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Introduction
The relationship between the immune system and cancer growth 
is complex; the interplay between the immune system and the 
tumor impacts all aspects of cancer growth, from tumorigenesis to 
tumor growth and eventual metastasis. Such interaction between 
the immune system and the tumor is based on the theory of cancer 
immunoediting, which involves 3 phases: elimination, equilibri-
um and escape (1). In the elimination phase, a competent immune 
system attacks and destroys tumor cells. Tumor cells that survive 
the initial attack may enter a state of dormancy known as the equi-
librium phase before entering the escape phase, in which tumor 
cells acquire the ability to evade the immune system and grow 
unchecked (1). Tumors can escape immune surveillance through 
various mechanisms, including alteration or loss of antigens, 
upregulation of immune checkpoint molecules, and manipula-
tion of cytokines and oncogenic signaling to create an immune- 
suppressive tumor microenvironment (2, 3). Attempts to reengage 
the immune system to counteract cancer-induced immune eva-
sion have resulted in the emergence of various immunotherapeu-
tic modalities (4, 5). Immune checkpoint inhibitors (ICIs) are one 
such immunotherapeutic intervention.

Immune checkpoints are a group of proteins that are expressed 
on the surface of various cells, and they play a crucial role in mod-
ulating immune responses. However, immune checkpoints have 
been exploited by cancer cells for immune evasion (6). In turn, 
ICI therapy seeks to overcome this unfavorable immune-cancer 
interaction. ICIs have been approved to treat several types of can-
cer, including melanoma, lymphoma, renal cell, and lung cancer. 
Particularly, ICIs are increasingly being used as a first-line option 

for both early and advanced stages of non–small cell lung cancer 
(NSCLC) (7), a leading cause of cancer-related deaths globally (8). 
The use of ICIs has shown improved overall survival in NSCLC 
(9), but it has also been linked to immune-related adverse events 
(irAEs), including lung toxicity (10, 11). Checkpoint inhibitor pneu-
monitis (CIP) is a major irAE associated with significant morbidity 
and mortality (12, 13). Despite this clinical significance, the mech-
anisms underlying lung injury in CIP are not well understood, lim-
iting the availability of specific treatments. In this Review, we out-
line the mechanisms of action and use of ICIs, the clinical features 
of CIP, and recent research aimed at understanding the biological 
underpinnings of this condition.

ICI biology
T cells are an integral part of the adaptive immune response; their 
activation by an offending antigen (e.g., an infectious agent or a 
tumor antigen) can propagate a series of inflammatory respons-
es. In cancer, these antigens can arise from tumor cells; as such, 
T cells are known to be an important factor in immune cancer 
surveillance. However, T cell activation is naturally balanced by 
counterregulatory mechanisms in the form of immune check-
points, which serve to curb the immune response and avoid auto-
immunity (14). This natural phenomenon in turn is exploited by 
cancer cells to induce immune tolerance.

The natural T cell–mediated immune response is a complex 
process that involves multiple steps and interactions with other 
cell types aimed at targeting specific foreign antigens or epitopes. 
During immune surveillance, antigen-presenting cells (APCs) play 
a crucial role in this process by recognizing tumor antigens and 
activating T cells (1). T cell activation requires two signals: a pri-
mary signal transmitted through its T cell receptor and a costim-
ulatory signal delivered by the CD28 receptor. This costimulation 
occurs when APC surface proteins B7-1 (CD80) or B7-2 (CD86) 
interact with CD28 (6). This costimulatory signal is essential for 
proper T cell activation and function.
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ty II receptor found on APCs, can impede T cell proliferation and 
differentiation (25). In vivo pharmacological blockade or genetic 
ablation of LAG-3 has been consequently shown to restore function 
in exhausted T cells, leading to an enhanced antitumor response 
(26). However, simultaneous inhibition of LAG-3 and PD-1 func-
tion resulted in the optimal antitumor response in murine models 
(27). Therefore, clinically, the use of LAG-3 blocking antibodies has 
only been approved in combination with PD-1 blockade (28), and 
limited data are available on its pulmonary toxicity profile. Other 
checkpoint proteins, including B and T cell lymphocyte attenuator 
(BTLA), V-domain Ig suppressor of T cell activation (VISTA), and 
T cell immunoglobulin and mucin domain 3 (TIM-3) are also being 
investigated as potential targets for inhibition in early-stage clinical 
trials (29). Like PD-1 and LAG-3, these proteins all play a role in 
limiting T cell activity and effector function.

