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Supplementary Figure S1 (related to main Figure 1). 

A. Number of genes at spot-level resolution of TA muscles at day 4 post-CTX. 

B. UMAP representation of all spots from the ST samples colored by the Leiden-guided 

clustering as in Fig. 1A. The number of spots per cluster is indicated. 

C. Spatial expression patterns at BayesSpace subspot resolution of canonical healthy (Myl1), 

regenerative (Myh8, Bgn), and inflammatory (Stab1) gene expression by Visium spot. The 

color scale shows the log-normalized counts for each subspot. 

D. Differential expression analysis between the three Leiden/pathologist-predicted clusters 

highlighted spatial differences in the expression of immune genes, regeneration markers, 

and genes encoding extracellular matrix proteins. GPNMB, a recently identified GFEM 

marker, is highlighted (1). The average marker gene expression after z-score 

transformation is shown for each cluster. 

E. Gene ontology pathway analysis of the three Leiden-predicted and pathologist-annotated 

clusters. Top enriched pathways with p<0.001 and fold enrichment > 2 are shown for each 

cluster. 

F. Negative-log likelihood plot. The elbow at q=7 was selected as the number of clusters to 

analyze. 

G. Gene ontology pathway analysis of the seven BayesSpace-predicted clusters in panel 1C. 

Top enriched pathways with fold enrichment > 5 are shown, indicating their correlation 

to the other clusters (scaled by negative log of P value).  

H. Spatial expression patterns at BayesSpace subspot resolution of marker genes defining 

the myeloid subsets previously characterized by scRNA-seq (1). The color scale shows the 

log-normalized counts for each subspot. The color of the gene label corresponds to the 

MF and DC subset classification shown in panel 1H. 
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I. Upper panel: IF images of CD68 (green), GPNMB (red), GDF15 (yellow), and nuclei (grey) 

stained muscles in C57BL/6J animals at day 4 post-CTX. Insets indicate split channels. Scale 

bars: 100 μm. Lower panel: Co-localization and distribution map of total CD68+ MFs 

(green), CD68+GPNMB+ subset (gold), CD68+GDF15+ subset (red), and other CD68- cells 

(black) quantified by HALO’s Cytonuclear and Spatial Proximity/co-localization modules. 

The percent of co-localization (80.4%) between CD68+GPNMB+ and CD68+GDF15+ subsets 

is indicated. 
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Supplementary Figure S2 (related to main Figure 2). 

A. Violin plots representing the number of unique molecular identifiers (UMIs; upper left 

panel), genes per cell (upper right panel), mitochondrial (lower left panel) and ribosomal 

genes percentage (lower right panel) of all cells from PBMC, day 1, 2 and 4 post-CTX and 

2-mo D2.mdx CD45+ cells before QC filtering and clustering. Colored lines indicate the 

filtering parameter cutoff values. The cellular source is color-coded. 

B. Cell type annotation confidence score matrix visualized as a heatmap. Each cell is a 

column, while each row is a label in the integrated scRNA-seq dataset (PBMCs, day 1, 2, 

and 4 post-CTX CD45+ cells). The final label (after fine-tuning) for each cell is shown in the 

top color bar. 

C. Dot-plot showing top DE genes that distinguish the 10 major cell type clusters (integrated 

dataset from PBMCs, day 1, 2, and 4 post-CTX CD45+ cells). The dot size represents the 

percentage of cells expressing the respective marker gene within a cluster. Selected 

markers are color coded. 

D. PaCMAP feature plots (expression z-score) of selected markers from panel S2C that define 

the various cell types from the regeneration time course. Selected markers are color 

coded as in panel S2C. 

E. Silhouette distribution plot for the isolated monocyte/MF/DC scRNA-seq dataset in Fig. 

2D. Each dot represents a cluster at a given clustering parameter value. Medians with 95% 

CI are shown for each parameter value. The vertical red line marks the optimal resolution. 

F. t-SNE representation of cells, colored by silhouette score at the suggested optimal 

resolution value = 0.6. 
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Supplementary Figure S3 (related to main Figures 2 and 4). 

A. t-SNE representation of Seurat clusters (integrated dataset from PBMCs, day 1, 2, and 4 

post-CTX CD45+ cells) at resolution 0.6 results in nine clusters. 

B. Clustering tree (2, 3) visualizing the relationships between resolution parameters from 

0.1 to 1 (step 0.1). At a resolution of 0.6, we see the formation of 9 main branches, one 

of which (cluster 3) continues to split up to a resolution of 0.7, after which there are only 

minor changes. 

C. Heatmap of silhouette score at the predicted optimal resolution value = 0.6, indicating 

cluster and myeloid cell type relations. Cluster 3 shows a large overlap with all three 

myeloid subtypes (also shown in Fig. 2D with cell type annotations), supporting our 

decision to split this cluster. 

D. Arrows indicating the projection of the velocities derived from the scVelo dynamical 

model (4) of the monocyte/MF/DC subtypes are projected into a t-SNE-based embedding. 

E. t-SNE visualization of the speed/rate of differentiation given by the length of the velocity 

vector (scVelo dynamic modeling) (4) in the isolated monocyte/MF/DC scRNA-seq 

dataset. 

F. Study schematic and workflow for the analysis of single-nuclei RNA-sequencing of human 

(healthy and DMD patients) vastus lateralis biopsies (5). 

G. t-SNE visualization of myeloid subsets extracted from the human muscle single-nuclei 

RNA-sequencing datasets. Left panel: Indicates the origin of the myeloid subsets (red 

indicates cells from the healthy muscle biopsies and green cells originating from the DMD 

patients). Right panel: SNN clustering resolved five distinct myeloid subsets that are color-

coded. 
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H. 2D embeddings visualizing cell cycle phases of the five myeloid subsets in the human 

snRNA-seq datasets generated using VeloViz embeddings. Cycling MFs are a conserved 

feature of dystrophy-mediated chronic inflammation in human DMD pathology. 

I. Single-nuclei expression levels for selected functional markers. These markers allowed 

the delineation of functionally distinct MF subtypes present in human DMD biopsies. PLK1 

indicates the presence of cycling MFs.  

