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Introduction
Over 200 viruses are known to cause disease in humans, yet cur-
rently approved antiviral drugs are available to treat only about
10 of these viral infections. The past decade has underscored the
global threat posed by emerging viruses. Spillovers from animals
to humans have resulted in several Ebola virus disease (EVD) out-
breaks, the Middle East respiratory syndrome (MERS) outbreak,
and possibly the current coronavirus disease 2019 (COVID-19)
pandemic. Global warming, increased urbanization, and air trav-
el have contributed to the spread of vector-borne viruses endem-
ic to various parts of the world, including dengue virus (DENV),
estimated to infect 400 million people in over 128 countries, and
Zika virus (ZIKV), the causative agent of a 2015 outbreak. More-
over, political instability in various parts of the world continues to
pose risks to our military forces and civilians from potential spread
of biothreat agents, such as poxviruses — whose natural spread
caused the ongoing monkeypox virus (MPXV) outbreak — and
Venezuelan equine encephalitis virus (VEEV) (1, 2). There is thus
a huge unmet need for the development of effective therapeutics
for the treatment of existing and newly emerging viral infections.
Most approved antivirals target viral enzymes, particularly
proteases and polymerases (Figure 1). Such direct-acting antivi-
rals (DAAs) have shown tremendous utility for the treatment of
hepatitis C virus (HCV) and human immunodeficiency virus type
1 (HIV-1) infections, and more recently COVID-19. However,
this approach to drug development has several major limitations.
First, the spectrum of coverage provided is typically narrow, rang-
ing from a single viral genotype to a few related viruses at best.
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There is a large global unmet need for the development of countermeasures to combat hundreds of viruses known to cause
human disease and for the establishment of a therapeutic portfolio for future pandemic preparedness. Most approved
antiviral therapeutics target proteins encoded by a single virus, providing a narrow spectrum of coverage. This, combined
with the slow pace and high cost of drug development, limits the scalability of this direct-acting antiviral (DAA) approach.
Here, we summarize progress and challenges in the development of broad-spectrum antivirals that target either viral
elements (proteins, genome structures, and lipid envelopes) or cellular proviral factors co-opted by multiple viruses

via newly discovered compounds or repurposing of approved drugs. These strategies offer new means for developing
therapeutics against both existing and emerging viral threats that complement DAAs.

Moreover, this approach is not scalable to address the large unmet
need. It takes, on average, an 8- to 12-year timeline (3) and an aver-
age cost of over $2 billion to develop a new drug. Thus, targeting
viruses individually is expensive and slow. While timely, effective
efforts were noted during the COVID-19 outbreak, the rapid rollout
of nirmatrelvir, for example, was enabled by accelerated derivat-
ization of an existing series of SARS-CoV-1 main protease (Mpro)
inhibitors. No such DAAs are, however, currently available for the
majority of viral families. The inability to predict the next emerg-
ing viral infection is another limitation, hampering adequate global
health protection and national security preparedness. Lastly, when
used individually, treatment with conventional DAAs often results
in rapid emergence of drug resistance, complicating monotherapy
regimens for HIV, HCV, and influenza A virus (IAV). In the case of
SARS-CoV-2, escape mutations conferring high-level resistance
to remdesivir and nirmatrelvir have already been selected in vitro
and identified in circulating strains (4, 5). While combining drugs
that target distinct viral functions can overcome viral resistance, as
exemplified by HIV and HCV treatment, developing such “cock-
tail” regimens for multiple acute infections is not feasible.

