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Supplementary Fig. 1. Activation status of FOXO1 in murine c-MYC HCC. (A) Representative images: H&E staining, and
immunohistochemical staining of FOXO1, p-FOXO15er256.  and p-FOX03%er253, Scale bars: 500 um for 40 X images and 100
Mm for 200 X images. (B) Western blot results show the expression of c-MYC and p-FOXOs in normal livers (NL) and c-Myc

HCCs. GAPDH was used as the loading control. (C) Microarray analysis of FOXO1 downstream genes in normal livers (NL)
and c-Myc HCCs (n =4, 4). Student’s t-test. *, p<0.05. **, p<0.01. ***, p<0.001.
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Supplementary Fig. 2. Effects of FOXO1 activation on c-MYC liver tumors. (A) Western blot results show the
levels of c-MYC, MYC-tagged FOXO1AAA, and key molecules downstream of mMTORC?2 signaling. GAPDH was

used as the loading control. (B) RNAseq results of FOXO1 target genes in the c-MYC/pT3 and c-
MYC/FOXO1AAA HCCs (n = 3, 3). Data are presented as mean £ SD. Tukey—Kramer test. At least p<0.05. a,
versus NL; b, versus pT3; c, versus NL. Abbreviations: NL, normal liver. pT3, pT3-EF1a.



Supplementary Fig. 3
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Supplementary Fig. 3. Effect of FOXO3 activation on c-MYC-induced hepatocarcinogenesis. (A) Study design.
FVB/N mice were hydrodynamically injected with plasmid mixtures of c-MYC and a constitutively active mutant form of
FOXO3 (FOXO3AAA) in pT3-EF1a backbone (c-MYC/FOXO3AAA, n = 3). The control mice were hydrodynamically
injected with c-MYC and pT3-EF1a empty vector (c-MYC/pT3, n = 3). Mice were monitored for tumor development and
were euthanized when moribund tumors developed or till the end of the observation period. (B) Survival curve of mice
in two groups. The Kaplan-Meier comparison was performed, p = 0.9199. (C) Comparison of liver weight between the
two groups. Data are presented as mean = SD. Student’s t-test. ns, no significant. Abbreviations: pT3, pT3-EF1a.
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Supplementary Fig. 4. Principal component analysis (PCA) of RNA-seq data for normal liver (NL),
c-MYC/pT3, and c-MYC/FoxO1AAA in mouse model (n = 3, 3, 3).
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Supplementary Fig. 5. Analysis of RNA-seq data for NL, c-MYC/pT3, and c-MYC/FoxO1AAA. (A) Venn diagram
displaying the genes that are upregulated in c-MYC/pT3 but downregulated by FOXO1AAA. (B) Venn diagram
displaying the genes downregulated in c-MYC/pT3 but upregulated by FOXO1AAA. (C) KEGG analysis of the genes
upregulated in c-MYC/pT3 but downregulated by FOXO1AAA. (D) KEGG analysis of the genes downregulated in c-
MYC/pT3 but upregulated by FOXO1AAA. Abbreviations: NL, normal liver. pT3, pT3-EF1a.
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Supplementary Fig. 6. TSC mutations correlate with c-MYC activation status in human HCCs. (A) Heatmap displaying
expression levels of c-MYC signature genes among the HCC samples from the TCGA-LIHC dataset. The samples were
grouped into three categories based on their c-MYC activation status: high (MYC-high), low (MYC-low), and medium (MYC-
med). (B) Comparison of the percentages of HCC samples with high c-MYC activation status between the TSC1/2 mutated
