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Treatment of LSCC remains  
an unmet need
Lung squamous cell carcinoma (LSCC) is 
the second most common subtype of non–
small cell lung cancer (NSCLC) after lung 
adenocarcinoma. In the past decades, nota-
ble advances have been made in under-
standing the molecular genomic landscape 
of NSCLC, which has paved the way for 
the development of effective molecularly 
targeted therapies, such as tyrosine-kinase 
inhibitors (TKIs) for activating mutations 
in the epidermal growth factor receptor 
(EGFR) gene and anaplastic lymphoma 
kinase gene (ALK) rearrangements (1–3). 
While these therapies have substantially 
improved the survival of patients with lung 
adenocarcinoma, they have been largely 

ineffective against LSCC because of its dis-
tinct molecular profile, leading to a widen-
ing divide in the management of these two 
lung cancer subtypes (4).

LSCC is a heterogeneous malignancy 
associated with smoking and character-
ized by a high mutational burden, which 
is already present in the early stages of 
the disease (5, 6). Currently, the first-line 
systemic treatment options for advanced 
LSCC include chemotherapy and immune 
checkpoint inhibitors, which are admin-
istered as monotherapy or combination 
therapy (7). Although the use of immune 
checkpoint inhibitors has improved the 
overall survival of patients with LSCC, 
many patients remain ineligible for this 
first-line treatment option. For example, 

only approximately 23% to 30% of patients 
with advanced NSCLC have sufficiently 
high programmed cell death ligand 1 (PD-
L1) expression levels to qualify for the use 
of pembrolizumab (8–10). Also, mutations 
in HLA genes that are frequently observed 
in LSCC can render the patients unrespon-
sive to immunotherapy (11).

Thus, identification of targeted thera-
pies and reliable predictive molecular bio-
markers is essential for the effective man-
agement of LSCC. The marked genomic 
complexity and lack of clear oncogenic 
drivers in LSCC have led researchers to 
focus their efforts on various signaling 
pathways that are frequently mutated 
in this disease to identify attractive and 
actionable therapeutic targets. For exam-
ple, the high rate of genomic alterations 
in the fibroblast growth factor receptor 
(FGFR) signaling pathway in patients with 
LSCC (5, 12, 13) has made FGFR inhibitors 
a promising therapeutic option for this 
lung cancer subtype.

Limited response to FGFR-
specific small-molecule 
inhibitors
The FGFR family has four members, 
FGFR1–4, each of which consists of an 
extracellular region with three immuno-
globulin-like domains, a single hydropho-
bic membrane-spanning segment, and a 
cytoplasmic tyrosine kinase domain. These 
receptors participate in the regulation of 
multiple biological processes, including 
cell proliferation, differentiation, migra-
tion, and survival (14). Abnormal FGFR 
signaling associated with FGFR aberra-
tions has been observed in various cancer 
types, including urothelial bladder carci-
noma, cholangiocarcinoma, and NSCLC 
(15). In recent years, the FDA has approved 
various FGFR-specific small-molecule 
inhibitors via their Accelerated Approval 
Program for the treatment of metastatic 
urothelial bladder carcinoma (erdafitinib 
[JNJ-42756493], objective response rate 
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Although subsets of patients with lung squamous cell carcinoma (LSCC) 
benefit from immunotherapy, there are few effective molecularly targeted 
treatments for LSCC. Fibroblast growth factor receptor (FGFR) inhibitors 
provide a therapeutic option for patients with LSCC harboring FGFR 
aberrations, but their therapeutic efficacy has been limited to date. In 
this issue of the JCI, Malchers et al. identified tail-to-tail rearrangements, 
either within or near FGFR1, that are associated with FGFR1 dependency 
and sensitivity to FGFR inhibition in LSCC. These results may help improve 
the selection of patients with LSCC who are most likely to benefit from 
treatment with FGFR inhibitors.
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of FGFR1 dependency to identify patients 
most likely to benefit from these inhibitors.

Potential mechanisms of 
FGFR1 dependency
In this issue of the JCI, Malchers and 
authors performed a detailed genom-
ic characterization of FGFR1-amplified 
LSCC samples to further study the mech-
anisms of FGFR1 dependency (24). These 
efforts expand on their previous finding of 
marked heterogeneity among the 8p11-12 
amplification events in LSCC due to the 
presence of multiple centers of amplifi-
cation in the chromosomal region (25). 
FGFR1 was observed to locate in the epi-
center of the amplicon in only 28% of all 
8p11-12–amplified cases. In their current 
article, Malchers et al. describe two types 
of genomic alterations that are associated 
with FGFR1 dependency and, thus, sensi-
tivity to FGFR inhibition: tail-to-tail rear-
rangements within FGFR1 and in close 
proximity to FGFR1 (24) (Figure 1).