An alternative solution is the development of broad-spectrum
antiviral drugs. One advantage of this approach is reduced time
and cost associated with the early stages of drug development per
approved indication. It can also diminish the clinical risks in more
advanced stages of development. The off-label use of approved
antivirals against new viral indications can provide further eco-
nomic incentives, as these drugs were already rigorously tested for
toxicity, pharmacokinetics, pharmacodynamics, dosing, etc. These
advantages have been recently demonstrated by the repurposing of
remdesivir and molnupiravir — originally developed to treat EVD
and VEEV, respectively — for the treatment of COVID-19 (6, 7).
Importantly, this approach can facilitate readiness for future out-
breaks of newly emerging pathogens. Broad-spectrum antivirals
could also be used to treat rare viral infections for which no drug is
available. Lastly, a broad-spectrum antiviral could be administered
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Figure 1. Toward broad-spectrum antivirals. Antiviral drugs that selectively inhibit unique viral proteins typically provide a narrow-spectrum solution
(left), whereas broad-spectrum drugs can restrict multiple viruses by inhibiting either common viral functions or structures (middle) or host factors com-
monly required by several viruses (right). Adapted with permission from Science (204).

before a viral threat has been accurately diagnosed, increasing the
likelihood of viral control, with implications for front-line health
care providers and military personnel.

Broad-spectrum antiviral activity can be achieved by targeting
of viral components or cellular factors required for the replication
of multiple viruses (Figure 1). The latter approach could comple-
ment DAAs, such as by conferring synergistic antiviral effects, as
recently demonstrated by a combination of molnupiravir (DAA)
with camostat mesylate (host-targeted) (8). Here, we summarize
recent efforts to characterize the therapeutic potential and biolog-
ical rationale of representative approaches under these categories.
Notably, we define broad-spectrum coverage as activity against
viruses from at least two unrelated viral families.

Broad-spectrum DAAs

Most virally encoded proteins show extensive sequence and struc-
tural diversity. Thus, the spectrum of coverage typically provided
by DAAs is narrow, ranging from several serotypes or variants of
the same virus to a few related viruses at most, as exemplified by
paritaprevir and Paxlovid — HCV and SARS-CoV-2 inhibitors,
respectively. Accordingly, the number of DAA classes showing
promise in preclinical and clinical studies has been limited to date
(Figure 2 and Table 1).

Targeting viral polymerases. The structure of the catalytic
units of most RNA-dependent RNA polymerases is highly con-
served across viral families, making them attractive targets for
broad-spectrum antivirals (9). Discovered in the 1970s, the nucle-
oside analog ribavirin introduced the concept of broad-spectrum
antivirals. Several mechanisms of ribavirin’s antiviral action have
been demonstrated, including inhibition of viral RNA or DNA
synthesis (10). Ribavirin was shown to suppress the replication
of multiple viruses in vitro and to confer protection from multi-
ple emerging viral pathogens, including filo- and arenaviruses,
in nonhuman primates (NHPs) (11, 12). Ribavirin is approved for
the treatment of HCV infection in combination drug regimens
(13) and of respiratory syncytial virus (RSV) infection in immuno-
compromised patients (14). Moreover, ribavirin reduced mortality
when tested in over 1,800 patients infected with Lassa virus, albe-
it the comparative arm was historic controls (15). Ribavirin treat-
ment, however, did not impact COVID-19 outcomes (16), and its
clinical utility for other viral infections remains to be determined.

Inthe past decade, several chemically distinct, next-generation
nucleotide and nucleoside analogs have demonstrated broad-spec-
trum antiviral activity (reviewed in ref. 17). One example is rem-
desivir, an intravenously administered nucleotide analog prodrug
that suppresses viral RNA replication via delayed chain termina-
tion (18). Remdesivir was initially developed for treatment of EVD
after demonstrating effective suppression of viral replication in
human primary cells and 100% protection from lethality in NHPs
(6). Contrastingly, however, in a randomized multi-intervention
trial (the PALM study) in 681 EVD patients, remdesivir treatment
did not reduce viremia and in fact increased mortality rate rela-
tive to monoclonal antibodies (19). Remdesivir has shown activity
against other hemorrhagic viruses, including Nipah virus, albeit
thus far in preclinical models only (20). Remdesivir has also shown
utility for the treatment of respiratory viruses, suppressing replica-
tion and/or tissue injury in NHP models of RSV, and coronavirus-
es (21-23). Remdesivir was therefore one of the first repurposed
agents to be tested clinically for COVID-19 treatment. Following
inconclusive studies (24, 25), in a phase I1I trial (Adaptive Covid-19
Treatment Trial [ACTT-1]) involving 1,062 hospitalized patients
with SARS-CoV-2 pneumonia, remdesivir shortened the median
recovery time and reduced mortality rate relative to placebo with-
out causing severe side effects (26). Based on these findings and
its prior de-risking in human trials, remdesivir was the first drug to
receive FDA approval for COVID-19 treatment. Nevertheless, the
need to deliver remdesivir intravenously has somewhat limited its
global application, prompting the design of analogs for oral deliv-
ery (27). VV116, one such analog, potently suppresses SARS-CoV-2
replication and improves oral bioavailability (28). In a phase III
trial, VV116 demonstrated comparable time to clinical recovery to
Paxlovid and a favorable safety profile (29). Other oral analogs of
remdesivir, such as GS-441524 (30), are undergoing development.