While clearly important in cancer biology, these pathways 
also play a pivotal role in maintaining immune homeostasis. This 
is best evidenced by the emergence of spontaneous autoimmu-
nity in CTLA-4– and PD-1–knockout murine models (14, 30, 31). 
It is noteworthy to mention that the loss of CTLA-4 inhibition in 
murine models leads to fatal disease soon after birth, in contrast 
to PD-1–knockout mice that develop nonlethal autoimmunity (30, 
32). Unsurprisingly, disruption of these pathways through ther-
apeutic blockade, while beneficial for tumor control, also incurs 
the risk of autoimmune dysfunction. Such dysfunction clinically 
manifests as irAEs in patients with cancer undergoing ICI treat-
ment. irAEs can involve any organ, frequently affecting the skin as 
dermatitis, the gastrointestinal tract as colitis, and the endocrine 

Cytotoxic T lymphocyte–associated protein-4 (CTLA-4) and 
programmed cell death protein-1 (PD-1) receptors are critical 
checkpoints that function at distinct stages of the T cell activation 
cycle. CTLA-4 competes with CD28 for their shared ligands, CD80 
or CD86 (15), limiting further T cell activation (16). This process 
occurs at the start of the T cell activation cycle. T cells subsequent-
ly can become unresponsive or undergo a state of anergy (17). At 
the same time, CTLA-4 signaling in T cells promotes their trans-
formation into Tregs (18) that are essential in peripheral immune 
tolerance (19). CTLA-4 expression in lymphocytes is thought to be 
driven by lung cancer or the tumor microenvironment (20). While 
CTLA-4 regulates the early process of T cell activation within the 
lymph nodes, PD-1 checkpoints function at a later stage in the 
peripheral tissues. In contrast to that of CTLA-4, PD-1 expres-
sion is observed at the late effector phase of the activated T cell 
(21). Upon its interaction with programmed cell death ligand-1 
or -2 (PD-L1 or PD-L2), intracellular pathways are triggered that 
inhibit T cell receptor signaling, decrease proliferation, and sup-
press effector functions (22). PD-1’s ligands are expressed on a 
wide variety of nonhematopoietic cells, including endothelial and 
epithelial cells (23). Cancer cells exploit the inhibitory function of 
the PD-1 checkpoint pathway by overexpressing PD-L1 or PD-L2, 
thereby limiting the host’s immune response (24) (Figure 1).

In addition to the CTLA-4 and PD-1 pathways, lymphocyte 
activation gene 3 (LAG-3) is a known checkpoint involved in 
immune regulation. LAG-3 is primarily found on lymphocytes, but 
it can also be expressed in NK and myeloid cells. LAG-3 activation 
by interaction with its primary ligand, the major histocompatibili-

Figure 1. Immune checkpoint biology. (A) T cell activation is initiated by interacting via its T cell receptor with APCs that present offending antigens. A 
costimulatory signal is additionally required on the T cell CD28 receptor for full activation. Upon activation, CTLA-4 and PD-1 are expressed on the cell 
surface. (B) CD28 costimulation can be inhibited by CTLA-4, leading to T cell dysfunction. CTLA-4 expression can be enhanced by the tumor microenvi-
ronment (TME). Both of these steps occur at the level of the lymphoid organs. (C) Stimulation of the PD-1 receptor by tumor-expressed PD-L1 can render 
activated T cells dormant, inhibiting immune responses against cancer cells. These mechanisms can be overcome with specific antibodies against the 
receptors (CTLA-4, PD-1) or ligands (PD-L1).
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may occur soon after treatment initiation, typically within days to 
weeks (61). The time frames reported vary among study cohorts; 
however, the reported median onset is approximately 2–3 months 
after ICI initiation (12, 51, 61). The common terminology criteria 
for adverse events (62) can be utilized to grade the overall clinical 
severity of CIP, as outlined in Table 2.

Pathognomonic radiological features for CIP do not exist. 
Instead, a range of changes have been identified on CT scans, 
with approximately 50% of the cases reported in the literature 
presenting either as ground-glass opacities or consolidative 
lesions (63). The diagnosis of CIP is established after excluding 
other potential etiologies, such as infection, tumor progression, 
and alveolar hemorrhage. Although bronchoalveolar lavage flu-
id (BALF) may be employed to exclude alternative diagnoses or 
infections, it is variably employed and is not considered an essen-
tial diagnostic procedure (64).

Once a diagnosis of CIP is established, ICI therapy is typical-
ly terminated, and systemic glucocorticoid therapy is initiated 
for the majority of patients with more severe (>grade 1) disease. 
However, a subset of patients fails to respond to steroids and may 
require additional immunosuppressive interventions beyond glu-
cocorticoids (61, 65, 66). Subsequent rechallenge with ICIs after 
CIP resolution is typically possible in only a small percentage of 
patients, thereby limiting future immunotherapy for a substantial 
proportion of affected individuals (12, 67).