J. Top marker genes for the five identified MF clusters in the human snRNA-seq datasets. 

The dot size represents the percentage of cells within a group with an expression level > 

0 and color-scale represents the average expression level (row Z-score) across all cells 

within the cluster. 
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Supplementary Figure S4 (related to main Figure 3). 

A. FACS contour plots and gating strategy of CD45+ Ly6Clow F4/80hi GPNMB+ and CD45+ Ly6Clow 

F4/80hi GPNMB- muscle-infiltrating MFs in WT C57BL/6J animals at day 4 post-CTX. 

B. Number of centrally nucleated myofibers per mm2 of tissue in D2.Gpnmb+ and D2.Gpnmb- 

(DBA2/J) muscles at day 8 post-CTX injury (n=6 per group). Unpaired t-test was performed 

with P value 0.0022. 

C. Percentage of regeneration area over the total injured area in D2.Gpnmb+ and D2.Gpnmb- 

(DBA2/J) muscles at day 8 post-CTX injury (n=6 per group). Unpaired t-test was performed 

with P value 0.0007. 

D. Number of regenerating myofibers (assessed by embryonic MyHC positivity) per mm2 of 

tissue in D2.Gpnmb+ and D2.Gpnmb- (DBA2/J) muscles at day 8 post-CTX injury (n=5 per 

group). Unpaired t-test was performed with P value 0.0002. 

E. Percentage of inflammation area (assessed by CD68 positivity) over the total injured area 

in D2.Gpnmb+ and D2.Gpnmb- (DBA2/J) muscles at day 8 post-CTX injury (n=6 per group). 

Unpaired t-test with Welch’s correction was performed with P value < 0.0001. 

F. Upper panel: Number of CD45+ cells per g of tissue in C57BL/6J, D2.Gpnmb+ and 

D2.Gpnmb- (DBA2/J) muscles at indicated time points post-CTX injury (n=6 per group). 

Two-way ANOVA with Dunnett's multiple comparisons test was performed between 

genotypes and time points (Day 4: C57BL/6J vs D2.Gpnmb+ and C57BL/6J vs D2.Gpnmb- 

and Day 8: C57BL/6J vs D2.Gpnmb- and D2.Gpnmb+  vs D2.Gpnmb- comparisons have P < 

0.0001). Lower panel: Number of DCs (CD45+CD11c+ F4/80- Ly6C-) and neutrophils (CD45+ 

Ly6G+F4/80-Ly6Cint) per g of tissue in D2.Gpnmb+ and D2.Gpnmb- (DBA2/J) muscles at 

indicated time points post-CTX injury (n=6 per group). Two-way ANOVA with Dunnett's 



 8 

multiple comparisons test was performed between genotypes and time points (Day 2 DCs: 

D2.Gpnmb+  vs D2.Gpnmb- comparison has P < 0.01).  

G. FACS contour plots of CD45+ Ly6Clow F4/80hi MHCII+ and CD45+ Ly6Clow F4/80hi MHCII- 

muscle-infiltrating MFs in D2.Gpnmb+ and D2.Gpnmb- animals at day 4 post-CTX. Insets 

indicate the frequency and MHCII MFI for each population (n=6 biological replicates per 

group). The frequency of CD163 and CD206 in CD45+ Ly6Clow F4/80hi MHCII+ is also shown. 

H. IF detection of CD163 (left panel; red) and CD206 (right panel; red) MFs (F4/80; green) in 

D2.Gpnmb+ and D2.Gpnmb- animals at day 8 post-CTX injury (F-actin/phalloidin is 

indicated in gray and nuclei in blue). Scale bars: 100 μm. 

I. Quantification of CD163+ F4/80+ (upper panel) and CD163+ F4/80+ (lower panel) in 

D2.Gpnmb+ and D2.Gpnmb- animals at day 8 post-CTX injury. Unpaired t-test with Welch's 

correction was performed in each comparison with P values 0.0048 and 0.0185, 

respectively. 

J. Number of genes at spot-level resolution in the ST day 8 post-CTX injured muscle samples 

from C57BL/6J and D2.Gpnmb- animals. 

K. UMAP visualization of all spots in the harmony-integrated ST datasets from C57BL/6J and 

D2.Gpnmb- at day 8 post-CTX. The number of spots per condition is indicated. 

L. Negative-log likelihood plot. The elbow at q=5 was selected as the number of clusters for 

downstream analysis. 

M. Spatial expression of representative mature MFs marker genes (Adgre1 and S100a4) in 

WT (C57BL/6J; upper) and D2.Gpnmb- (GPNMB KO; lower) samples from Day 8 post CTX. 

Note the increased and prolonged presence of MFs in the absence of GPNMB. 
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N. Volcano plot indicating the DE genes between C57BL/6J vs D2.Gpnmb- spatial spots 

(padj<0.05, logFC>0.25). The enriched gene set for each sample group is color-coded and 

the top gene labels are shown. 

O. Dot plot of the estimated/relative NMF weights and cell abundance of ten subtypes (rows) 

described in Fig. 2 across five predicted NMF components (columns) in the day 8 post-

CTX spatial samples.  

P. Identification of tissue compartments in the day 8 post-CTX samples (upper: C57BL/6J, 

lower: D2.Gpnmb-) using NMF-based decomposition (Cell2location) and reference 

immune subtype expression signatures from Fig. 2. Spatial plots show cell abundance 

(color intensity) for each subtype. 

In all bar graphs, bars represent mean ± SD (**p < 0.01, ***p < 0.001, ****p < 0.0001). 
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Supplementary Figure S5 (related to main Figure 4). 

A. Number of genes at spot-level resolution of two gastrocnemius muscles from 2-mo 

D2.mdx animals. 

B. UMAP representation of the integrated spots from 2 biological replicates. The number of 

spots per biological replicate is indicated. 

C. Negative-log likelihood plot. The elbow at q=7 was selected as the number of clusters to 

analyze. 

D. t-SNE visualization of the monocyte/MF/DC cells from the D2.mdx scRNA-seq sample. 

SingleR (ImmGen database) cell type annotation prediction was used for the classification 

and cell type selection. 

E. Arrows indicating the projection of the velocities derived from the scVelo dynamical 

model (4) of the monocyte/MF/DC subtypes in the D2.mdx scRNA-seq dataset are 

projected into a t-SNE-based embedding. 

