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Introduction
A study design with repeated measures data 
occurs when each experimental unit has 
multiple dependent variable observations 
collected at several time points. Often lon-
gitudinal data (1, 2) are used interchange-
ably to describe repeated measures data. 
This study design also includes two or more 
experimental groups, and each experimen-
tal group receives varying levels of experi-
mental conditions. The experimental group 
variable is treated as the primary indepen-
dent variable in the statistical analysis. 
Study designs with repeated measurements 
are common in basic science research. A 
systematic review of preclinical animal 
research studies found that approximately 
50% of studies within biomedical research 
domains of toxicology and brain trauma 
reported a study design with repeated mea-
surements (3). Planned statistical analy-
ses for this type of research design should 
incorporate all observed repeated measure-
ments to evaluate the research hypotheses. 
However, often statistical analyses aggre-
gate repeated measures data by computing 
an average for each experimental unit.

When the repeated measurements are 
aggregated, ANOVA is generally applied. 
Using an ANOVA with aggregated repeat-
ed measurements violates the key ANOVA 
assumption of independence. Repeated 
measurements are correlated observa-
tions, given that they are observed from 
the same experimental unit. Repeated 
measurements collected closer in time 
are more correlated than measurements 
collected further in time (4). Correlation 
within an experimental unit is ignored 
when repeated measurements are aggre-
gated. This violation of independence 
leads to biased analysis results and incor-
rect interpretations (1).

An extension of an ANOVA is a repeat-
ed measures ANOVA. A repeated measures 
ANOVA accounts for the correlation within 
and between experimental groups (5) along 
with the time of the measurements (time 
point 1, time point 2, etc.). Similar to an 
ANOVA, time is treated as a categorical vari-
able (6) rather than a continuous variable in 
a repeated measures ANOVA. Assumptions 
of the repeated measures ANOVA should 
be carefully considered when determining 
if it is an appropriate statistical approach. 
Statistical method alternatives to a repeat-
ed measures ANOVA are applicable when 
repeated measures assumptions are not 
met. The purpose of this Viewpoint is to pro-
vide guidance on statistical analysis options 
for repeated measurements within the con-
text of basic science. Analysis guidance is 
given considering various assumptions and 
repeated measures data structures.

Repeated measures ANOVA 
requirements and considerations
The assumptions of a repeated measures 
ANOVA are that the continuous dependent 
variable is approximately normally distrib-
uted, the categorical independent variable 
(e.g., experimental group) has three or more 
levels, no outliers in any of the repeated 
measurements, and sphericity (constant 
variance across time points). All assump-
tions are required to be met for a repeated 
measures ANOVA to be an appropriate sta-
tistical analysis approach. In a review of 58 
preclinical animal studies (7), it was found 
that the checking of assumptions of repeat-
ed measures analyses were not accurately 
reported. Specifically, assumptions related 
to variance were not described. The spheric-
ity assumption is a strong assumption that 
may not be accurate when there are repeat-
ed measurements. Mauchly’s test can deter-

mine if the sphericity assumption is reason-
able (8), and there are adjustments such as 
the Huynh-Feldt and Greenhouse-Geisser 
corrections that can account for the viola-
tions of the sphericity assumption (9–11). 
These adjustments are easy to apply with 
statistical software. Results from analyses 
that utilize these approaches should be stat-
ed in descriptions of statistical methods. 
Transforming the continuous dependent 
data so that they are approximately nor-
mally distributed or using Friedman’s test 
(nonparametric version of the repeated 
measures ANOVA) can be done when the 
normality assumption is invalid.

A repeated measures ANOVA requires 
a balanced number of repeated measure-
ments for each experimental unit. Due to 
this requirement, experimental units with 
missing measurements are completely 
excluded from the analysis (i.e., complete 
case analysis), which results in the sample 
size decreasing and the type II error increas-
ing (12, 13). By excluding experimental units 
with missing data, the statistical power also 
decreases. Sample sizes are typically small-
er in basic science research, and any reduc-
tion in the sample size due to missing data 
can greatly effect the results (6).