Pathophysiology of CIP
The clinical presentation of CIP is similar to that of acute lung 
injury. However, despite being a well-recognized irAE, the patho-
physiology of CIP, similar to other irAEs, remains largely elusive. 
Nevertheless, preliminary findings suggest the involvement of 
several mechanistic pathways in the development of CIP, which 
are described below.

Cellular autoimmunity/higher T cell activity. There is accu-
mulating evidence to suggest that T cell upregulation may be 
involved in the pathogenesis of CIP (Figure 2). Many investigators 
have shown an increased number of overall T cells in addition to 
certain T cell subsets. Notably, in our study, the BALF of patients 
with CIP has shown a significant increase in CD4+ T cells (68). In 
12 patients with CIP, CD4+CD45RA–CD62L+ central memory T 
(Tcm) cells were found to be increased (68). Tcm cells are derived 

system in the form of thyroiditis or hypophysitis. Of particular 
importance to this Review, lung involvement can present in sever-
al ways, most often as pneumonitis (33).

Pulmonary irAEs
ICI therapy has been linked to several complications that affect 
the lungs. These include sarcoid-like granulomatosis (34–37), 
pleural effusion (38), exacerbation of obstructive lung disease 
(37, 39–43), and, most notably, CIP. Among these complications, 
CIP is the most widely recognized and is of serious concern due 
to its high morbidity and mortality rates (12, 44). In fact, CIP is 
the leading cause of fatal irAEs in patients receiving anti–PD-1/
PD-L1 monotherapy (13).

At first, CIP incidence was thought to be low; CIP incidence in 
clinical trials was reported to be <6% (38, 45–49). However, this 
assertion has been challenged by real-world data, which revealed 
higher rates ranging between 10% and 20% (44, 50, 51). Various 
factors have been shown to increase the risk of CIP, including use 
of PD-1/PD-L1 agents (52, 53) (compared with CTLA-4 inhibitors), 
combination immunotherapy (54, 55) (CTLA-4 and PD-1 combina-
tion rather than monotherapy), radiotherapy (56, 57), and the organ 
of tumor origin (58, 59) (e.g., NSCLC vs. renal cell or other cancer 
types). More recently, the incorporation of ICIs into neoadjuvant 
therapy for resectable lung cancer has revealed similar rates of CIP 
to those witnessed with adjuvant treatment (ranging from 1.1% 
to 6.4%, see Table 1). However, these findings necessitate careful 
interpretation for several reasons. First, it’s crucial to acknowl-
edge that pneumonitis rates primarily stem from phase II clinical 
trials, which typically involve a smaller participant pool that may 
not reflect the general population. Second, our experience from 
the adjuvant trials underscores a concern that the reported rates of 
pneumonitis in these controlled trial settings may underestimate 
the true incidence observed in real-world clinical practice. Addi-
tionally, it’s noteworthy that a significant subset of participants 
receive radiotherapy, a risk factor linked with elevated pneumoni-
tis incidence. Moreover, the integration of both neoadjuvant and 
adjuvant treatments in certain trial protocols further complicates 
the overall assessment of pneumonitis risk. A summary of the trials 
and their reported pneumonitis rates is provided in Table 1.

The clinical presentation of CIP includes dyspnea, cough, and 
hypoxemia (either at rest or with exertion) (60). These symptoms 

Table 1. Rates of pneumonitis in trials with neoadjuvant use of ICIs

Study Ref. Year Phase Sample size Lung cancer stage Adjuvant therapy Pneumonitis rate
Forde et al. 137 2018 II 21 I–IIIA No 5%A

LCMC3 138 2019 II 143 IB–IIIB No 2%
Gao et al. 139 2020 II 40 IA–IIIB No 5%
Shu et al. 140 2020 Ib 30 IB–IIIA No 7%A

NADIM 141 2020 II 46 IIIA Yes 26%B

NEOSTAR 142 2021 II 44 I–IIIA No 5%
CheckMate 816 143 2022 III 358 IB–IIIA No 1.1%
AEGEAN 144 2023 III 802 IIA–IIIB Yes 6.4%, 2.4%C, 18.3%D

