

Supplemental Figure 1. PCBP2 increases over a physiologically relevant range of glucose concentrations.

(A) Western blot and quantification comparing PCBP2 levels in islets from 12 week old male mice incubated in 2.8mM, 16.7mM, or 25mM glucose for 48 hours (n=3). (B) Representative western blot comparing the induction of PCBP2 in islets from 10 week old male mice exposed to increasing steps of 2.8, 5.6, 8, or 16.7mM glucose for 72 hours and quantification of 4 biological replicates. **P-value<0.01 by one-way ANOVA with Holm-Sidak post-hoc correction (A-B).

Supplemental Figure 2. PCBP2 abundance appears glucose responsive specifically in β cells and does not undergo overt changes in cellular localization during hyperglycemia. Representative islets from 8-12 week old wildtype male mice incubated with 2.8mM or 16.7mM glucose for 72 hours and stained for (A) PCBP2 and Insulin and (B) PCBP2, Insulin, and Hoechst (scale bar, 50 μ m).

Supplemental Figure 3. Sustained high glucose exposure increases basal insulin secretion and insulin content.

(A) Static insulin secretion in response to 2.8mM glucose and (B) insulin content profiles of islets from wild-type 13-17 week old male mice preincubated with 2.8mM or 16.7mM glucose for the indicated time periods (n=3-4). *P-value<0.05 by student's two-tailed t-test (A-B).

Α

Supplemental Figure 4. Lentiviral shRNA vector effectively depletes PCBP2 in β cells. (A) Western blot showing shRNA-mediated depletion of PCBP2 in Min6 cells (n=3). (B) Co-immunofluorescence staining for Insulin and mCherry on dispersed mouse islet cells following lentiviral delivery of shRNA vector targeting PCBP2 to intact islets (scale bar, 50 µm). ***P-value<0.001 by student's t-test.

Supplemental Figure 5. Glucose adaptive insulin secretion in response to high glucose and KCI stimulation is maintained during shRNA-mediated *Pcbp2* depletion in β cells. Individual static insulin secretion profiles and insulin content measurements of transduced islets with shRNA targeting non-targeting (shNT) or *Pcbp2* (shPcbp2) pre-incubated with 2.8mM or 16.7mM glucose (n=3).

Supplemental Figure 6. IBMX-mediated glucagon secretion is preserved in the setting of shRNA-mediated *Pcbp2* depletion in β cells.

(A) Static IBMX-mediated glucagon secretion and (B) content of islets transduced with β cell-specific shRNA lentiviral vectors targeting non-targeting (shNT) or *Pcbp2* (shPcbp2) and pre-incubated with 16.7mM glucose.

Supplemental Figure 7. A distinct Tdtomato⁺ population is present in *Rosas26^{Tdtomato}* β cells expressing *Cre recombinase*, and high glucose incubation downregulates processes involving RNA processing and post-transcriptional gene regulation. Representative FACS plot for *Rosas26^{Tdtomato}* β cells without (A) and with (B) Cre recombinase. (C) Heatmap plot of terms overrepresented in the gene signatures downregulated in control β cells incubated with high glucose.

Supplemental Figure 8. Gene sets linked to key aspects of β cell function are downregulated in mutant β cells exposed to sustained high glucose.

GSEA plots showing gene signatures enriched in (A) calcium flux, (B) synapse assembly and activity, and (C) vesicle transport and exocytosis are downregulated in *Pcbp2* deficient β cells during exposure to high glucose.

Supplemental Figure 9. Gene sets linked to cell cycle and replication are upregulated in mutant β cells exposed to sustained high glucose.

Heatmap plot of terms overrepresented in the gene signatures upregulated in control β cells stimulated with high glucose.

Supplemental Figure 10. Intersecting pairwise differential gene expression comparisons supports the patterns of gene regulation raised from clustering analysis.

(A) 73% (135) of yellow cluster genes were unaffected by glucose incubation in control β cells and were reduced under basal and high glucose incubation with *Pcbp2* deficiency. (B) 65% (108) of green cluster genes were glucose induced in control β cells and *Pcbp2* deficiency reduced the glucose induction of these genes. (C) 56% (49) of genes in orange cluster were unaffected by glucose exposure in control β cells and were uniquely reduced in mutant β cells during high glucose incubation. (D) 29% (20) of blue cluster genes were glucose independent in control β cells and were upregulated under basal and high glucose conditions with *Pcbp2* deficiency. (E) 45% (43) of black cluster genes were unaffected by glucose stimulation in control β cells and were uniquely upregulated with *Pcbp2* deficiency during high glucose incubation. The horizontal bars in each upset plot set size show the number of genes in the heatmap cluster with differential expression from the noted category. Vertical lines denote the overlapping set of genes between each category. Vertical barplots display the number of overlapping and distinct sets of genes in each category within each cluster.

