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Supplemental Figure 1. PCBP2 increases over a physiologically relevant range of
glucose concentrations.

(A) Western blot and quantification comparing PCBP2 levels in islets from 12 week old male
mice incubated in 2.8mM, 16.7mM, or 25mM glucose for 48 hours (n=3). (B) Representative
western blot comparing the induction of PCBP2 in islets from 10 week old male mice exposed to
increasing steps of 2.8, 5.6, 8, or 16.7mM glucose for 72 hours and quantification of 4 biological
replicates. **P-value<0.01 by one-way ANOVA with Holm-Sidak post-hoc correction (A-B).
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Supplemental Figure 2. PCBP2 abundance appears glucose responsive specifically in
cells and does not undergo overt changes in cellular localization during hyperglycemia.
Representative islets from 8-12 week old wildtype male mice incubated with 2.8mM or 16.7mM
glucose for 72 hours and stained for (A) PCBP2 and Insulin and (B) PCBP2, Insulin, and
Hoechst (scale bar, 50 ym).
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Supplemental Figure 3. Sustained high glucose exposure increases basal insulin
secretion and insulin content.

(A) Static insulin secretion in response to 2.8mM glucose and (B) insulin content profiles of
islets from wild-type 13-17 week old male mice preincubated with 2.8mM or 16.7mM glucose for
the indicated time periods (n=3-4). *P-value<0.05 by student’s two-tailed t-test (A-B).
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Supplemental Figure 4. Lentiviral shRNA vector effectively depletes PCBP2 in B cells.
(A) Western blot showing shRNA-mediated depletion of PCBP2 in Min6 cells (n=3).

(B) Co-immunofluorescence staining for Insulin and mCherry on dispersed mouse islet cells
following lentiviral delivery of shRNA vector targeting PCBP2 to intact islets (scale bar, 50 pm).
***P-value<0.001 by student’s t-test.
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Supplemental Figure 5. Glucose adaptive insulin secretion in response to high glucose
and KCI stimulation is maintained during shRNA-mediated Pcbp2 depletion in B cells.
Individual static insulin secretion profiles and insulin content measurements of transduced islets
with shRNA targeting non-targeting (shNT) or Pcbp2 (shPcbp2) pre-incubated with 2.8mM or
16.7mM glucose (n=3).
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Supplemental Figure 6. IBMX-mediated glucagon secretion is preserved in the setting of
shRNA-mediated Pcbp2 depletion in § cells.
(A) Static IBMX-mediated glucagon secretion and (B) content of islets transduced with  cell-

specific shRNA lentiviral vectors targeting non-targeting (shNT) or Pcbp2 (shPcbp2) and pre-
incubated with 16.7mM glucose.
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Supplemental Figure 7. A distinct Tdtomato* population is present in Rosas26°™° g
cells expressing Cre recombinase, and high glucose incubation downregulates
processes involving RNA processing and post-transcriptional gene regulation.

Representative FACS plot for Rosas26™°™ 3 cells without (A) and with (B) Cre recombinase.
(C) Heatmap plot of terms overrepresented in the gene signatures downregulated in control 3
cells incubated with high glucose.
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Supplemental Figure 8. Gene sets linked to key aspects of B cell function are
downregulated in mutant 8 cells exposed to sustained high glucose.

GSEA plots showing gene signatures enriched in (A) calcium flux, (B) synapse assembly and
activity, and (C) vesicle transport and exocytosis are downregulated in Pcbp2 deficient B cells
during exposure to high glucose.
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Supplemental Figure 9. Gene sets linked to cell cycle and replication are upregulated in
mutant B cells exposed to sustained high glucose.

Heatmap plot of terms overrepresented in the gene signatures upregulated in control 8 cells
stimulated with high glucose.
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Supplemental Figure 10. Intersecting pairwise differential gene expression comparisons
supports the patterns of gene regulation raised from clustering analysis.

(A) 73% (135) of yellow cluster genes were unaffected by glucose incubation in control  cells
and were reduced under basal and high glucose incubation with Pcbp2 deficiency. (B) 65%
(108) of green cluster genes were glucose induced in control 3 cells and Pcbp2 deficiency
reduced the glucose induction of these genes. (C) 56% (49) of genes in orange cluster were
unaffected by glucose exposure in control 3 cells and were uniquely reduced in mutant 8 cells
during high glucose incubation. (D) 29% (20) of blue cluster genes were glucose independent in
control B cells and were upregulated under basal and high glucose conditions with Pcbp2
deficiency. (E) 45% (43) of black cluster genes were unaffected by glucose stimulation in control
B cells and were uniquely upregulated with Pcbp2 deficiency during high glucose incubation.
The horizontal bars in each upset plot set size show the number of genes in the heatmap cluster
with differential expression from the noted category. Vertical lines denote the overlapping set of



genes between each category. Vertical barplots display the number of overlapping and distinct
sets of genes in each category within each cluster.
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Supplemental Figure 11. Pcbp2°“° mice exhibit normal body weight gain and ad libitum

blood glucose levels.