F. t-SNE visualization of the speed/rate of differentiation given by the length of the velocity 

vector (scVelo dynamic modeling) (4) in the 2-mo D2.mdx monocyte/MF/DC scRNA-seq 

dataset. 

G. Gene expression dynamics of the 7 monocyte/MF/DC subpopulations in the scRNA-seq 

D2.mdx dataset resolved along latent time (scVelo dynamic modeling). The top likelihood-

ranked genes predicted to drive cell differentiation are ordered within each branch. 

H. Number of non-proliferating CD68+ Ki67- and CD68+ Ki67+ cycling MFs per mm2 of tissue in 

C57BL/6J and DBA2/J animals at day 4 post-CTX injury and in 2-mo D2.mdx animals (an 

unpaired t-test with Welch’s correction was performed for all indicated comparisons with 

P values < 0.0001). 
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I. Left panel: IF images (inverted and color-coded) of CD68 (red), Laminin (orange), Ki67 

(green), and nuclei (blue) stained muscles from C57BL/6J and DBA2/J animals at day 4 

post-CTX injury for the detection of cycling MFs. No cycling double-positive MFs were 

detected. Scale bars: 50 μm. Right panel: Co-localization and distribution map of CD68+ 

Ki67- non-proliferating MFs (blue), CD68+Ki67+ cycling MFs (red), and non-MF proliferating 

cells (CD68-Ki67+) quantified by HALO co-localization modules. 

J. Left panel: IF images (inverted and color-coded) of CD68 (red), Laminin (grey), Ki67 

(green), and nuclei (blue) stained muscles from 2-mo D2.mdx animals for the detection of 

cycling MFs. Scale bars: macroscopic views 1 mm; insets 50 and 100 μm. Right panel: Co-

localization and distribution map of CD68+ MFs (blue) and CD68+Ki67+ cycling MFs (red) 

quantified by HALO co-localization modules.  
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Supplementary Figure S6 (related to main Figures 6 and 7). 

A. Experimental schematic workflow. 4-week-old D2.mdx animals were treated weekly 

orally with 5 mg/kg Prednisolone for 4 weeks. Gastrocnemius muscles were then 

subjected to ST.  

B. Number of genes at spot-level resolution of three gastrocnemius muscles from 2-mo 

D2.mdx + Q.W. Pred animals. 

C. Negative-log likelihood plot. The elbow at q=7 was selected as the number of clusters to 

analyze. 

D. UMAP representation of the integrated spots from D2.mdx-UNT and D2.mdx + Q.W. Pred. 

The number of spots per condition is indicated. 

E. Top marker gene expression after z-score transformation is shown for each spatial cluster. 

The dot size represents the percentage of cells within a group. 

F. Spatial feature plots of representative DE genes from the D2.mdx - UNT vs. D2.mdx + Q.W. 

Pred. comparison is shown. 

G. Upper panel: A magnified IF image of an inflammatory lesion in 2-mo D2.mdx + Q.W. Pred 

GAST muscle (the lesion location label is indicated in the upper left corner; see also Figs. 

7E and S7C for different magnifications and more representative examples). The MF 

subtypes were visualized with CCL2 (red; Zone A) and MMP12 (yellow; Zone B) and 

regenerating fibers with eMyHC (green; Zone C). Scale bar: 100 μm. Lower panel: A 

stacked bar histogram reflecting CCL2+, MMP12+, eMyHC+, and Other Cells (CCL2- MMP12- 

eMyHC-) cell density inside (-1 to -50 μm) and outside the necrotic boundary (+1 to +300 

μm). Note the near complete absence of MF subtypes (i.e., MMP12+ cells), regenerating 

fibers (eMyHC+ cells), and unstructured damage-clearing and RIZ tissue organization. 
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Supplementary Figure S7 (related to main Figures 7 and 8). 

A. Six representative regions of RIZs in 2-mo D2.mdx GAST validated by IF. The MF subtypes 

and zones were visualized with IF for CCL2 (red; Zone A), MMP12 (yellow; Zone B), and 

eMyHC (green; Zone C). White rectangles indicate the region magnified in the middle 

panel. Scale bars: macroscopic view 1 mm; insets 100 μm. Right panel indicates the cell 

density and distribution of cells in regions 2 and 6. Note the consistent and expected 

organization and architecture of RIZs.  

B. RIZ quantification in 2-mo D2.mdx muscles. Dotted lines indicate the zones and interface 

layer (red; necrotic lesion) selected for cell density quantification. The bottom panels 

show stacked bar histograms reflecting CCL2+, MMP12+, and eMyHC+ cell density inside (-

1 to -50 μm) and outside (+1 to +200 μm) the necrotic lesion boundaries. Scale bars: 100 

μm. 

C. Five IF regions with inflammatory lesions in 2-mo D2.mdx + Q.W. Pred GAST samples. The 

MF subtypes and zones were visualized with IF for CCL2 (red; Zone A), MMP12 (yellow; 

Zone B), and eMyHC (green; Zone C). Note the unexpected collapse of RIZ organization in 

large inflammatory lesions with the overall diminished expression of MMP12 and the 

signal overlap of CCL2 with the remaining MMP12 (as observed previously by ST; Fig. 7B-

C). Scale bars: macroscopic view 500 μm; insets 100 μm. 

D. IF regions with inflammatory lesions in 2-mo D2.mdx samples. The presence of MF 

subtypes within the lesions was visualized with other ST predicted Zone B markers (Figs. 

7C-D) CD18/ITGB2 (upper left panel; red), CD44 (upper right panel; red), and CD206 

(middle panels; yellow). Mature MFs are marked with F4/80, pro-inflammatory 

monocytes/MFs with CCL2 and regenerating fibers with eMyHC. The middle right panel 

indicates the cell density quantification of F4/80+CD206+ and F4/80+CD206- cells within 
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inflammatory lesions, placing the former closer to the center of the lesions and the latter 

closer to the periphery. Scale bars: 100 μm. 

E. IF regions with inflammatory lesions enriched in damage-clearing zones but without 

advanced regeneration zones in 6-wks D2.mdx gastrocnemius muscles. These 

experiments are consistent and predictive of the architecture and organization of recently 

formed lesions, as revealed in the ST clustering analysis of age-matched samples (Fig. 