HCCs and the TSC1/2 wild-type HCCs. Data were analyzed using Chi-square test. Abbreviations: WT, wild-type.
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Supplementary Fig. 7. Deletion of Tsc2 accelerates c-Myc-induced hepatocarcinogenesis. (A) Study
design. TSC2™" conditional knockout mice in FVB/N genetic background were hydrodynamically injected with
plasmid mixtures of c-MYC and Cre recombinase in the pCMV backbone (c-MYC/Cre, n = 4). Control mice were
hydrodynamically injected with c-MYC and pCMV empty vector (c-MYC/pCMV, n = 6). Mice were monitored for
tumor development and euthanized either upon the development of large tumors or at the end of the observation
period. (B) Survival curve of mice in both groups. The Kaplan-Meier comparison was performed, p = 0.0006. (C)
Comparison of liver weight between the two groups. Data are presented as mean = SD. Student’s t-test. *,
p<0.05. (D) Western blot results showing expressions of c-MYC, TSC2, cleaved caspase 3 (CC3), and key
molecules in the p70S6K/RPS6 and 4EBP1/elF4AE cascades. GAPDH was used as the loading control. (E)
Representative images: gross views of the liver, H&E staining, and immunohistochemical stainings of c-MYC and
Ki67. Scale bars: 500um for H&E, 100um for c-MYC and Ki67.
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Supplementary Fig. 8. mTOCR1 impairment induces regression of c-MYC HCC. Tamoxifen-treated mice displayed
tumor regression upon dissection, leading to a significantly lower liver weight, reduced proliferation, and increased
apoptosis. (A) Study design. Raptor" conditional knockout mice were hydrodynamically injected with plasmid mixtures
of c-MYC/MCL1 and tamoxifen-inducible CreERT2 recombinase under the liver-specific TTR promoter (c-
Myc/MCL1/TTR-CreERT2). Two weeks post-injection (when tumor nodules were observed), one group of mice was
sacrificed, and liver analysis was performed as the pre-treatment group. The remaining mice were treated with
tamoxifen or vehicle for 1.4 weeks, followed by analysis after sacrifice. (B) Comparison of liver weight between the two
groups (n = 3, 3). Data are presented as mean = SD. Student’s t-test. ns, no significant.(C) Representative images:
gross views of the liver, H&E staining, and immunohistochemical staining of Ki67 and c-MYC. (D) Representative
images of cleaved caspase 3 (CC3) staining in vehicle- and tamoxifen- treated mice. Scale bars: 500um for H&E and c-
MYC, 100um for Ki67 and CC3.
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Supplementary Fig. 9. mTOCR1 impairment improves overall survival of c-MYC mice. (A) Survival curve of mice in
both groups (n = 5, 7). The Kaplan-Meier comparison was performed, p = 0.0004. (B) Six of seven tamoxifen-treated
mice developed a few, separate tumor nodules (ranging from 1 to 3) between 6.8 and 13.7 weeks post-injection. One
mouse liver collected at 18 weeks appeared completely normal, whereas vehicle-treated mice exhibited a high tumor
burden with numerous nodules between 4.7 and 8.9 weeks post-injection. Representative images: gross views of the
liver, H&E staining, and immunohistochemical staining of c-MYC and Ki67. Scale bars: 500 pm for H&E, 100 um for c-
MYC, and Ki67.