Missing data can occur in basic sci-
ence for various reasons. The reporting of 
missing data in basic science research is 
not standard practice as it is in clinical trials 
(14). Therefore, the description of statistical 
analysis methods in peer-reviewed publica-
tions could include the sample size of the 
complete cases only (7) or may not describe 
if an imputation technique was used for the 
missingness. Simple imputation approaches 
such as mean imputation and last obser-
vation carried forward are considered as 
remedies for missing data and alternatives 
to the complete case approach (2). Another 
missing data technique is multiple imputa-
tion. Instead of replacing the missing obser-
vation with a single value, like in simple 
imputation, multiple imputation replaces 
the missing observation many times, uti-
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experimental units. The ability to handle an 
imbalance of measurements across experi-
mental units is an advantage in comparison 
to repeated measures ANOVA.

Performance of mixed-effects models 
have been assessed under various scenar-
ios of small sample sizes (12) and cluster-
ing sizes (22). Results from simulation 
studies of the mixed-effects models have 
showed that estimates were least biased 
when model assumptions were valid and 
denominator degrees of freedom adjust-
ments were applied. Examples of denom-
inator degrees of freedom adjustments 
are Kenward-Roger and between-within 
(22). Determining the validity of model 
assumptions can be difficult with small 
sample sizes. Distribution assumptions for 
the models are commonly assessed using 
histogram and Q-Q plots.

Comparison of statistical 
approaches using  
simulated data
A simulated data example comparing results 
from ANOVA, repeated measures ANO-
VA, and a linear mixed-effects model is in 
Table 1. Published average body weights in 
grams and standard deviations of female 
C57Bl/6J mice (23) were used to generate 
normally distributed data for 3 groups. Body 
weights were monitored using dual energy 
x-ray absorptiometry. Body weight averag-
es and standard deviations from three time 
points (week 5, week 9, and week 13) were 
used to produce data for 10 mice per group. 
Larger body weights in group 3 were gener-
ated to ensure that there were body weight 
differences across the groups. Several body 
weight measurements in all groups were 
removed from weeks 9 and 13 to simulate 
missing data. A total of 10 measurements 

within basic science that are often treat-
ed as random effects. There is not a strict 
sphericity assumption for mixed-effects 
models. Instead, mixed-effects mod-
els can account for different covariance 
structures so that sources of variability are 
appropriately included (4, 13, 18).

Within the mixed-effects model frame-
work there are linear mixed-effects models, 
generalized linear mixed models, and non-
linear mixed-effects models (19). Like an 
ANOVA and repeated measures ANOVA, 
the dependent variable must be continuous 
and approximately normally distributed 
for a linear mixed-effects model. Gener-
alized linear mixed models and nonlinear 
mixed-effects models are extensions of 
linear mixed-effects models. Generalized 
linear mixed models are used for discrete 
dependent variables such as cell counts 
that are measured repeatedly. Nonlinear 
mixed-effects models can handle complex, 
nonlinear dependent variables. Tumor 
growth within mice (20) and pharmacoki-
netics of animals (21) have been modeled 
using nonlinear mixed-effects models.

Mixed-effects models incorporate time 
and the imbalance of repeated measure-
ments across experimental units differ-
ently than ANOVA and repeated measures 
ANOVA. Mixed-effects models have the 
flexibility to treat the time of repeated mea-
surements as a continuous variable or as 
a categorical variable. Various covariance 
structures can be used to construct mixed 
models with unequal timing between 
repeated measurements across experi-
mental units (4). Mixed-effects models can 
include experimental units in the analysis, 
even with missing measurements or with 
a different number of repeated measure-
ments in comparison to the remaining 

lizing distributional properties and infor-
mation from the observed data. However, 
these imputation approaches have their 
limitations, given small sample sizes that 
are commonly observed in basic science 
research (12, 15). The type of missingness 
should be determined when selecting an 
imputation technique. The three types of 
missingness are missing at random, miss-
ing completely at random, and missing not 
at random. Missing at random describes the 
scenario when the missing data are inde-
pendent of the unobserved measurement. 
Missing completely at random is missing 
data that are independent of the observed 
and unobserved measurements. Missing 
not at random is data that are missing due 
to the unobserved measurement. Multiple 
imputation is applicable when missing at 
random occurs.