S8E). The MF subtypes and zones were visualized with IF for CCL2 (red; Zone A), MMP12 

(yellow; Zone B), and eMyHC (green; Zone C). White rectangles indicate the region 

magnified in the middle panel. Scale bars: macroscopic view 500 μm; insets 100 μm.  

F. IF regions with inflammatory lesions in 2-mo D2.mdx samples. The presence of MF 

subtypes within the lesions was visualized with another Zone B ST-predicted marker 

(ATF3; Figs. 7C). Pro-inflammatory monocytes/MFs were visualized with CCL2 and 

regenerating fibers with eMyHC. The right panel indicates the cell density quantification 

of ATF3+ cells within inflammatory lesions in regions 2 and 4 (occupying Zone B), placing 

them adjacent to CCL2+ cells (Zone A). Scale bars: 100 μm. 
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Supplementary Figure S8 (related to main Figure 7). 

A. H&E images of mouse gastrocnemius from 6-wks D2.mdx animals used for ST (6, 7). 

Histopathological annotation areas are noted (yellow: regenerative muscle; green: 

necrotic/inflammatory lesions; blue: healthy muscle) and classified as described in Fig. 

1A. Latin numbers indicate the reference sample number. Each section is derived from a 

different biological replicate, and all datasets were integrated to remove any batch 

effects. 

B. Enhanced subspot resolution clustering (BayesSpace) for the five samples indicated in 

panel S8A. The seven spatial clusters are color-coded, as in Fig. 4B. The white rectangles 

highlight areas with inflamed and structured regeneration zones. 

C. The spatial expression of representative genes coding for damage-clearing and 

regenerative inflammation markers is shown. Pvalb indicates the healthy muscle (cluster 

7), Csf1 and Ccl7 indicate the LGCs (cluster 2), Mmp12 and Nckap1l indicate the presence 

of resolution-related MFs and GFEMs (cluster 6), and Myh8 and Myl4 indicate the newly 

regenerating fibers (cluster 1). Note the differential spatial expression patterns between 

the indicated markers and the regenerative architecture, as observed previously in Figs. 

4B-D. 

D. Magnified histological and BayesSpace clustering view of lesions in regions IV and V from 

panel S8B. The spatial expression of indicated RIZ markers in each of these regions is 

provided at the bottom panel. Note the expected RIZ organization and architecture as 

described previously in Fig. 7. 

E. Magnified histological and BayesSpace clustering view of lesions in regions II and III from 

panel S8B. The spatial expression of indicated RIZ markers in each of these regions is 

provided at the bottom panel. Note the unique spatial clustering, with Zone B (spatial 
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cluster 6) and C (regenerating fibers; spatial cluster 1) being absent and Zone A (spatial 

cluster 2) strongly enriched in necrotic fibers, pointing towards recent lesion formation. 
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Mice 

This study used C57BL/6J (RRID:IMSR_JAX: 000664), and DBA/2J mice (RRID: IMSR_JAX: 

000671) carrying a nonsense mutation in Gpmnb (D2.Gpnmb-), the coisogenic strain DBA/2J-

Gpnmb+/SjJ with a functional Gpnmb allele (D2.Gpnmb+; RRID: IMSR_JAX: 007048) and mdx mice 

on the DBA/2J background (D2.B10-Dmdmdx/J; RRID: IMSR_JAX: 013141) carrying the dystrophin 

gene mutation (D2.mdx). Mice were obtained from the Jackson Laboratories, bred under specific-

pathogen-free conditions, with ad libitum access to food and water, and a 12-hour light cycle. 

Prednisolone suspensions were prepared in a cherry syrup vehicle for weekly per os (PO) 

treatment of 5 mg/kg dose (equates to a dose of 0.41 mg/kg in humans when normalized to the 

body surface area). Euthanasia was performed by CO2 exposure per IACUC guidelines. 

 

Acute sterile muscle injury 

Mice (8-12 weeks-old) were anesthetized with isoflurane and 50 µl of 10 μM cardiotoxin 

(EMD Millipore, 217503-1MG) was injected into the TA muscle (8). Mice were monitored after 

recovery until they were euthanized. Muscles were recovered for flow cytometry analysis on days 

1-4 post-injury or for histopathological assessments on days 4 to 8 post-injury. 

 

Histological analysis of muscle regeneration 

Muscles were removed, mounted on precut cork discs (EMS #63305) using tragacanth 

gum (MP Biomedicals, #104792), and snap-frozen in nitrogen-chilled isopentane (-160°C). 8 µm 

thick cryosections were cut (Leica CM1950) and stained with hematoxylin-eosin (H&E) as 

described previously (1). H&E-stained muscle sections were scanned with a Leica Aperio Versa 

digital slide scanner. For each histological analysis, at least six sections (per condition) were 

selected where the total regenerative region within the CTX injured TA muscle was at least 70%. 
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For each TA, myofibers in the entire injured area were analyzed and quantified with the Muscle 

Fiber 2.0 module of the HALO Digital Pathology software (Indica Labs). The regeneration area is 

expressed as the number of centrally nucleated fibers over the total area. For the ST sample 

selection and histological annotations, two active/experienced clinical pathologists at the Johns 

Hopkins All Children’s Hospital specializing in muscle pathology performed and guided the 

assessments. Their evaluation of each injury/regeneration stage included a pool of 20 biological 

replicates per timepoint, from which we selected the samples that collectively incorporated most 

of the features the pathologists had identified to place on the Visium ST slides. 