Supplementary Fig. 10
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Supplementary Fig. 10. Representative images of H&E staining of c-MYC HCCs at different time points after
tamoxifen treatment showed increased necrotic areas (N). Scale bars: 200um.



Supplementary Fig. 11
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Supplementary Fig. 11. Raptor staining revealed failed Cre recombinase activity in the tumor area of the tamoxifen-
treated group. Large areas of necrosis were frequently observed in tamoxifen-treated livers. Thus, we speculate that the
observed failure of tumor regression was due to off-target effects of the tamoxifen-inducible Cre transgene system.
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Supplementary Fig. 12. mTORC1 inhibitor demonstrates moderate antitumor activity in the c-Myc/MCL1/Rictor°Tsc2K°CHCCs. (A)
Study design. c-MYC/MCL1/Rictor¥®Tsc2X° murine tumor model was established through hydrodynamic injection. Six days post-injection, one
group of mice (n = 3) was sacrificed, and liver analysis was performed as the pre-treatment group. The remaining mice were treated with the
mTORC1 inhibitor everolimus (n = 5) or vehicle (n = 5) for 3 weeks, followed by analysis after sacrifice. (B) Comparison of liver weight
between the everolimus and vehicle-treated groups. (C) Western blot results showing expressions of c-MYC, Cyclin D1, and key molecules in
the p70S6K/RPS6 and 4EBP1/elF4E cascades. GAPDH was used as the loading control. (D) Representative images: gross views of the liver
(This figure shared a control group with MLNO128 in Figure 4E). H&E staining, and immunohistochemical staining of c-MYC and Ki67. Scale
bars: 500um for H&E and c-MYC, 100um for Ki67. (E) Quantification results of the percentage of Ki67-positive cells in the two groups. Data
are presented as mean = SD. Student’s t-test. *, p<0.05. **** p<0.0001.
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Supplementary Fig. 13. Inhibition of 4EBP1/elF4E delays tumorigenesis of c-Myc/MCL1/Rictor¥°Tsc2XC HCCs.
(A) Study design. Rictor"Tsc2™ mice were hydrodynamically injected with c-MYC/MCL1/Cre and the
unphosphorylatable form of 4EBP1 (c-MYC/MCL1/4EBP1A4/RictoXOTsc2X0, n = 7). Control mice were injected with c-
MYC/MCL1/Cre and pT3 empty vector (c-MYC/MCL1/pT3/RictoXCTsc2KO, n = 6). (B) Survival curve of mice in both
groups. The Kaplan-Meier comparison was performed, p = 0.0006. (C) Comparison of liver weight between the two
groups. (D) Western blot results show the levels of c-MYC, cyclin D1, and key molecules in the p70S6K/RPS6 and
4EBP1/elF4E cascades. GAPDH was used as the loading control. (E) Representative images: gross views of the liver,
H&E staining, and immunohistochemical staining of c-MYC and Ki67. Scale bars: 500um for H&E, 100um for c-MYC,
and Ki67. (F) Quantification results of percentage of Ki67 positive cells in the two groups. Data are presented as mean
+ SD. Student’s t-test. ns, no significant. ****, p<0.0001.
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Supplementary Fig. 14. Analysis of p70S6K/RPS6 and 4EBP1/elF4E downstream target genes. (A) KEGG
analysis of the differentially expressed genes downregulated by MLNO0128, but not by everolimus. (B) Western
blot results showing levels of LDHA/C and PKM2 in wild-type livers (WT), Vehicle-treated, MLNO128-treated, or
Everolimus-treated c-MYC/MCL1/Rictor°Tsc2X0 HCCs. GAPDH was used as the loading control.
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Supplementary Fig. 15. Analysis of the correlation between CENPM expression and MYC activation.
(A) The CENPM expression in mouse ¢c-MYC HCC upon MLNO0128 (MLN) or Everolimus (EVE) treatment (n
= 3, 3). Data are presented as mean = SD. paired t test. ns, no significant. *, p<0.05. (B) The correlation
between CENPM expression and the MYC activation levels based on the TCGA-LIHC database.



Supplementary Fig. 16
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Supplementary Fig. 16. Silencing of CENPM inhibits human HCC cell proliferation. (A) gPCR results showing
CENPM mRNA expression in sSiCENPM and control siRNA (siNC) transfected human HCC cells. (B, C) Representative
images (B) and quantification (C) of EdU staining in the siNC, or siCENPM transfected human HCC cells. Data are
presented as mean + SD. Student’s t-test. *, p<0.05, **, p<0.01, ***, p<0.001, ****, p<0.0001.
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Supplementary Fig. 17. CENPM is critical for HCC cell growth. Depmap results show the dependency of CENPM in a
panel of HCC cell lines. Gene Effect scores derived from CRISPR knockout screens published by Broad's Achilles and
Sanger's SCORE projects. Negative scores imply cell growth inhibition and/or death following gene knockout. Scores are
normalized such that nonessential genes have a median score of 0 and independently identified common essentials have
a median score of -1. (Website: https://ualcan.path.uab.edu/cgi-bin/ualcan).
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Supplementary Fig. 18
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Supplementary Fig. 18. The immunofluorescence-based microscopy analysis of CENPM KO cells.
Representative images of immunofluorescence staining of a-tubulin (indicating microtubule, kinetochore or
spindle fibers), y-tubulin (centrosome) and DAPI (indicating chromosomes) in the CENPM KO cells and the

