10

11

12

13

14

15

16

17

18

19

20

21

22

23

Supplemental Materials

Cell-death specific gene expression in MIS-C

To gain insight into the potential mechanisms of cell death, we obtained publicly available
single-cell RNA sequencing transcriptome dataset (GSE166489) of a different cohort of
MIS-C patients (47). We surveyed gene transcripts related to cellular death pathways in
immune cells of MIS-C patients and compared the gene transcripts to healthy pediatric
controls (HCs) from public dataset. Supporting our cfDNA results, we found significantly
upregulation of cell-death pathways in MIS-C compared to HCs (Suppl. Fig. 7). In the
scRNAseq analysis dataset adapted from Ramaswarmy et al., neutrophils in MIS-C
patients clustered into two distinct groups. Cluster 1 neutrophils showed significantly more
cell death than neutrophils in cluster 2 (Suppl. Fig. 7A&B). Myeloperoxidase (MPO),
peptidyl arginine deaminases (PADI2, PADI4), azurocidin 1 (AZU1) and neutrophil
elastase (ELANE) that contribute to neutrophil degranulation and a pro-inflammatory cell
death unique to neutrophils called NETosis were highly upregulated in MIS-C patients,
supporting our finding of an increased neutrophil-derived cfDNA (Fig 2C). Cluster 1
neutrophils (Suppl. Fig. 7A) in MIS-C also upregulated genes involved in the apoptotic
cell death pathway (FOXO3, BAX, and CYCS). Gasdermin D (GSDMD), an important
player in the pyroptotic cell death was significantly upregulated in MIS-C compared to
HCs in neutrophil cluster 1 (Suppl. Fig. 7A). Genes involved in autophagy (DRAML1,
BECN1) and necroptosis (MLKL, RIPK1, RIPK3) were not upregulated in MIS-C
neutrophils, and neither were most genes involved in ferroptosis (FANCD2, GPX4, and
IREB2) apart from ALOX15B, a gene known to localize in the cell membrane during the

iron-dependent cell death (Suppl. Fig. 7A&B). ALOX15B was highly upregulated in both
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neutrophil clusters in MIS-C patients compared to HCs (Suppl. Fig. 7A&B). Additionally,
monocytes and dendritic cells, exhibited marked upregulation of transcripts involved in
pyroptosis (GSDMD, PYCARD), apoptosis (BAX, CYCS, AIFM1, FAS) and necroptosis
(MLKL, RIPK1, RIPK3) (Suppl. Fig. 7C). This is consistent with our cfDNA results
suggesting that myeloid cells significantly contribute to plasma cfDNA levels in MIS-C
patients. T cells, B cells and NK cells exhibited no difference in production of transcripts
involved in cell death pathways between MIS-C and HC (Suppl. Fig. 7D-F), consistent
with our findings that cells of lymphoid cell lineage contribute less to plasma levels of
cfDNA in MIS-C patients. We also observed upregulation of the pro-apoptotic gene CYCS
in MIS-C B cells, but significant decrease of CASP9 (apoptosis) and RIPK1 (necroptosis)
compared to HCs (Suppl. Fig. 7E). Overall, the increased gene transcripts related to
cellular death pathways support the excessive cfDNA release in the circulation of MIS-C

patients.
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Supplemental Figure Legends

Suppl. Fig 1. Quality of plasma cfDNA and library. (A) Length distribution of plasma

cfDNA. (B) Length distribution of cfDNA library.

Suppl. Fig 2. Proportion of cfDNA tissues-of-origin and absolute blood cell count. (A)The
proportion of cfDNA derived from hematopoietic cells and non-hematopoietic tissues in
MIS-C (red) and pCOVID-19 (blue). (B) Circulating neutrophil and platelet count in MIS-

C and pCOVID-19. Mann-Whitney tests utilize to compare groups; ns = not significant.

Suppl. Fig 3. Correlation matrices (within-group) between cfDNA or cytokine features.
(A) Correlation between each cfDNA profiles in pediatric patients with and without MIS-
C. (B) Correlation between each cytokine profiles in pediatric patients with and without

MIS-C

Suppl. Fig 4. Performance cytokine features to differentiate MIS-C from pCOVID-19.
ROC curve analysis of cytokine measures early at admission as a discriminatory marker

between pCOVID-19 and MIS-C patients.