Supplemental Figure 11. $Pcbp2^{\beta KO}$ mice exhibit normal body weight gain and *ad libitum* blood glucose levels.

(A) Bodyweight measurements and (B) *Ad libitum* blood glucose measurements of male mice (n=8, $Pcbp2^{Fl/Fl}$; n=9, $Pcbp2^{\beta KO}$). (C) Bodyweight measurements and (D) *Ad libitum* blood glucose measurements of female mice (n=7, $Pcbp2^{Fl/Fl}$; n=8, $Pcbp2^{\beta KO}$). *P-value<0.05 by student's 2-tailed t-test.

Supplemental Figure 12. Glucose tolerance is less impaired in females.

(A) Intraperitoneal glucose tolerance tests performed on 7-8 week old female mice and (B) corresponding area under the curve calculations (n=12, $Pcbp2^{Fl/Fl}$; n=23, $Pcbp2^{\beta KO}$). *P-value<0.05 by student's 2-tailed t-test.

Time after insulin injection (min)

Supplemental Figure 13. Peripheral tissue insulin sensitivity is normal in $Pcbp2^{\beta KO}$ mice. Insulin tolerance tests performed on 13-15 week old male mice (n=7, $Pcbp2^{\beta KP}$; n=8, $Pcbp2^{\beta KO}$).

Time after glucose injection (min)

Supplemental Figure 14. *Cre Recombinase* expression and *Pcbp2* loxP site insertion do not influence glucose tolerance.

Intraperitoneal glucose tolerance tests performed on 7-8 week old male mice (n=6, *RIPCre*; n=6, $Pcbp2^{FI/FI}$; n=5, Wildtype).

0.06 0.04 0.02 0.00 $Pcbp2^{F/F}}$

В

Supplemental Figure 15. *Pcbp2^{βKO}* islets have defective insulin production.

Measurement of pro-insulin content (**A**) and pro-insulin to insulin ratio (**B**) in control and $Pcbp2^{\beta KO}$ islets from 7-8 week old mice (n=4 $Pcbp2^{Fl/Fl}$; n=3 $Pcbp2^{\beta KO}$). (**C**) Normalized expression for pro-hormone convertase Pcsk1 in RNA-sequencing of FACS-sorted control and Pcbp2 deficient β cells under basal conditions. **P-value<0.01 by student's two-tailed t-test (**A**) or EdgeR differential gene analysis (**C**).

Supplemental Figure 16. Effective CRISPR-mediated depletion of PCBP2. (A) Western blot showing CRISPR-mediated ablation of PCBP2 in Min6 cells (n=3). ***P-value<0.001 by student's two-tailed t-test.

Supplemental Figure 17. the 3' UTR of insulin harbors a conserved cytosine-rich element. Multiple sequence alignment of the 3' UTR of rodent and human insulin genes.

Pcbp2 ^{βκο} vs db/db				
Rnaset2a	Gatm	Npy	Cttnbp2	C1qtnf1
Ncoa4	Cish	Syce2	Gabbr2	Rapgef5
H2-Q5	Cdkn1a	Pla2g12a	Apob	Zcchc12
Star	Mmp12	Gm11992	Atp8a1	Retreg1
Nmnat2	Zdhhc22	Avpr1b	St14	Chgb
Ptprd	Klb	Try5	Ern1	Bcat1
Edil3	Socs2	Норх	Kcnf1	Slc9a9
Lhfp	Bsn	Cald1	Pvr	lvd
Col19a1	Kcna2	Gpr135	Rif1	Pon2
Gipc2	Atox1	Synpr	Plod3	Tnfrsf11b
Tph2	Xdh	Col5a2	Wipi1	ltm2c
Grem2	Actn2	Runx 1	Igfals	Муо3а
Pros1	Kcnk10	Cftr	Stc1	Cd200
Csf2rb	Slc41a3	Spon1	Ppm1e	Chn1
Gm9347	Adgrd1	Slc40a1	KI	Enpp2
Pde7b	Crispld2	Pfkfb4	Csrp1	Glce
Rbmx 2	Krt87	Rbm3	Lgmn	Gsdma
Gdf15	Gfra3	Cux2	Nek6	lgsf5
Tmem181c-ps	Slc23a4	Psd4	Ogdhl	Pecr
1134	Nudt11	Adarb2	Apobec1	Reep5
lkzf4	Adgrg6	Adgrf5	Palld	Sftpd
A730020E08Rik	Lrrc8c	Mcfd2	Car8	Mapk4
lgfbp5	Myo5c	Tubg2	Pik3c2g	Gsto1
Fam110c	Gm43843	Lipa	Dgkg	Slc16a6
Gbp8	Car5b	Pdzrn3	Bex3	Nceh1
Acot9	AW551984			