control cells during mitosis. Lagging chromosomes or mis-segregation were observed in almost all the
CENPM KO cells.
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Supplementary Fig. 19. CENPM is a critical target of c-MYC-induced hepatocarcinogenesis. (A-D) Survival
curves of mice in the c-MYC/MCL1 HCCs with deletion of Cenpm (A), Arhegf2 (B), Bcat1 (C), and Sic7a11 (D).
The Kaplan-Meier analysis was performed, and p-values are indicated in the graphs.
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Supplementary Fig. 20. Confirmation of CRISPR-mediated Cenpm editing efficiency in the mouse c-
MYC HCC cell line (HCC3-4) (A) and the c-MYC mouse model (B) by direct Sanger sequencing.
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Supplementary Fig. 21. Effects of mTOR inhibitors on apoptosis-related genes in c-
MYC/MCL1/Rictor¥©Tsc2KO HCCs. Comparison of the FPKM values for apoptotic genes among vehicle-
treated, MLNO128-treated, and Everolimus-treated mouse ¢c-MYC/MCL1/Rictor®Tsc2X® HCCs (n = 3, 3, 3).
Data are presented as mean = SD. Tukey—Kramer test. *, p<0.05, **, p<0.01, ***, p<0.001.
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Supplementary Fig. 22. Promoter analysis of CENPM gene. (A) Integration analysis of MYC and MYC::MAX transcription factors
with experimentally validated CENPM promoters was performed using various publicly accessible databases. Multiple conserved
MYC and MYC::MAX binding sites were identified using the EPDnew database (https://epd.expasy.org/epd/EPDnew_database.php)
and the JASPAR core 2022 database (https://jaspar2022.genereg.net/).ChlP-seq data on human liver and HepG2 liver cancer cells
from the ENCODE3 database (https://www.encodeproject.org/) also indicated MYC and MAX binding sites on the CENPM promoter
region. These sites showed abundant methylation or trimethylation of histone H3 at lysine 4 (H3K4me1 or H3K4me3) and RNA
polymerase Il (Pol2), which are active marks associated with transcriptional activation. (B) Representative images show the binding
sites of MYC, MAX, and the MYC::MAX complex at -1000bp to +100bp relative to the CENPM transcriptional start site, with a cut-off
p-value of 0.001. Images were generated from the EPDnew database. (C) Representative images show the bigWig peaks of ChIP-
seq analysis for MAX transcription factor using liver tissue from a 4-year-old female child, 32-year-old male adult, and HepG2 cells
with CRISPR targeting MYC.
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Supplementary Fig. 23. CENPM is a direct transcriptional target of c-MYC. (A) Predicted MYC binding sites at
CENPM promoter region. (B) Primer design for CHIP and CUT & RUN assay on the CENPM promoter region. (C) ChIP
assay on the promoter of CENPM. pCMV4a-Flag-c-Myc transfected SNU449 cells were used. (D) CUT & RUN assay for
CENPM promoter in SNU449 cells. Data are presented as mean = SD. Student’s t-test. ns, no significant. **, p<0.01. (E)
Experimental design of the luciferase reporter assay. (F) Luciferase reporter assay for the identification of MYC binding
sites in the CENPM gene promoter region (n = 3, 3, 3). Data are presented as mean = SD. Tukey—Kramer test and p-
values are indicated in the graphs.
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Supplementary Tables

Supplementary Table 1. LogFPKM data for NL, c-MYC/pT3, and c-MYC/FoxO1AAA mouse
models. List of genes that are upregulated in c-MYC/pT3 but downregulated by FOXO1AAA, and
list of genes that are downregulated in c-MYC/pT3 but upregulated by FOXO1AAA. Please refer

to the excel file for the detailed information.

Supplementary Table 2. List of guide RNA used for CRISPR-Cas9 mediated gene deletion

Guide RNA Sequence

Human CENPM AACACGATCAGGTCAATTCG
Mouse Cenpm  AACACAATCAGGTCAATTCG
Mouse Arhgef2 ~ CCACAGACTCCCTCAACATG
Mouse Bcat1 TGGTGTGATGATGAGATCTT