Tail-to-tail rearrangements within  
FGFR1 were identified in 8% (4 of 52) 

tive FGFR TKIs and FGFR-specific small- 
molecule inhibitors resulted in growth sup-
pression and induced apoptosis in LSCC 
cell lines with FGFR1 amplification (19, 
20). Furthermore, FGFR1-amplified LSCC 
xenograft models showed impaired tumor 
growth when treated with FGFR inhibitors 
(21, 22). Consequently, FGFR1 amplifica-
tion has been a key inclusion criterion for 
phase I/II clinical trials in patients with 
advanced LSCC. It is worth noting, howev-
er, that FGFR1 amplification did not always 
predict a response to FGFR inhibitors in the 
preclinical studies (19, 20, 22).

To date, several FGFR-specific small- 
molecule inhibitors have been tested in 
phase I/II clinical trials in patients with 
advanced LSCC (23). Most clinical tri-
als, however, have indicated that FGFR1 
amplification is not a reliable predictor of 
response to FGFR inhibitors, with overall 
response rates of 8%–11% (23). The discrep-
ancy between FGFR1 amplification status 
and the clinical response to FGFR-specific 
small-molecule inhibitors highlights the 
need to better understand the mechanisms 

[ORR] 40%) and advanced unresectable  
cholangiocarcinoma (pemigatinib [INCB-
054828], ORR 36%; infigratinib [BGJ398], 
ORR 23%) based on encouraging results 
from clinical trials (16–18).

FGFR1 amplification at 8p11 is the main 
type of FGFR alteration in LSCC, occur-
ring in approximately 20% of patients (5). 
Also, various other types of genomic alter-
ations in FGFR family members have been 
reported in a smaller subset of patients 
with LSCC, including somatic activating 
FGFR2 and FGFR3 mutations (6%) and 
chromosomal rearrangements leading to 
FGFR3-TACC3 gene fusions (0.6%) (12, 
13). Most FGFR2 and FGFR3 mutations in 
LSCC affect the extracellular region of the 
protein, while FGFR3-TACC3 fusion pro-
teins have been shown to retain the FGFR3 
kinase domain and its activity.

FGFR1 amplification was originally pro-
posed to be a predictive biomarker of FGFR 
inhibition in advanced LSCC based on 
promising results from preclinical in vitro 
and in vivo studies. For example, inhibition 
of FGFR signaling using both nonselec-

Figure 1. Two types of FGFR1 rearrangements are associated with sensitivity to FGFR inhibition in LSCC. Only a subset of patients with LSCC charac-
terized by amplification of the 8p11-12 region, which houses the putative FGFR1 oncogene, respond to FGFR inhibition. Malchers et al. showed that LSCC 
tumors with intragenic tail-to-tail rearrangements within FGFR1 and in close proximity to FGFR1 were associated with FGFR1 dependency (24). Screening 
patients for these rearrangement events may identify those more likely to benefit from treatment with FGFR inhibitors.
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mutations and gene fusions. For example, 
mutations in the extracellular region of 
FGFR2 and FGFR3 in LSCC samples have 
been shown to drive cellular transforma-
tion and respond to FGFR inhibition in 
preclinical settings (28). Recently, a patient 
with LSCC who had an FGFR3-TACC3 
gene fusion was successfully treated and 
retreated with erdafitinib (29). FGFR3-
TACC3 gene fusions have also emerged 
as a potential mechanism of resistance to 
EGFR inhibitors (30). However, given the 
paucity of clinical data, which mainly stem 
from individual LSCC cases and a few 
clinical trials, the predictive value of FGFR 
mutations and gene fusions as biomarkers 
in LSCC needs to be further studied.

In conclusion, identification of clin-
ically relevant predictive biomarkers for 
FGFR inhibition in patients with LSCC has 
been challenging. The detailed genom-
ic profiling of FGFR1-amplified LSCC 
by Malchers et al. (24) provides insights 
into FGFR1 dependency, supporting fur-
ther clinical exploration of FGFR-specific 
small-molecule inhibitors as a targeted 
therapy for FGFR1-driven LSCC.
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