 

Immunofluorescence 

Tibialis anterior and gastrocnemius muscles embedded in tragacanth gum were 

cryosectioned at 8 μm, fixed in ice-cold acetone for 5 min, blocked for 1 hour at room temperature 

in PBS containing 5% BSA, and stained for immunofluorescent (IF) analysis using a combination of 

Phalloidin  (CF568-conjugated; Biotium #00044; 1:100),  rabbit anti-laminin (Sigma-Aldrich L9393; 

1:200), mouse anti-eMyHC (DSHB F1.652; 1:20), rabbit anti-MYH3 (Proteintech 22287-1-AP; 

1:250), rabbit anti-Desmin (Abcam 32362; 1:200), rat anti-F4/80 (Abcam 6640; 1:200), rat anti-

CD68 (Bio-Rad MCA1957GA; 1:100), goat anti-GPNMB (R&D Systems AF2330; 1:250), rat anti-

CCL2 (Bio-Techne MAB479-SP; 1:100), rabbit anti-MMP-12 (Proteintech 22989-1-AP; 1:400), 

rabbit anti-GDF15 (Abcam ab105738; 1:100), rat anti-CD18/ITGB2 (Thermo Scientific 14-0181-82, 

1:200), rat anti-CD44 (BD 550538; 1:100), rat anti-CD206-PE (BioLegend #141705; 1:50), rat anti-

CD163-PE (BioLegend #155307; 1:50), rabbit anti-ATF3 (Novus Biologicals NBP1-85816; 1:250),  

and mouse anti-Ki67 (BD Pharmingen 550609; 1:20) primary antibodies for 1 hour at RT. 

Unconjugated primary antibody staining was followed by three 5-minute PBST washes and 

stained with donkey anti-rabbit Cy3 (JIR 711-165-152; 1:200), donkey anti-rat FITC (JIR 712-095-



 20 

153; 1:200), goat anti-rat Alexa Fluor 647 (Invitrogen A-21247; 1:200),  donkey anti-goat Alexa 

Fluor 647 (Invitrogen A-21447; 1:200), donkey anti-mouse Alexa Fluor 488 (JIR 715-545-151; 

1:200), and goat anti-mouse Alexa Fluor 488 (Invitrogen A-21121; 1:200) secondary antibodies for 

45 min at RT. Following three PBST washes, the nuclei were counterstained with 1 µg/ml Hoechst 

33342 for 1 minute, washed twice in PBS, and samples were mounted with Fluoromount (Sigma 

F4680). The IF slides were scanned at 20x and visualized with the dedicated fluorescent cameras 

of a Leica Aperio Versa digital slide scanner. Whole slide IF images were processed and analyzed 

for detection and co-localization of CD68+/Ki67+ cycling MFs, inflammation index (CD68+ or F4/80+ 

areas), as well as regenerating muscle fiber distribution (eMyHC+ fibers) by a blinded investigator 

using the Object Colocalization FL 1.0 and Area Quantification FL 1.0 modules of the HALO 

software (Indica Labs). For quantifying the distance of the GFEMs (CD68+GPNMB+) and other MF 

subtypes (CD68+GPNMB-) to the regenerating fibers (eMyHC+), the Cytonuclear FL 1.0 and Spatial 

Analysis FL 1.0 (Nearest Neighbor Analysis workflow) modules (HALO software; Indica Labs) were 

used. For calculating cell densities within and outside an interface layer (i.e., necrotic lesion), the 

Cytonuclear FL 1.0 and Infiltration Analysis workflow (HALO software; Indica Labs) were used. 

Min-max normalization was then applied to scale the cell densities in each interface distance bin 

and plotted with ggplot as a 100 percent stacked bar. Representative high-resolution IF images 

were obtained under a confocal microscope with a resonant scanning disk (Nikon A1R, Nikon 

Instruments) with Z-sectioning (0.5 μm). The Nikon NIS-Elements AR Analysis 4.40 software was 

used to create the volume projection image (3-D reconstruction), and the final figures were 

assembled in Illustrator v27.2 (Adobe).  

 

In vivo isolation of MFs from muscle 
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Isolation of muscle-infiltrating MFs was performed as described previously (9, 10). Briefly, 

the fascia of the TA was removed, and muscles were dissociated in either RPMI containing 0.2% 

collagenase B (Roche Diagnostics GmbH) at 37°C for 1 hour or by using the MACS Skeletal Muscle 

Dissociation Kit (Miltenyi, 130-098-305) or gentleMACS Octo Dissociator, per kit instructions. Cell 

homogenate was filtered through a 100 µm and a 40 µm filter, and CD45+ cells were isolated using 

magnetic sorting (Miltenyi Biotec). For FACS, myeloid cells were treated with Fcγ receptor 

blocking antibodies and with 10% normal rat serum: normal mouse serum 1:1 mix, then stained 

with a combination of PE-conjugated anti-Ly6C antibody (HK1.4, eBioscience), APC-conjugated or 

FITC-conjugated F4/80 antibody (BM8, eBioscience), FITC-conjugated Ly6G antibody (1A8, 

Biolegend), Pacific Blue-conjugated MHCII antibody (M5/114.15.2, Biolegend) and eFluor660-

conjugated GPNMB antibody (CTSREVL, eBioscience). Ly6Clow F4/80high Gpnmb- MFs, Ly6Clow 

F4/80high Gpnmb+ MFs, and Ly6Clow F4/80high MHCII+ MFs were quantified (gating strategy is shown 

in Figs. S4A and S4G). In each experiment, compared samples were processed in parallel to 

minimize experimental variation. Cells were analyzed on either a Cytoflex LX (Beckman Coulter), 

or MoFlo Astrios EQ (Beckman Coulter) sorter, and data analysis was performed using FlowJo V10 

software.  

 

Muscle-infiltrating MF cell culture for conditioned medium generation and apoptosis assay 

Wild-type (C57BL/6J) Ly6Clow F4/80high Gpnmb- MFs, and Ly6Clow F4/80high Gpnmb+ MFs 

were sorted from CTX-injured muscle at day 4. An equal number of sorted cells per population 

were seeded (1x106 cells per well) and cultured with DMEM containing 20% endotoxin-reduced 

fetal bovine serum (FBS) and 20% conditioned medium of L929 cell line (enriched in saturating 

levels of CSF-1; tested in a 5-day BMDM differentiation assay) for 12 hours (11, 12). The 

supernatant was then collected and centrifugated to obtain the MF-conditioned medium used in 
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myoblast proliferation and differentiation assays (see below). For the apoptosis assay, sorted MFs 

were seeded in coverslips, fixed with 4% PFA, and immunostained with Cleaved Caspase 3 (Cell 

Signaling #9661; 1:200) for 1 hour at RT. Immunofluorescent and brightfield images were 

obtained using a Carl Zeiss Axio Imager Z2 microscope and analyzed for detection of Cleaved 

Caspase 3+ MFs by a blinded investigator using Fiji. Representative images and figures were then 

assembled in Illustrator v27.2 (Adobe). 