Favipiravir (T-705) is a nucleoside analog whose active form
gets incorporated into the nascent viral RNA strand, inducing lethal
mutagenesis (31, 32). In cell culture models, favipiravir has demon-
strated moderate antiviral activity against IAV and VEEV, and weak
activity against SARS-CoV-2 and Ebola virus (EBOV) (EC,, values
over 60 puM) (33-35). While high concentrations are required to
achieve therapeutic levels in humans, by inhibiting its own metab-
olism, favipiravir increases its cellular uptake (reviewed in ref. 36).
Favipiravir was approved for flu treatment in Japan in 2014 and for
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Figure 2. Approved and experimental direct-acting compounds with broad-spectrum antiviral activity. Depicted here is a generic viral life cycle. Exam-
ples of classes of inhibitors with broad-spectrum antiviral activity are connected to the specific stages of the viral life cycle or cellular process they target.

the treatment of COVID-19 in China and India after demonstrating
some benefits in early studies (37-39). However, in prospective ran-
domized COVID-19 studies, favipiravir showed no clinical benefit
over placebo (40, 41). Beyond respiratory viral infections, favipira-
vir protected EBOV-infected mice from lethality (33). Nevertheless,
while it reduced viral load and prolonged survival in a retrospective
EBOV study, it showed no benefit in a phase II trial (42, 43). Con-
versely, favipiravir increased viral clearance and reduced mortality
rate in a trial involving 145 patients infected with a different hem-
orrhagic virus: the phlebovirus severe fever with thrombocytopenia
syndrome virus (SFTSV) (44). The mutagenesis pattern of SFTSV in
serum samples was comparable to that observed in preclinical mod-
els, confirming favipiravir’s mechanism of action (44).

Molnupiravir is another orally bioavailable nucleoside analog
whose incorporation into the viral genome causes lethal mutagen-
esis (45). Designed to inhibit VEEV (7), molnupiravir is rapidly dis-
tributed to brain tissue and protects mice from a lethal VEEV chal-
lenge (46). Molnupiravir demonstrated activity in animal models
of EBOV and respiratory viral infections, including IAV and pan-
demic coronaviruses (47-50). Yet, whereas in earlier phase II and
III trials in mild-to-moderate COVID-19 patients, molnupiravir
accelerated SARS-CoV-2 clearance and reduced mortality (51,
52), prompting its Emergency Use Authorization as a second-line
COVID-19 treatment, in a more recent phase II trial, molnupira-
vir’s antiviral effect was inconclusive (53).

DNA-dependent DNA polymerases have also been shown to
be amenable to broad-spectrum inhibition. Brincidofovir is an oral
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nucleoside analog, prodrug of cidofovir, whose incorporation into
the elongating viral DNA by the viral polymerase interrupts DNA
replication via chain termination and/or direct inhibition (54).
Brincidofovir has demonstrated in vitro and in vivo activity against
multiple DNA viruses (55). Based on efficacy data in animal models,
brincidofovir was approved for the treatment of smallpox in 2021
(56). Nevertheless, brincidofovir showed no virologic benefit in
patients infected with MPXV in a retrospective observational study,
and treatment was complicated by liver toxicity (57). In phase II and
III trials in allogeneic hematopoietic cell transplant recipients, brin-
cidofovir reduced adenovirus viremia and prevented cytomegalo-
virus (CMV) viremia (58-60). Yet a trend toward reduced mortality
was observed in adenovirus viremic patients only, and treatment
was complicated by acute graft-versus-host disease (58, 60). Inde-
pendent of polymerase inhibition, suppression of EBOV replication
in vitro by brincidofovir is thought to be mediated by its lipid side
chain (61), yet its clinical utility for this indication remains to be
determined, as it has been studied only anecdotally to date (62, 63).