KEYNOTE-671 145 2023 III 797 II–IIB Yes 5.6%, 2%A

ARate of pneumonitis at or above grade 3. BReported at 180 days. CPatients without radiation therapy. DPatients that received radiation therapy.
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While these findings support the hypothesis that proinflam-
matory T cell subsets contribute to alveolar damage in CIP, other 
studies have suggested that the proliferating T cells may be clonal. 
For example, investigators have identified identical T cell clones 
in tumor tissue and the site of irAEs, albeit in extrapulmonary 
locations. Autopsy specimens from two patients with melanoma 
who died from myocarditis after receiving combination therapy 
with CTLA-4/PD-1 antibodies revealed shared T cell clones in 
the tumor, heart, and skeletal muscle, without any evidence of 
adjacent tissue involvement, including the smooth muscle (82). 
Similarly, of 73 patients with NSCLC who received anti–PD-1 
agents, 25 developed skin toxic effects, and nine shared T cell 
antigens that were detected in both cancer and skin tissue (83). 
A potentially similar mechanism may also exist in CIP. Analysis 
of T cell receptor sequencing data from four patients who had 
developed pneumonitis while undergoing PD-1 blockade thera-
py revealed the presence of overlapping T cell clones in both the 
lung and tumor tissue (84). These clones were absent in periph-
eral blood and secondary lymphoid organs. This finding suggests 
that the T cell response to therapy-induced lung damage may be 
mediated by specific tumor antigens, rather than being a result of 
nonspecific immune activation.

There is further evidence to support the notion of a clonal T 
cell selection within the tumor microenvironment (85). Specifical-
ly, in an analysis of BALF T cells from 10 patients with CIP, Suzu-
ki et al. observed an increase in the number of PD-1+ and TIM-3+ 
CD8+ BALF T cells in patients with pneumonitis (86). Interesting-
ly, CD8 cells in these patients also exhibited an increased expres-
sion of T cell immunoreceptor with immunoglobulin and ITIM 
domains (TIGIT). Notably, both TIGIT and TIM-3 are classified 
as second-wave immune checkpoints and are highly expressed in 
tumor infiltrating lymphocytes (87, 88). Collectively, these find-
ings suggest that T cells present in the tumor microenvironment 
may relocate to other lung compartments following activation 
with checkpoint blocking antibodies, possibly localizing to certain 
coexpressed antigens (in both the tumor microenvironment and 
normal lung tissue) and ultimately leading to the development of 
pneumonitis. In fact, these cells may not be too dissimilar to the 
PD-1+ CD8+ T cells identified in our CIP cohort (68). The mecha-
nisms described above could potentially account for the sporad-
ic nature of CIP, as it relies on antigenic similarities between the 
tumor and lung parenchyma.

To this end, there have been several findings suggestive of 
molecular mimicry as a possible driver for CIP, particularly in the 
context of tumor mutational burden (TMB). Elevated TMB levels 
may be linked to a higher incidence of irAEs, potentially due to 
the development of neoantigens or the release of tumor antigens 
following cell death (89). These antigens can cause a cross-reac-
tion with healthy tissue antigens, leading to the manifestation of 
irAEs. However, a recent meta-analysis failed to establish a sig-
nificant correlation between TMB and irAE development (90), 
suggesting that other factors may also be at play. It is worth noting 
that a higher TMB was associated with increased tumor response 
rates, suggestive of a better immune trigger, though this did not 
necessarily translate into a higher incidence of toxicity (90). This 
highlights the complexity of the relationship between these two 
factors. Unraveling the association between the TMB and CIP may 

from either CD4+ or CD8+ lymphocytes that circulate in the blood 
and target secondary lymphoid tissues to quickly propagate in 
response to familiar antigens (69), leading to a more rapid and 
augmented immune response (70). Additionally, Tcm cells have 
previously been shown to be resistant to steroid-induced apop-
tosis (71), which may account for the steroid-refractory nature of 
CIP in some patients. Moreover, CD62L has been demonstrated 
to facilitate the migration of T cells to sites of inflammation (72). 
This notion receives further support from research conducted 
on peripheral blood T cell profiling in patients with melanoma 
who underwent ICI treatment. Among the 18 individuals studied 
who later suffered irAEs, those with higher pretreatment levels 
of circulating Tcm cells were found to develop severe irAEs (73). 
In another study, researchers examined 11 patients with CIP by 
performing BALF sampling and conducting single-cell RNA and 
T cell sequencing. The transcriptomic signature of these patients 
showed an accumulation of Th lymphocytes, specifically Th17.1 
(74), a subset of Th 17 cells that produce IFN-γ and are implicat-
ed in a number of autoimmune diseases (75). Among these Th17.1 
lymphocytes, a unique cluster was identified that had a distinct 
transcriptomic signature characterized by genes related to cyto-
toxicity and monocyte activation. Using trajectory inference, they 
demonstrated that the Th17.1 lymphocyte colony in CIP BALF 
samples has plasticity and undergoes pathogenic skewing toward 
this IFN-γ and monocyte activation phenotype. At baseline, Th17 
cells play a pivotal role in upholding gut barrier defenses, facili-
tating granulocyte maturation and chemotaxis, and contributing 
to immunity against extracellular pathogens (76). The depletion of 
proinflammatory Th17 cells heightens vulnerability to infections 
caused by Staphylococcus aureus and Candida albicans, culminat-
ing in recurrent skin and pulmonary infections (77). Concurrent-
ly, an excessive Th17 cell response can precipitate autoimmune 
reactions. In particular, Th17.1 lymphocytes have been implicated 
in driving neutrophilic inflammation, granuloma formation, and 
provoking resistance to corticosteroid treatment (75). Elevated 
quantities of these cells have been demonstrated in BALF from 
individuals with sarcoidosis, and they are associated with active 
lung disease (78–80). It is conceivable that the equilibrium of such 
a cell population may be disrupted in the context of ICI therapy, as 
demonstrated in a murine model in which checkpoint inhibition 
triggered the activation of Th17 lymphocytes (81).