 

Myoblast proliferation and differentiation assay 

Murine myoblast C2C12 cells were obtained from American Type Culture Collection (CRL-

1772) and were maintained according to the company’s instructions. In brief, cells were cultured 

in DMEM supplemented with 10% FBS, 100 U/ml penicillin, and 100 μg/ml streptomycin (growth 

medium) at 37°C in 5% CO2 and 95% air at 100% humidity. For proliferation assays, C2C12 cells 

were seeded at 10,000 cells/cm2 on Matrigel (1:10) and incubated for 1 day with the MF-

conditioned medium plus 2.5% FBS (13, 14). For differentiation assays, C2C12 cells were seeded 

at 30,000 cells/cm2 on Matrigel (1:10) and incubated for 3 days with the MF-conditioned medium 

plus 2% horse serum (13, 14). Cells were then fixed with 4% PFA, incubated with anti-Ki67 (Abcam 

#15580; 1:200), or anti-Myosin heavy chain 1E (DSHB MF 20; 1:20) for 1 h at room temperature, 

and were subsequently visualized using Cy3-conjugated secondary Abs (JIR; 1:200). The nuclei 

were counterstained with 0.1–1 μg/ml Hoechst. IF images were obtained using a Carl Zeiss Axio 

Imager Z2 microscope and analyzed for proliferation (% of Ki67+ myoblasts) and fusion (% of 

myotubes with > 3 myonuclei) index using Fiji. 

 

Spatial RNA sequencing library preparation 
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Fresh frozen skeletal muscle samples were cryosectioned (Leica CM1950) at 10-µm 

section thickness and were placed on the pre-chilled Optimization slides (Visium, 10X Genomics, 

PN-1000191) to determine the optimal lysis time. The tissues were treated as recommended by 

10X Genomics, and the optimization procedure showed an optimal permeabilization time of 

30 min of digestion and release of RNA from the tissue slide. Spatial gene expression slides 

(Visium, 10X Genomics, PN-1000185) were used for ST following the Visium User Guides, and 

whole slide images were taken using a 20X objective of a Leica Aperio Versa scanner. Next-

generation sequencing libraries were prepared according to the Visium user guide. Libraries were 

loaded at 300 pM and sequenced on a NovaSeq 6000 System (Illumina) as recommended by 10X 

Genomics. Each section is derived from a different biological replicate, and each library was 

obtained from a separate Visium experiment followed by bioinformatic integration to remove any 

batch effects. 

 

Spatial transcriptomics data analysis 

Filtered feature-barcode expression matrices from SpaceRanger (v1.3.1) were used as 

initial input for the spot-level ST analysis using Giotto (v2.0.0). Spots with less than 25 measured 

genes were filtered out. Ribosomal, mitochondrial, Rik, and Gm genes were excluded from the 

analysis. Principal component analysis was run on the highly variable genes calculated by 

calculateHVF function. PCA coordinates were used for data integration with harmony (v0.1.1). 

UMAP dimension reduction was performed with harmony embeddings and visualized in R. Spot-

level clustering was performed using the Leiden algorithm at resolution 0.3. Spatially variable 

genes were calculated with binSpect using log-normalized data (FDR < 0.001). Gene Ontology 

enrichment analysis was performed using PANTHER (15) and Metascape v3.5 (16). Filtered gene-

spot matrix and metadata were further analyzed with BayesSpace (v1.6.0) using the top 10 PCs 
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and the top 2000 HVGs. Clusters were then created at sub-spot resolution with the following 

parameters (d=10, platform=”Visium”, init.method=”mclust”, model=”t”, gamma=2). Optimal 

cluster numbers were determined by qTune function and manual curation of marker genes. 

Cluster marker genes were determined using immunogenomics/presto (v1.0.0) (padj<0.05, 

logFC>0.25). Cell-type compositions were calculated for each spot using cell2location (v0.1) (17). 

Reference expression signatures of major cell types were estimated using regularized negative 

binomial regressions and our integrated single-cell RNA-seq datasets. Each slide was later 

deconvoluted using hierarchical Bayesian models as implemented in run_cell2location function. 

For cell-type-specific abundance estimations, we used 10 cells per location with a detection alpha 

of 20 as hyperparameters. The donut charts were created using the ggpubr package. To further 

investigate the spatial organization of the tissue zones and calculate the observed vs. expected 

ratio, we have developed an R shiny app (SpatialZoneR) to interactively define and analyze tissue 

zones in sub-spot resolution using Visium ST rds data. Gene set expression values representing 

different cell subtypes at each subspot were extracted and binarized (expression cutoff was 

selected at > q90 for each marker gene) to define tissue zone cell organization. SpatialZoneR is 

made available as a fully open-source tool at https://github.com/hlszlaszlo/SpatialZoneR.  

 

Single-cell RNA-sequencing library preparation 

After tissue digestion and bead selection, CD45+ single-cell sorted suspensions were 

washed and resuspended in 0.04% BSA in PBS at a concentration of at least 400 cells/μL. Cells 

were counted manually with a hemocytometer to determine their concentration. Single-cell RNA-

sequencing libraries were then prepared using the Chromium Single-Cell 3’ reagent kit v3.1 (10X 

Genomics, Pleasanton, CA) in accordance with the manufacturer’s protocol. Briefly, the cells were 

diluted into the Chromium Single-Cell A Chip to yield recovery of ~10,000 single-cell 

https://github.com/hlszlaszlo/SpatialZoneR
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transcriptomes with < 5% doublet rate. Following the library preparation, the libraries were 

sequenced on the NovaSeq 6000 sequencer (Illumina, San Diego, CA) to produce about 450 million 

reads per library and, on average, a minimum of 40,000 reads per single cell. 

