton, and focal adhesion pathway were highly activated in KRT8⁺ dysplastic cells compared to in AT2 cells. (**F**) Magnetic bead sorting (MACS) HTII 280+ human AT2 cells. Scale bars: 25 µm. (G) Purity of sorted HTII-280⁺ cells (n = 4 biological replicates). (H-J) Representative images of HTII-280⁺ KRT8⁻, HTII-280⁺ KRT8⁺, and HTII-280⁻ KRT8⁺ organoids from each group. Scale bars: 25 µm. (K) Quantification of KRT8⁺ HTII-280⁺ organoids in total human AT2 organoids treated with PBS, IFN-y, IFN-y and SRC inhibitor (Dasatinib) or IFN-y and FAK inhibitor (PF-573228) (n = 3 technical replicates, experiment repeated twice). (L-O) Immunofluorescence staining and quantification of percentages of p-SRC+KRT17+ cells and YAP+KRT17+ cells in KRT17+ cells from human AT2 organoid treated with PBS, IFN-y, IFN-y and SRC inhibitor (Dasatinib) or IFN-y and FAK inhibitor (PF-573228) (n = 3 technical replicates, experiment repeated twice). Scale bars: 25 μ m. * for P < 0.05; ** for P < 0.01; *** for P < 0.001. Error bars represent means \pm SEM. Two-tailed Student's t test for G; One-way ANOVA for K, M, and O.

Supplemental Table 1.

Human lung Information

Donor (D)	Age	Sex	disease
D1	14	F	pneumothorax
D2	13	F	pneumothorax
D3	14	F	Pulmonary bullae
D4	10	F	Secondary Lung Tumors
D5	16	М	pneumothorax
D6	6	М	Mediastinal Tumor (Mass)
D7	13	М	pneumothorax

Supplemental Table 2.

Covid19 patient lung tissue Information

Patient (P)	Age	Sex	disease
P1	63	F	Covid19
P2	54	М	Covid19

Supplemental Table 3.

qPCR primers

qi Oix pililleis	
Ifng	5' - GAGGAACTGGCAAAAGGATGGT -3'
iiiig	5' - TTTCGCCTTGCTGTTGCTGA -3'
lfnb	5' - CCTGGAGCAGCTGAATGGAA -3'
IIIID	5' - CCACCCAGTGCTGGAGAAAT -3'
II5	5'- AACTGTCCGTGGGGGTACT -3'
เเอ	5'- CTCGCCACACTTCTCTTTTTGG -3'
1100	5'- GTGAGAAGCTAACGTCCATCATT -3'
II22	5'- CTGGTCTCATGGACAACTTGA -3'
1116	5'- TGCCACCTTTTGACAGTGATG -3'
II1b	5'- TGATGTGCTGCGAGATT -3'
1147-	5'- ACCCTGGACTCTCCACCGCAA -3'
II17a	5'- GGTGGTCCAGCTTTCCCTCCG -3'
II13	5'-AAAGCAACTGTTTCGCCACG-3'
1113	5'-CCTCTCCCCAGCAAAGTCTG-3'
Trafo	5'- TAGCCCACGTCGTAGCAAAC -3'
Tnfa	5'- ACAAGGTACAACCCATCGGC -3'
Krt5	5'- GCAGACACGTCTCTGACA -3'
KILO	5'- TGCAGCTCCTCATACTTGGT -3'
DD0 ND	5'- ACGGCTGGTCTGACTCACAT -3'
PR8-NP	5'- TCCATTCCGGTGCGAACAAG -3'
DD0 NC1	5'- AGCAGATAGTGGAGCGGATT -3'
PR8-NS1	5'- GTACAGAGGCCATGGTCATT -3'
Tubb1	5'- CGGCCAGGTCATCACTATTGGCAAC -3'
Tubb1	5'- GCCACAGGATTCCATACCCAAGAAG -3'