Table 2. CTCAE grading for checkpoint inhibitor pneumonitis

Grade Symptoms
Grade 1 (mild) Asymptomatic
Grade 2 (moderate) Symptomatic, limiting instrumental ADL
Grade 3 (severe) Severe symptoms, limiting self-care ADL, requiring 

oxygen
Grade 4 (life-threatening) Life-threatening respiratory compromise, requiring 

advanced oxygen delivery (e.g., mechanical ventilation)
Grade 5 (death) Death related to pneumonitis

ADL, activity of daily living; CTCAE, common terminology criteria for 
adverse events. Adapted with permission from Common Terminology 
Criteria for Adverse Events, version 5.0, NIH (62).
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expression of CXCL-10, while the second cluster had increased 
expression of proinflammatory macrophage genes, including 
IL-1β and TNF. Taken together, these findings may indicate that 
the observed changes in innate immune cells, specifically mono-
cytes and macrophages with IL-1βhiTNF-αhiCXCL-10hi profile, 
may play a central role in attracting lymphocytes to the alveoli, 
thus contributing to the pathogenesis of CIP.

Upregulated levels of autoantibodies. Humoral immunity may 
also play a role in the development of irAEs associated with ICI 
therapy. Autoantibodies, which may already be present at low lev-
els prior to ICI therapy or produced de novo, have been implicated 
in the pathogenesis of some nonpulmonary irAEs. For example, 
in seven patients who developed bullous pemphigoid (an auto-
immune blistering skin condition) after PD-L1 therapy, a unique 
antibody to a basement membrane protein was observed (92). 
Similarly, thyroid dysfunction has also been linked to ICI thera-
py, with many patients who developed thyroiditis having evidence 
of circulating antithyroid antibodies either present at baseline or 
developed during treatment (93).

With regards to autoantibodies in CIP, in a cohort of 66 
patients experiencing irAEs, of which 14 (21%) developed pneu-

be attempted by identifying any overlap between the mutational 
burden in both CIP and cancer tissue samples with a correspond-
ing T cell clone response within both compartments.

Most studies investigating CIP have focused on lymphocyte 
changes, leaving a gap in our understanding of myeloid cell alter-
ations during the disease process. However, recent research has 
shed light on the involvement of proinflammatory macrophages 
in CIP. For example, in 37 patients with NSCLC, there was upreg-
ulation of proinflammatory macrophages in CIP identified using 
bulk RNA sequencing of surgical tissue specimens (91). In this 
research, macrophages from patients with CIP expressed higher 
levels of TNF and CXC chemokine ligand-10 (CXCL-10) com-
pared with that in individuals in the control group (91). These 
findings align with previous flow cytometric analysis of CIP BALF 
specimens, which revealed distinct clusters of IL-1βhi, TNF-αhi, 
CD-11bhi myeloid cells that were significantly upregulated in 
CIP BALF (68, 74), along with increased BALF protein levels of 
CXCL-10. Similarly, Franken et al. demonstrated comparable 
results regarding myeloid dysfunction in CIP; they identified two 
different clusters representing monocyte and macrophage cells 
(74). The first cluster consisted of IL-1βhi monocytes with high 