 

Single-cell RNA-seq data analysis 

Single-cell sequencing reads were processed and aligned to the mouse reference 

transcriptome (mm10) with the CellRanger (v7.0.1) (10x Genomics, Pleasanton, CA). We used 

CellBender (v0.2.2) to eliminate technical artifacts. From the gene expression matrix, the 

downstream analysis was carried out in R (v4.2.1). Quality control, filtering, data clustering and 

visualization, and the differential expression analysis were carried out using Seurat (v4.1.3) R 

package (18) with custom modifications. Genes expressed in <10 cells and cells with <500 

detected genes were removed from the gene expression matrix. Cells with high mitochondrial 

mapped read percentage (determined by MiQC) (19), as well as outliers with UMI counts in the 

lower and upper 2.5% (q97.5) were excluded from downstream analysis. Doublets identified using 

scDblFinder (v1.10.0) were also removed. Ribosomal, mitochondrial, Rik and Gm genes were 

excluded from the analysis. After log-normalizing the data, the expression of each gene was 

scaled, and PCA was performed on the top feature genes determined by DUBStepR (v1.2.0). Data 

integration was carried out using harmony (20). Harmony embeddings were used for dimension 

reduction, clustering, and visualization. Unsupervised shared nearest neighbor (SNN) clustering 

was performed with a k parameter of 20 using the Leiden algorithm, and visualization was done 

using PaCMAP (21) using the ReductionWrappers (v2.5.4) R package. Cell type automatic 

annotations were predicted using the SingleR (v1.10.0) package and the ImmGen database from 

celldex as reference (22, 23). Confidence scores were visualized using the plotScoreHeatmap 

function from SingleR. We also verified the accuracy of the assignment by exploring the 
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expression of known cell-type gene markers and by evaluating the top differential genes between 

cell clusters on PanglaoDB (24). Cluster marker genes were identified using presto to perform a 

Wilcoxon rank-sum test and auROC analysis (logFC > 0.25, p-adj < 0.0001, AUC > 0.65, and ranked 

based on their exclusive presence in each cluster calculated as the difference between the 

percentage of inclusion vs. exclusion). Cells in the macro-clusters of interest (Monocytes, MFs, 

and DCs) were extracted and reanalyzed. Visualization was done using t-distributed stochastic 

neighbor embedding (t-SNE) to reveal local differences (25). To determine optimal cluster 

resolution, we first utilized a subsampling-based approach chooseR that guides parameter 

selection while characterizing cluster robustness (26) (Figs. S2E-F). We also independently 

performed the clustering workflow with the FindClusters function from resolution 0.1 to 1 in steps 

of 0.1 (Fig. S3B). The resolution 0.6 was evaluated as best by both approaches. However, one 

cluster emerged that expressed marker genes representing multiple cell populations (Figs. 2D and 

S3A-C), suggesting re-clustering/splitting into two clusters. This choice was evaluated and 

confirmed with the aid of the Clustree package (Fig. S3B) for a total of 10 clusters. To assign 

identities to these immune subclusters, we manually curated and cross-referenced their marker 

genes with known subtype markers data from the literature and relevant mouse models and 

studies (Fig. 5) (5, 27-30). For computing the Spearman similarity correlation between the 

subpopulations in the different samples, the R package corrplot was used (logFC > 0.5, p-adj < 0.1, 

auc > 0.5, sig.level = 0.05, and AOE order) (31). Feature plots were generated using the Nebulosa 

package (32), heatmaps using the pheatmap (v1.0.12) package, tricycle (v1.4.0) for cell cycle stage 

scoring (33), and ggalluvial (v0.12.3)(34) for compositional plots. Combined feature expression 

module scores were calculated using Seurat's AddModuleScore function. Lastly, the dynamic 

changes in gene expression were evaluated by performing a trajectory analysis using three 

packages (Slingshot, Monocle v2, and scVelo) (4, 35-37). To give a finer definition of cell states and 



 27 

unknown myeloid subpopulations, the trajectory analyses were performed only on the MF, 

monocyte, and DC subsets. RNA velocity estimations and visualizations were performed using 

dynamic modeling by scvelo (4, 38). Counts were filtered to a minimum of 20 shared counts across 

samples, and the top 2000 variable genes were selected for velocity analyses. Fifty nearest 

neighbors were used when calculating moments of velocity, followed by velocity estimation and 

embedding on dimensional reductions using scvelo’s velocity_embedding_stream function. 

Pseudotime analysis was performed using Slingshot and the harmony-corrected principal 

components to calculate cluster lineages with getLineages providing cluster 3 (circulating 

monocytes) as a start cluster. Pseudotime trajectories were then calculated using the t-SNE 

embeddings and visualized appropriately. RNA velocity-informed embedding was used to 

represent the proliferating MF cluster in isolation using the veloviz package (39). The cell cycle 

phase (G1, S, G2M) of individual cells was assigned using the calculated standardized z-scores of 

highly expressed stage-specific cell cycle marker genes using a previously defined list of cell cycle 

genes (40, 41). tricycle was then used to visualize the cell cycle stage scoring of the clusters as 

Cartesian coordinates by computing the kernel density of θ conditioned on a phenotype using the 

von Mises distribution (33). To generate the TF heatmap, the average log-normalized expression 

values for the list of TFs were calculated, ordered, and decile-filtered to select the top 75% for 

visualization. 

 

Human single-nuclei RNA-seq data analysis 

Raw sequence data for human samples (vastus lateralis biopsies from healthy and DMD 

patients) from BioProject PRJNA772047 (5) were processed using CellRanger (v7.0.1) to generate 

gene expression matrices aligned to the hg38 reference genome. Single nuclei data were logged 

normalized, and scaled with Seurat. Doublets identified using scDblFinder, nuclei with < 500 UMI, 
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and high mitochondrial gene content (miQC) were removed before integrating datasets using 

harmony. Major cell-type populations were identified using the SingleR package and the Human 

Primary Cell Atlas, and only cells classified as “Monocyte,” and “Macrophage” were selected for 

downstream analysis (22). Clustering trees were used to identify the optimal number of clusters 

(cluster resolution = 0.9) and visualized with t-SNE. For each immune subset, marker genes were 

identified using presto using the same parameters as described above for the scRNA-seq datasets. 

Feature plots were generated using the Nebulosa package (32) and tricycle for cell cycle stage 

scoring of individual cells, as described previously (33). 