Pcbp2 ^{βK}	^o vs T2D
2nh2o	Dele

Rph3a	Prir
nfrsf11b	Grem2
Mpp1	Kirrel3
Slc16a6	Cpxm2

Pcbp2^{βKO} vs HG+PA

lfrd1	Gdf15	Норх	Gatm	Tmem120b
Kirrel3	Crem	Got1	Prlr	Tmem97
Enpp2	Nefm	Cdkn1a	Ehhadh	Fzd4
Gtpbp2	Adm2	Pnp	Fmo4	Cftr
Wipi1	Fkbp14	Chn1	Mgst1	Lipa
Ppm1e	Ern1	Uchl1	Rerg	Chst9
Rcbtb2	Bcat1	Kcnj5	Galc	Reps2
Gipc2	St3gal5	Pbx1	Cmtm8	Pde8b
Trim6	Pdzrn3	Kcna2	Marcksl1	D630039A03Rik
Slc15a2				

Pcbp2^{βKO} vs PA

Akr1b8	Pfkp	Eno1	Gdf15	Chgb
Adm2	Palld	Sqstm1	Tnfrsf11b	Gtpbp2
Wipi1	Em1	Galc	Lipa	Serinc5
Soat1	lvd	Ndufs2	Rph3a	Grem2
Glce	Chst9	Slc23a2	Marcksl1	Mpp1
Vgll4	Gipc2	Rasgrp1	Fzd4	Chn1
Nek6	Matn2			

В

Α

Ntrk2	Dgkg	Trpm1	Syndig1
Arl15	Gsto1	Ehf	Syt10
Cast	Soat1	Srbd1	Adarb2
Rab3c	Syce2	Zcchc12	Adgrg6
Cttnbp2	Em1	Myo5c	Rasgrp1
Ptprd	кі	Enpp3	1134
Sugct	Cradd	Rapgef5	Slc7a7
Rph3a	ll13ra1	Socs2	Dnah8
Gbp4	Муо3а		

Supplemental Figure 18. Genes altered in T2D and/or linked to T2D-associated SNPs overlap PCBP2 regulated genes.

Tables showing (**A**) overlapping genes dysregulated with *Pcbp2* deficiency with those altered in murine and human T2D conditions and (**B**) PCBP2 regulated genes harboring T2D-linked SNPs or mapping to intergenic SNPs associated with T2D.

Supplemental Table 4. Immunofluorescence (IF)/ Western blot (WB) antisera and dilutions

Application	Antigen	Source	Catalog #	Species	Clonality	Concentration
IF	Insulin	DAKO	104840	Guinea Pig	Polyclonal	1:500
IF	Insulin	Proteintech	66198-1-lg	Mouse	Monoclonal	1:500
IF	PCBP2	Dr. Stephen Liebhaber	N/A	Rabbit	Polyclonal	1:500
IF	mcherry	Proteintech	5f8	Rat	Monoclonal	1:1,000
WB	PCBP2	Dr. Stephen Liebhaber	N/A	Rabbit	Polyclonal	1:5,000
WB	RAN	Proteintech	10469-1- AP	Rabbit	Polyclonal	1:5,000
WB	GAPDH	Cell Signaling	14C10	Rabbit	Monoclonal	1:5,000

Gene Name	Forward primer	Reverse primer
Hprt	TGCTCGAGATGTCATGAAGGA	CCAGCAGGTCAGCAAAGAACT
Pcbp2	TAAGAAGATGCGCGAGGAGAG	AAGATGGCATTAGTCGGTCCA
Chgb	TCTGACGGCGGAAGAGAAAAA	AGGCTCGTCTCTCCAACTGT
Ins1	TGGCTTCTTCTACACACCCAAG	ACAATGCCACGCTTCTGCC
Ins2	GCAAGCAGGAAGCCTATCTT	GCTTGACAAAAGCCTGGGTG
Rab3c	GCCCATGCAGATGGCCT	CGTGCTGACGAATGCAGATG
Rph3a	GTAGCCCAGCAGGTTTGAGG	CACTTGGAGGAGCCTCTGTG
Syt10	CCCTTGCTGGAGTTACCTGG	GTGGCCTGGGAGAAGAACAG

Supplementary Table 5. Primer sequences for RT-qPCR.