Figure 2. Pathophysiological mechanisms in CIP. The use of ICI liberates T cells from cancer-induced immunosuppression. This also triggers a number of 
pathways that include B and plasma cell proliferation and subsequent autoimmune antibody production (e.g., anti-CD74); release of cytokines (e.g., IL-1β, 
TNF-α, CXCL-10) that are involved in inflammation and can affect multiple cell types and expansion of T cells (e.g., Tcm, Th, clonal T cells) that are likely 
influenced by the tumor microenvironment (TME), tumor mutational burden, and self-antigens in the lung parenchyma. These different pathways con-
verge individually or in combination to cause inflammatory damage in the lung leading to CIP. The involvement of myeloid cells in CIP is evident although 
not well defined. They either may act as an additional stimulus for T cell activation and expansion or are regulated by the T cell and cytokine milieu, con-
tributing to pulmonary injury. Solid lines indicate known mechanisms involved in CIP; dashed lines indicate proposed mechanisms.
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monitis, preexisting elevation of rheumatoid factor or antinuclear 
antibodies was significantly associated with irAE (94). Addition-
ally, anti-CD74 autoantibodies have recently been implicated in 
patients with CIP (95). CD74 functions as a chaperone molecule 
involved in major histocompatibility complex II intracellular 
trafficking, and it acts as a high-affinity receptor for macrophage 
inhibitory factor, inducing inflammatory mediators and cell 
proliferation (96–98). High-throughput serological analysis of 
recombinant cDNA expression by Tahir et al. revealed a signifi-
cant median 1.34-fold increase in anti-CD74 antibody levels after 
ICI treatment in CIP, while no significant changes were noted in a 
comparison group of 20 patients without pneumonitis (95). These 
findings suggest a potential role for antibody-mediated mecha-
nisms in the development of CIP.

Cytokine dysfunction. Elevated levels of various cytokines have 
been associated with irAEs, including CIP. In fact, there are sig-
nificant changes in cytokine levels in patients who develop irAEs 
following ICI treatment (99). Though clearly capable of contrib-
uting to lung injury, whether these cytokine increases are causally 
related to irAE development remains to be seen (33). Interestingly, 
some cytokines have shown potential as predictive biomarkers for 
irAEs. For example, in a discovery cohort of 58 patients with mel-
anoma, samples taken at baseline and at the time of toxicity iden-
tified 11 signature cytokines (including granulocyte colony-stimu-
lating factor, granulocyte macrophage colony-stimulating factor, 
fractalkine, basic fibroblast growth factor-2, IFN-α2, IL-12p70, 
IL-1a, IL-1β, IL-1 receptor agonist, IL-2, and IL-13) that strongly 
correlated with the development of severe irAEs, including two 
cases of pneumonitis (100). Another study looking specifically at 
204 patients with NSCLC, of which 43 developed irAEs, found a 
similar proinflammatory increase in IL-1β cytokine but also eleva-
tions in IL-5, IL-8, IL-10, IL-12p70, and granzyme A and decreased 
G-CSF as predictors for irAEs that included pneumonitis (5 of a 

total of 43) (101). IL-5, IL-8, and IL-12p70 are considered proin-
flammatory cytokines (102–104). The actual mechanism as to 
how IL-5, a Th2 cytokine and a powerful eosinophil activator and 
recruiter (105), may be involved in lung injury of pneumonitis is 
uncertain. One plausible explanation may be in its secondary role 
of B cell stimulation and augmentation of immunoglobulin pro-
duction (106), but how this may lead to developing CIP is unclear. 
IL-8 exerts its influence through a range of mechanisms, which 
encompass the enhancement of neutrophil activation, granule 
release, superoxide generation, and the expression of adhesion 
molecules (107). Additionally, receptors for IL-8 are present not 
only on neutrophils but also on Tregs, monocytes, and NK cells, 
indicating their potential involvement in the complex biology of 
CIP (108). Conversely, IL-10 is predominantly regarded as an anti-
inflammatory cytokine (109), but its role in autoimmune disease 
remains ambiguous, as illustrated by the failure of inducing an 
autoimmune syndrome in IL-10–deficient mice (109).

While one report suggested elevated IL-6 levels beyond base-
line in CIP (110), a separate study of BALF cytokines in 12 patients 
diagnosed with CIP demonstrated significantly elevated IL-6 lev-
els compared with those in individuals in the control group (111). 
However, it should be noted that IL-6 is not universally elevated 
in CIP BALF (68). Yet, tocilizumab, an IL-6 inhibitor, has been 
shown to be effective in treatment of steroid refractory CIP in a 
single-center experience report (112). In a separate analysis of 
serum and BALF of 13 patients with CIP after PD-1/PD-L1 ther-
apy for NSCLC, elevation in both IL-17A and IL-35 was observed 
in both compartments (113). Furthermore, serum IL-17A levels 
were found to positively correlate with the Th17 cellular subtype. 
IL-17A has been implicated in other autoimmune disorders (114), 
acute lung injury (115), and lung fibrosis (116), which implies that 
it may also contribute to the pathogenesis of CIP. A summary of 
cytokines that have been shown to be deranged in CIP are outlined 

Table 3. Reported cytokine abnormalities in CIP

Cancer type ICI Testing irAEs Cytokine(s) Ref.
NSCLC, melanoma Nivolumab; pembrolizumab; combination 

anti–PD-1 Ab/ipilimumab
BALF; multiplex assay Pneumonitis IP-10/CXCL-10, CCL17A 68