 

ATF3 KO microarray gene expression data analysis 

GEOquery and limma v 3.58.1 were used to perform differential expression analysis using 

the original submitter-supplied processed data tables as input and by applying multiple-testing 

corrections (Benjamini & Hochberg FDR) on P-values to correct for the occurrence of false 

positives (p-value cutoff of 0.05). 

 

Chromatin immunoprecipitation (ChIP) 

ChIP was performed as previously described (42) with minor modifications. Briefly, sorted 

cells were crosslinked with DSG (Sigma) for 30 minutes and then with formaldehyde (Sigma) for 

10 minutes. After fixation, chromatin was sonicated with Diagenode Bioruptor to generate 200-

1000 bp fragments. Chromatin was immunoprecipitated with an antibody against H3K27ac 

(ab4729). Chromatin antibody complexes were precipitated with Protein A-coated paramagnetic 

beads (Life Technologies). After six washing steps, complexes were eluted and reverse 

crosslinked. DNA fragments were column purified (Qiagen, MinElute). The amount of 

immunoprecipitated DNA was quantified with Qubit fluorometer (Invitrogen). Libraries were 
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prepared by Ovation Ultralow Library Systems (Nugen) from two biological replicates according 

to the manufacturer’s instructions. 

 

ChIP-seq analysis 

The collection of TF ChIP-seq data and the primary analysis of raw sequence reads were 

carried out as described earlier (43, 44). In more detail, raw data were selected and downloaded 

from the SRA database of NCBI. Alignment to the mm10 mouse reference genome assembly was 

performed by the BWA v0.7.17 tool (45). BAM files were created by SAMtools v1.7 (46). Genome 

coverage (bedgraph) files were generated by makeUCSCfile.pl (HOMER v4.9.1) (47) and visualized 

by Integrative Genomics Viewer (IGV v2.16.1) (48). 

 

Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) 

ATAC-seq was carried out as described earlier with minor modifications (49). 20,000 

Ly6Chigh circulating cells from C57BL/6J were sorted in ice-cold PBS. Nuclei were isolated with 

ATAC-Lysis Buffer (10mM Tris-HCl pH7.4, 10mM NaCl, 3mM MgCl2, 0.1% IGEPAL) and were used 

for tagmentation using Nextera DNA Library Preparation Kit (Illumina). After tagmentation DNA 

was purified with MinElute PCR Purification Kit (Qiagen). Tagmented DNA was amplified with Kapa 

Hifi Hot Start Kit (Kapa Biosystems) using 9 PCR cycles. Amplified libraries were purified again with 

MinElute PCR Purification Kit. Fragment distribution of libraries was assessed with Agilent 

Bioanalyzer and libraries were sequenced on a HiSeq 2500 platform. 

 

Mapping and normalization of ATAC-seq 

Circulating monocytes (Ly6Chigh) and muscle-derived Ly6Chigh MFs of day 1 and Ly6Clow MFs 

of day 4 upon muscle injury datasets were used. The primary analysis of ATAC-seq-derived raw 
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sequence reads has been carried out using the newest version of the ChIP-seq analysis command 

line pipeline, including the following steps: Alignment to the mm10 mouse genome assembly was 

done by the BWA tool (45), and BAM files were created by SAMTools (46). Signals (peaks) were 

predicted by MACS2 (50), artifacts were removed according to the blacklist of ENCODE (51), and 

filtered for further analysis by removing low mapping quality reads (MAPQ score < 10), duplicated 

reads and reads located in blacklisted regions. All regions derived from at least any two samples 

were united within 0.5kb and those summits having the highest MACS2 peak score in any sample 

were assigned to each region. Promoter-distal regions were selected, excluding the TSS+/-0.5kb 

regions according to the mouse GRCm38.p1 (mm10) annotation version. Tag directories used by 

HOMER in the following steps were generated with a 120-nucleotide fragment length with 

makeTagDirectory (47). Genome coverage (bedgraph and tdf) files were generated by 

makeUCSCfile.pl (HOMER) and igvtools, respectively, and used for visualization with IGV2 (48). 

Coverage values were further normalized by the upper decile value detected in the consensus 

regions for each sample to minimize the inter-sample variance. 

 

Motif enrichment analysis 

Peaks derived from day 4 Ly6Clow muscle MFs and closer than 50 kb to any TSS of Gpnmb 

and other GFEM marker genes showing an expression dynamic similar to Gpnmb (Pearson 

correlation > 0.8) were determined by intersectBed (bedtools v2.27.1) (52) and used as inputs for 

a de novo motif enrichment analysis. The central 200 bp of the peaks were used as target 

sequences, and the enrichment of 10-, 12-, and 14-mers was determined by findMotifsGenome.pl 

(HOMER). P-values were calculated by comparing the number of target and random (background) 

sequences carrying a certain motif. To generate the motif lolliplot, we used trackViewer (53) to 

visualize individual motif prediction scores for selected DNA sequences. 
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Chromatin interactions of the -23kb enhancer of the Gpnmb gene locus 

We applied a capture Hi-C (cHi-C) approach (54) to map chromatin interactions in the 

murine Gpnmb gene locus (chr6:49007000-49060000, mm10). Briefly, differentiated mouse 

BMDMs were cross-linked with 1% formaldehyde and stored as cell pellets at -20oC. Cells were 

lysed and processed using the Arima Hi-C kit according to the manufacturer’s protocol. A capture 

enrichment step was applied to the generated Hi-C libraries using custom-designed probes 

(SureSelect, Agilent Tier 2 -2,9Mb) targeting a selective group of myeloid-specific genomic 

regulatory elements, including the -23kb enhancer of the Gpnmb gene locus shown in Fig. 8C. cHi-

C libraries were prepared with the Arima Hi-C kit and Agilent SureSelect library systems according 

to the manufacturers’s protocol. cHi-C raw sequence output was processed with Hicup (v0.6.1) to 

produce a filtered set of mapped interaction pairs in the mm10 genome. Interactions between 

virtual restriction fragments were detected using Chicago (v1.6.0) and custom weights calculated 

from high-confidence interactions in the data. Bigwig files containing mapped normalized 

interaction pairs were uploaded to the IGV browser to visualize chromatin loops of the -23kb 

enhancer of the Gpnmb gene locus together with ChIP-seq tracks.  
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