Suppl. Fig 5. Circulating cytokine levels. Comparison of plasma cytokine/chemokine
levels in MIS-C, pCOVID-19 and pHC. Cytokine values are presented as picograms per
milliliter (pg/mL; Logio transformed). Statistical significance was determined by kruskal—
Wallis test followed by Dunn's multiple comparisons and adjusted for multiple-comparison
using the Benjamini-Hochberg procedure. p-value of less than 0.05 was considered

statistically significant; *p < 0.05; **p < 0.01; **p < 0.001; **** p < 0.0001.
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Suppl. Fig 6. Association of cfDNA with cytokine and clinical markers. (A) Correlation
matrices between cfDNA, cytokine and clinical markers in children with MIS-C. (B) Linear
correlation of total n-cfDNA at admission with admission (adm) and peak CRP and D-
dimer levels. Correlation coefficients (r) and p-values are shown. (C) Performance by
receiver operator curve characteristics of admission CRP and D-dimer to distinguish MIS-
C from pCOVID-19. (D) Performance of top five cfDNA measures to distinguish MIS-C
from pCOVID-19. (E) Performance of top five features to distinguish MIS-C from pCOVID-
19. CRP, D-Dimer and cfDNA features were included in the random forest model. The
model was repeated 10 times. The AUC for each repeat or run is shown. Dashed line is
the average of the 10 curve.

Figure 7. Increased expression of genes involved in cell death pathways in MIS-C
compared to HCs using a publicly available dataset (GSE166489). Single-cell RNA-seq
analysis of cell-death transcripts in neutrophil clusters (A & B), myeloid clusters (C), T
cells (D), B cells (E) and NK cells (F). Statistical significance was determined by two-
tailed t-test after adjusting for multiple comparison using the Benjamini-Hochberg
procedure. P-value <0.05 and FDR<0.25 was considered statistically significant; *p <

0.05; **p < 0.01; ***p < 0.001; **** p < 0.0001.



1 Suppl. Table 1. Median n-cfDNA in MIS-C patients based on indices of disease severity.

Parameter On Vasopressor On Supplemental Intubated
Oxygen
Yes (n=7) | No (n=7) Yes (n=8) | No (n=6) | Yes(n= No (n=12)
2)
n-cfDNA 179,790 62,795 166,876 68, 923 210,340 |92, 667
(cp/mL) (107,084 - | (18,528 - (72,688 - | (49,443 - | (61,176 - | (60,510 -
median 231,175) | 78,249) 226,327) | 85,458) 359,504) | 173,333)
(IQR)

2 IQR =interquartile range

3 Suppl. Table 2: High cardiac myocyte-derived cfDNA levels in MIS-C patients compared to
4  pCOVID-19 and healthy controls.

Cardiac myocyte-derived cfDNA (cp/mL)

Values pHC pCOVID-19 MIS-C Fold increase

Median 152 (105 -|467 (87 -|3545 (1090 - | *pHC vs. MIS-C = 23

[IQR] 239) 2361) 9112) *pHC vs. pCOVID-19 = 3
*pCOVID-10 vs. MIS-C=7.6

5 Suppl. Table 3: Interpersonal variation of cardiac myocyte-derived cfDNA in MIS-C patients

Subject ID Cardiac myocyte-
derived cfDNA
(cp/mL)
SE-JH-H-P0070 3854.1
SE-JH-H-P0068 3235.5
SE-JH-H-P0078 14318.4
SE-JH-H-P0015 10427.8
SE-JH-H-P0042 16942.5
SE-JH-H-P0046 0
SE-JH-H-P0052 8673.8
SE-JH-H-P0004 1114.9
SE-JH-H-P0080 3860.1
SE-JH-H-P0028 2112.2
SE-JH-H-P0044 4481.1
SE-JH-H-P0032 1017.2
SE-JH-H-P0018 565.2
SE-JH-H-P0041 3152.1

6  Suppl. Table 4: Co-increase of liver-specific enzyme and hepatocyte derived cfDNA in a
7  prototype MIS-C patients

Subject ID AST u/uL | ALT u/pL | Hepatocyte-derived cfDNA (cp/mL)
SE-JH-H-P0068 585 420 86641
SE-JH-H-P0041 189 338 14635
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