Stage III/IV melanoma Nivolumab; pembrolizumab; combination 
anti–PD-1 Ab/ipilimumab

Plasma; 65-plex human 
cytokine assay

Severe irAEs, some of which 
included pneumonitis

G-CSF, GM-CSF, fractalkine, FGF-2, IFN-α2, 
IL-12p70, IL-1α, IL-1β, IL-1RA, IL-2, IL-13B

146

NSCLC Anti–PD-1 Ab; anti–PD-L1 Ab Plasma, BALF Pneumonitis IL-17, IL-35 113
Solid tumors Anti-CTLA-4 Ab; anti–PD-1 Ab; anti–PD-L1 

Ab; anti–PD-1/anti-CTLA-4 Abs
Plasma; BioPlex Pro  

human cytokine assay
Multiple irAEs including 

pneumonitis
CXCL-9, CXCL-10B 147

Lung cancer Anti–PD-1 Ab; anti–PD-L1 Ab Plasma; individual assay Multiple irAEs, including 
pneumonitis

IL-6, IL-10 148

Solid cancer Anti–PD-1 Ab; anti–PD-L1 Ab Plasma; individual assay Pneumonitis IL-6, IL-10 149
NSCLC, melanoma Pembrolizumab; nivolumab; durvalumab; 

ipilimumab + pembrolizumab
BALF; Milliplex MAP kit Pneumonitis IL-6, IL-17AC 150

Melanoma Ipilimumab Serum; ELISA assay Multiple irAEs, including 
pneumonitis

CXCL5, sCD163B 151

NSCLC Anti–PD-1 Ab; anti–PD-L1 Ab Serum; cytometric  
bead arrays

Multiple irAEs, including 
pneumonitis

IL-1β, IL-5, IL-8, IL-10, IL-12p70,  
and granzyme A, or decreased G-CSFB 

101

AApproaching significance. BDifferences observed at baseline and/or during immunotherapy course. CIncreased compared with lung cancer and other 
interstitial lung disease cohorts. BALF, bronchoalveolar lavage fluid; CD, cluster of differentiation; CXCL, CXC chemokine ligand; G-CSF, granulocyte colony-
stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; ICI, immune checkpoint inhibitor; irAEs, immune related adverse events; 
NSCLC, non–small cell lung cancer; PD-1, programmed cell death protein-1; PD-L1, programmed cell death protein ligand-1; s,soluble.
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in Table 3. Although the underlying tumor histology, host factors, 
and disease profiles vary among patients, there is a growing body 
of evidence to suggest that cytokine dysregulation plays a role in 
the pathogenesis of pneumonitis. While a distinct cytokine signa-
ture has yet to be identified due to these differences, this may hint 
at the presence of multiple pathways at play in pneumonitis.

Genetic predisposition. As the development of irAEs are widely 
believed to be associated with autoimmunity, genetic variations 
have been investigated as a potential contributing factor. Various 
genes with single nucleotide polymorphisms have been linked to 
different irAEs (117–119), indicating a complex interplay of multi-
ple pathways. Of particular interest are the human leukocyte anti-
gen (HLA) variations, as they are critical in the immune cell inter-
face. In a cohort of 256 patients receiving ICI treatment, including 
29 cases of CIP, HLA typing demonstrated a strong correlation 
between CIP rates and germline expression of HLA-B allele 35 
and HLA-DRB1 allele 11 (120). These genes are also associated 
with other autoimmune disorders (118, 121, 122), highlighting the 
possible role of genetic factors in the pathogenesis of CIP. In more 
recent work, investigators looked at the T cell receptor β variable 
(TRBV) in the peripheral blood leukocytes of 81 individuals with 
different malignancies (123). Interestingly, they uncovered a cer-
tain TRBV allele haplotype that either reduced or increased the 
risk of severe (≥grade 3) irAEs. While TRBV polymorphism has 
been linked to autoimmune diseases (124), its association with 
irAEs has not been demonstrated previously (125).

IL-7 is a critical cytokine for lymphocyte homeostasis, and it 
has been shown to regulate the number of circulating T cells in 
humans (126). In a genome-wide association study of 1,751 patients 
on ICIs across multiple cancer types, several significant single 
nucleotide polymorphisms near IL-7 were identified that associ-
ated with ICI toxicity in general (127). These germline variants of 
IL-7 demonstrated higher lymphocyte stability after ICI initiation 
that consequently increased the risk of irAEs (127). Although not 
yet fully understood, these findings suggest that genetic variations 
likely contribute to the dysregulation leading to CIP.