Alternative statistical approach: 
mixed-effects models
A mixed-effects model is a statistical mod-
el with fixed and random effects. Esti-
mates from mixed-effects models provide 
interpretations that are experimental unit 
specific. This means that the interpreta-
tions focus on the expected change of the 
dependent variable for an experimental 
unit or cluster of experimental units (1, 
12). Fixed effects are parameters that do 
not vary, such as experimental group and 
sex of animal. Random effects in a model 
can be random slopes, random intercepts, 
or both. Random effects allow for multiple 
sources of variability within the data to 
be captured in the mixed-effects model. 
Sources of variability can be the result of 
complex study designs with clustering and 
hierarchical structures. Litter size (16) and 
clusters of gene profiles (17) are examples 

Table 1. Analysis example of simulated data comparing body weights of mice from three groups at three time points

ANOVA Repeated measures ANOVA Linear mixed-effects model
Sample size (sample size per group) 30 (10 per group) 21 (7 in group 1, 8 in group 2, and 6 in group 3) 30 (10 per group)

Total no. of measurements used in the analysis 30A 63B 80

Are the body weights different across groups? No
F = 3.08, P = 0.063

Yes
F = 6.93, P = 0.006

Yes
F = 14.16, P <0.001

Which groups differ at each time point  
based on a Tukey-Kramer–adjusted P < 0.05?

ANOVA is unable to detect  
group differences across time points

At week 5: none
At week 9: groups 1 and 2; groups 2 and 3
At week 13: groups 1 and 3; groups 2 and 3

At week 5: groups 2 and 3
At week 9: groups 1 and 2; groups 2 and 3
At week 13: groups 1 and 3; groups 2 and 3

AANOVA requires body weight be aggregated by computing an average for each mouse. BA repeated measures ANOVA requires a balanced number of 
repeated measurements for each mouse; therefore, mice with missing body weight measurements were excluded from the analysis.
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Conclusions
The appropriate statistical methods for 
repeated measurements must be applied 
to make accurate scientific interpreta-
tions from basic science research stud-
ies. Aggregating repeated measurements 
and applying an ANOVA is not suitable 
given the violation of the independence 
assumption. The assumptions of a repeat-
ed measures ANOVA should be assessed 
thoroughly, and decisions need to be 
made regarding how to handle an imbal-
ance of repeated measurements if appli-
cable. The mixed-effects model frame-
work provides an alternate solution when 
there is an imbalance of repeated mea-
surements, a complex study design, and/
or a dependent variable that is not contin-
uous. Software that carries out statistical 
analyses, including GraphPad Software, 
can be used to apply the repeated mea-
sures analysis approaches described in 
this Viewpoint. When there is uncertain-
ty regarding which repeated measures 
analysis is the best fit, it is important to 
consult with a statistician. Statisticians 
can provide advice at any stage of the 
research study (24), but there is prefer-
ence to consult with a statistician in the 
planning stage of a study.
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were removed among the three groups. The 
removal of 10 body weight measurements 
caused there to be 80 body weight measure-
ments that were not missing.

The sample sizes and number of mea-
surements used for each statistical approach 
are included in Table 1. In order to utilize 
ANOVA, body weights had to be aggregated 
by computing an average for each mouse. 
The body weight average per mice allowed 
for there to be only one measurement per 
mouse. For the repeated measures ANOVA, 
only 21 mice with all measurements at week 
5, week 9, and week 13 were included in the 
analysis. All 80 nonmissing body weight 
measurements from the 30 mice (10 mice 
per group) were used in the linear mixed- 
effects model. Each mouse was treated as 
a random effect in the linear mixed- effects 
model, so that the variability within and 
across groups could be captured in the 
model. The covariance structure in the lin-
ear mixed-effects model was a first-order 
autoregressive structure, such that mea-
surements at adjacent time points had high-
er correlation than measurements at non-
adjacent time points.

The F value and corresponding P value 
from each statistical approach are reported 
in Table 1. The F value from an F test was 
used to determine if there were statistically 
significant body weights differences across 
the 3 groups. The ANOVA results were not 
able to detect statistically significant dif-
ferences across the groups. In addition, an 
ANOVA cannot determine whether there 
are group differences at each time point 
because an ANOVA is not able to account 
for time, like a repeated measures ANO-
VA and mixed effect model. The repeated 
measures ANOVA and linear mixed- effects 
model were able to detect statistically sig-
nificant differences across the 3 groups. 
Despite the P values of both approaches 
being less than an α level of 0.05, the P val-
ue from the linear mixed-effects model was 
smaller than the repeated measures ANO-
VA. The repeated measures ANOVA and 
linear mixed-effects model were able to 
determine which groups differ. Due to hav-
ing multiple statistical comparisons among 
the groups, the Tukey-Kramer P value 
adjustment was used to determine statisti-
cal significance. The linear mixed-effects 
model was the only approach that was able 
to detect a statistically significant differ-
ence between groups 2 and 3 at week 5.
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