(A) Bodyweight measurements and (B) Ad libitum blood glucose measurements of male mice
(n=8, Pcbp2*': n=9,Pchp2PX°). (C) Bodyweight measurements and (D) Ad libitum blood
glucose measurements of female mice (n=7, Pcbp2™F; n=8,Pcbp2°X°). *P-value<0.05 by

student’s 2-tailed t-test.
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Supplemental Figure 12. Glucose tolerance is less impaired in females.
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(A) Intraperitoneal glucose tolerance tests performed on 7-8 week old female mice and (B)
corresponding area under the curve calculations (n=12, Pcbp2™F': n=23, Pcbp2°<°). *P-

value<0.05 by student’s 2-tailed t-test.
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Supplemental Figure 13. Peripheral tissue insulin sensitivity is normal in Pcbp2°%° mice.
Insulin tolerance tests performed on 13-15 week old male mice (n=7, Pcbp2™F; n=8, Pcbp2°K©).
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Supplemental Figure 14. Cre Recombinase expression and Pcbp2 loxP site insertion do
not influence glucose tolerance.
Intraperitoneal glucose tolerance tests performed on 7-8 week old male mice (n=6, RIPCre;
n=6, Pcbp2'; n=5, Wildtype).
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Supplemental Figure 15. Pcbp2fX° islets have defective insulin production.
Measurement of pro-insulin content (A) and pro-insulin to insulin ratio (B) in control and
Pcbp2PK© islets from 7-8 week old mice (n=4 Pcbp2™, n=3 Pcbp2PX°). (C) Normalized
expression for pro-hormone convertase Pcsk1 in RNA-sequencing of FACS-sorted control and
Pcbp2 deficient B cells under basal conditions. **P-value<0.01 by student’s two-tailed t-test (A)
or EdgeR differential gene analysis (C).
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Supplemental Figure 16. Effective CRISPR-mediated depletion of PCBP2.
(A) Western blot showing CRISPR-mediated ablation of PCBP2 in Min6 cells (n=3). ***P-
value<0.001 by student’s two-tailed t-test.
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Supplemental Figure 17. the 3’ UTR of insulin harbors a conserved cytosine-rich element.
Multiple sequence alignment of the 3’ UTR of rodent and human insulin genes.
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Supplemental Figure 18. Genes altered in T2D and/or linked to T2D-associated SNPs
overlap PCBP2 regulated genes.

Tables showing (A) overlapping genes dysregulated with Pcbp2 deficiency with those altered in
murine and human T2D conditions and (B) PCBP2 regulated genes harboring T2D-linked SNPs
or mapping to intergenic SNPs associated with T2D.



Supplemental Table 4. Immunofluorescence (IF)/ Western blot (WB) antisera and

Appliggzgzns Antigen Source Catalog # Species Clonality Concentration
IF Insulin DAKO 104840 Guinea Pig | Polyclonal 1:500
IF Insulin Proteintech | 66198-1-Ig Mouse Monoclonal 1:500
IF PCBP2 Dr. Stephen N/A Rabbit Polyclonal 1:500

Liebhaber
IF mcherry Proteintech 5f8 Rat Monoclonal 1:1,000
WB PCBP2 Dr. Stephen N/A Rabbit Polyclonal 1:5,000
Liebhaber
WB RAN Proteintech 10469-1- Rabbit Polyclonal 1:5,000
AP
WB GAPDH | Cell Signaling 14C10 Rabbit Monoclonal 1:5,000




Supplementary Table 5. Primer sequences for RT-qgPCR.

Gene Name Forward primer Reverse primer
Hprt TGCTCGAGATGTCATGAAGGA CCAGCAGGTCAGCAAAGAACT
Pcbp2 TAAGAAGATGCGCGAGGAGAG AAGATGGCATTAGTCGGTCCA
Chgb TCTGACGGCGGAAGAGAAAAA AGGCTCGTCTCTCCAACTGT
Ins1 TGGCTTCTTCTACACACCCAAG ACAATGCCACGCTTCTGCC
Ins2 GCAAGCAGGAAGCCTATCTT GCTTGACAAAAGCCTGGGTG
Rab3c GCCCATGCAGATGGCCT CGTGCTGACGAATGCAGATG
Rph3a GTAGCCCAGCAGGTTTGAGG CACTTGGAGGAGCCTCTGTG
Syt10 CCCTTGCTGGAGTTACCTGG GTGGCCTGGGAGAAGAACAG