Mouse Sic7a11l GCACAACTGGCTTTCTGACC

Supplementary Table 3. List of mice used for the experiments
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Directory Mice breed Plasmid injected (ug) S.ample
size (n)
Figure 1 Rictor":Foxo1™ ¢-MYC(10)+MCL1(10)+Cre(20)+SB(1.6) 6
c-MYC(10)+MCL1(10)+pCMV(20)+SB(1.6) 6
Figure 2 FVB/N c-MYC(10)+Foxo1AAA(40)+SB(2) 5
c-MYC(10)+ pT3(40)+SB(2) 5
Figure 3 Rictor""; Tsc2"  ¢-MYC(10)+MCL1(10)+Cre(20)+SB(1.6) 6
c-MYC(10)+MCL1(10)+pCMV(20)+SB(1.6) 4
Figure 4 Rictor" Tsc2™  ¢-MYC(10)+MCL1(10)+Cre(20)+SB(1.6) treated with MLN0128 3
c-MYC(10)+MCL1(10)+Cre(20)+SB(1.6) treated with vehicle 5
Figure 7 FVB/N c-MYC(10)+MCL1(10)+SB(0.8)+sgCENPM(40) 7
c-MYC(10)+MCL1(10)+SB(0.8)+sgEGFP(40) 6
Sup Fig.3 FVB/N c-MYC(10)+Foxo3AAA(40)+SB(2) 3
c-MYC(10)+ pT3(40)+SB(2) 3
Sup Fig.7 Tsc2™ c-MYC(10)+Cre(20)+SB(1.2) 4
c-MYC(10)+pCMV/(20)+SB(1.2) 6
Sup Fig.4  Raptor” c-MYC(10)+MCLA1(10)+TTR-CreERT2(20)+SB(1.6) treated with Tamoxifen 7
¢-MYC(10)+MCL1(10)+TTR-CreERT2(20)+SB(1.6) treated with vehicle 3
¢-MYC(10)+MCL1(10)+TTR-CreERT2(20)+SB(1.6) pretreatment 3
Sup Fig.7 Rictor™ Tsc2™ cl;-\/l\i\r(o(lli:]ji+MCL1(10)+Cre(20)+SB(1 .6) treated with 5
c-MYC(10)+MCL1(10)+Cre(20)+SB(1.6) treated with vehicle 5
SupFig.8  Rictor" Tsc2"  c-MYC(10)+MCL1(10)+Cre(20)+SB(3.2)+4EBP1A4(40) 7
c-MYC(10)+MCL1(10)+Cre(20)+SB(3.2)+pT3(40) 6
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Sup Fig.12

FVB/N

c-MYC(10)+MCL1(10)+SB(0.8)+sgEGFP(40)
c-MYC(10)+MCL1(10)+SB(0.8)+sgArhegf2(40)
c-MYC(10)+MCL1(10)+SB(0.8)+sgBcat1(40)

c-MYC(10)+MCL1(10)+SB(0.8)+sgSLC7a11(40)
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Supplementary Table 4. List of antibodies used for immunohistochemistry

Catalog

Antibody Number Company Species Dilution
c-MYC ab32072 Abcam Rabbit ~ 1:200
Myc-tag VIio1 MMCRI Rabbit  1:200
Ki-67 12202 Cell Signaling Technology Rabbit  1:150
Cleaved Caspase-3 9664 Cell Signaling Technology Rabbit  1:150
Raptor MA5-35742 Thermo Fisher Scientific Rabbit  1:100
FOXO1 2880 Cell Signaling Technology Rabbit  1:100
FOXO3 12829 Cell Signaling Technology Rabbit  1:100
phospho-FOXO1 (Ser

256) PA5-104977  Thermo Fisher Scientific Rabbit  1:100
phospho-FOXO3 (Ser

253) PA5-118528 Thermo Fisher Scientific Rabbit  1:100
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Supplementary Table 5. List of antibodies used for Western blot analysis

Catalog
Antibody Company Species Dilution

Number
AKT 9272 Cell Signaling Technology Rabbit  1:1000
Phospho-AKT (Ser473) 4060 Cell Signaling Technology Rabbit  1:1000
Rictor 9476 Cell Signaling Technology Rabbit  1:1000
FOXO1 2880 Cell Signaling Technology Rabbit  1:1000
Phospho-FOXO1 (Ser256) 84192 Cell Signaling Technology Rabbit  1:1000
S6 Ribosomal Protein 2217 Cell Signaling Technology Rabbit  1:1000
Phospho-S6 Ribosomal

4858 Cell Signaling Technology Rabbit  1:1000
Protein (Ser235/236)
4E-BP1 9644 Cell Signaling Technology Rabbit  1:1000
Phospho-4E-BP1 (Ser65) 9451 Cell Signaling Technology Rabbit  1:1000
c-MYC ab32072 Abcam Rabbit  1:2000
Cleaved Caspase-3 9664 Cell Signaling Technology Rabbit  1:1000
Cyclin D1 2978 Cell Signaling Technology Rabbit  1:1000
LDHA/C 3558 Cell Signaling Technology Rabbit  1:1000
PKM1 7067 Cell Signaling Technology Rabbit  1:1000
CENPM ab243820 Abcam Rabbit  1:1000

GAPDH 5174 Cell Signaling Technology Rabbit  1:10000
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B-actin 4970 Cell Signaling Technology Rabbit  1:1000
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Supplementary Table 6. List of primers used in qRT-PCR analysis

Gene name Forward Reverse

18s rRNA CGGCTACCACATCCAAGGAA GCTGGAATTACCGCGGCT

Human-CENPM GCGGACTCGATGCTCAAAGA TTCTGGAGACTGTATTTGCTGTG