The microbiome. Extensive work has investigated the gut 
microbiome where certain flora dictate both response and ICI- 
induced colitis rates (128). Abundance of Bacteroidetes phylum 
has been shown to be protective against the development of ICI- 
induced colitis in a cohort (129), whereas another group demon-
strated that Faecalibacterium-enriched gut microbiota was associ-
ated with more frequent ICI-induced colitis (130). The increase in 
colitis risk in these patients was mediated by the upregulation of T 
cell response through higher inducible T cell costimulator induc-
tion thought to be mediated by increased circulating IL-2 after 
immunotherapy. A similar process may be occurring in the lungs, 
but the bulk of the microbiome studies related to ICI response 
have focused on the gut, and much of the lung microbiome work 
has focused on the risk of lung cancer development (131), high-
lighting this as an area in need of further investigation.

Potential targets for future research
It is worth noting that the absence of a clear link between CIP and 
specific biological characteristics could be due to limitations in 
research studies or disease-related factors. The incidence of CIP 
may be too low in some cancers to identify any meaningful associ-

ations. Additionally, the misclassification of pulmonary disease as 
CIP could confound results. Furthermore, the immune response 
is complex, and multiple mechanisms may be present across dif-
ferent patient populations. An important variable that may lead to 
distinct pathobiological pathways in CIP may be the underlying 
tumor histology. For instance, patients with NSCLC have a high-
er risk of CIP than other malignancies (58, 59). This phenomenon 
may be dictated by tumor immunobiology that is often disparate.

To gain a better understanding of the pathogenesis of CIP, 
several potential avenues can be explored. First, it is necessary to 
understand how checkpoint blockade affects the immune land-
scape and function within the lung in the absence of any patho-
logical processes. Therefore, conducting studies to investigate 
the effect of ICI alone on immune cell subsets would be instruc-
tive. The recent interest in use of ICIs in earlier stage cancers and 
nonmalignant disease presents an opportunity to study the effect 
of ICI in conditions in which the tumor burden is either very low 
or absent (132, 133). In addition, interrogating the lung microbi-
ome could provide crucial data about potential disruptions that 
might contribute to CIP.

An effective approach to gain further insight into the patho-
genesis of CIP would be to develop an animal model of ICI pneu-
monitis. Several models have been attempted, but a robust proto-
type is still lacking. Gao et al. used humanized mice treated with 
collagen-specific antibodies, followed by immune checkpoint 
blockade drugs leading to development of arthritis and pneumo-
nitis (134). These mice showed increased inflammation in lung 
tissue and elevated levels of TNF+ CD4- and CD8-infiltrating 
T cells in the lungs and peripheral blood. Another murine mod-
el used dual checkpoint (PD-1 and CTLA-4) blockade, causing 
lung inflammation with systemic T cell activation, suggesting that 
immunotherapy-mediated peripheral activation of T cells may be 
the initial immune derangement leading to CIP (135). However, 
the model lacked specificity due to concerns of high-dose check-
point blockade, multiorgan irAE involvement, and genitourinary 
developmental abnormalities in the mice used. Nonetheless, a 
more stringent CIP model remains important, as it could enable 
the evaluation of temporal changes in the clinical course of the 
disease that are difficult to capture in real-world cases. This would 
also allow a more detailed and thorough analysis of biological 
changes that are difficult to yield in human studies.

There is another limitation that hampers progress in this field, 
which pertains to our incomplete understanding of the in vivo 
pharmacokinetics of ICIs and their true half-life. When examining 
patients with ICI-induced myocarditis, it was observed that levels 
of ICI drugs remained elevated for several months (136). Moreover, 
despite receiving plasmapheresis and steroid treatment, these 
patients experienced prolonged suppression of PD-1 detection on 
T cells, as measured by flow cytometry. Additionally, significant 
variation was noted in the duration of ICI effects among different 
patients, further complicating our comprehension of the intricate 
interactions between ICIs and lymphocytes (136). Further research 
of in vivo ICI pharmacokinetics is therefore warranted.

In summary, checkpoint inhibitor therapy has revolutionized 
the landscape of cancer treatment. However, its use has been 
limited by related immune toxicities, especially CIP. The patho-
genesis of CIP is marked by an elevated T cell–mediated immune 
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hending the immune landscape and establishing a robust disease 
model. This approach is essential to enhance our insight into CIP 
and formulate efficacious treatment strategies.
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activation, disruption in cytokine balance, autoantibody upregu-
lation, and underlying genetic predispositions, all contributing to 
lung inflammation. Certain T cell subsets appear to have greater 
prominence within the disease context, potentially playing pivotal 
roles in CIP. Despite these observations, many questions regard-
ing the pathophysiology of CIP remain unanswered. Hence, it is 
imperative to undertake additional research centered on compre-
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