These and other examples highlight the broad-spectrum
potential of polymerase inhibitors.

Targeting other viral enzymes. While the unique substrate pref-
erence of viral (versus cellular) proteases can facilitate relatively
selective inhibition, their large diversity across viral families has
limited their potential as targets for broad-spectrum antivirals.
Approved for the treatment of HIV-1 infection, lopinavir-ritonavir
combination (Kaletra) was shown to bind the substrate-binding
pocket of SARS-CoV-1’s main protease (Mpro) (64) and suppress
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Table 1. Classification, viral targets, and antiviral activity in vitro, in vivo, and in clinical models of direct-acting compounds with

broad-spectrum antiviral activity

Class Genetic name EC,, (uM)  Invitro In vivo Humans/Status Refs.
Polymerase Ribavirin 0.003-126  Arenaviridae (Lassa virus) Lassa virus (NHP) HCV (ribavirin, approved) 6,9,
inhibitors Remdesivir 0.019-1.71  Herpesviridae (CMV, HSV) EBOV (NHP) RSV (ribavirin, approved; molnupiravir, I1) 11-16,
W116 0.35-1 Poxviridae (vaccinia, MPXV) MARV (NHP) Smallpox virus (brincidofovir, approved) 19-26,
(S-441524 0.59-0.82  Adenoviridae (adenovirus) Nipah virus (NHP) Lassa virus (ribavirin, I1) 28-31,
0DBG-P-RVn 0.026-113  Paramyxoviridae (parainfluenza, Nipah virus) MERS-CoV-2 (NHP) SARS-CoV-2 (ribavirin, Il; V116, GS-441524,  33-35,
Favipiravir 0.01-67 Orthomyxoviridae (influenza) SARS-CoV-2 (NHP) favipiravir, molnupiravir, Ill; remdesivir, IV) ~ 37-44,
Molnupiravir 0.08-0.3 Picornaviridae (rhinovirus, poliovirus) ~ VEEV (mouse) EBOV (favipiravir, brincidofovir, Il; remdesivir, )~ 46-52,
Brincidofovir 0.0004-17  Filoviridae (EBOV, MARV) IAV (ferret) Influenza (favipiravir, IIl [approved in Japan]) 55, 56,
Coronaviridae (HCoV-0C43, HCoV-229E,  MPXV (prairie dog) SFTSV (favipiravir) 58-61
MERS-CaV, SARS-CoV-2) RSV (mouse) CMV (brincidofovir, I11)
Togaviridae (VEEV, CHIKV) CHIKV (mouse) Adenovirus (brincidofovir, I1)
Phenuiviridae (SFTSV) SFTSV (mouse)
Pneumoviridae (RSV) Adenovirus (hamster)
Flaviviridae (HCV, DENV, ZIKV, WNV)
Hepadnaviridae (HBV)
Papillomaviridae (HPV)
Protease Lopinavir-ritonavir - 7-20 Retroviridae (HIV) ND HIV (approved) 65-69
inhibitors Coronaviridae (SARS-CoV-1, SARS-CoV-2) SARS-CoV-1
SARS-CoV-2 (I1/111)
Methyltransferase Sinefungin 0.2-4 Togaviridae (VEEV, CHIKV) ND ND N-73
inhibitors Flaviviridae (ZIKV, WNV)
Coronaviridae (SARS-CoV-2)
Fusion Umifenavir 14-323 Orthomyxoviridae (IAV) IAV (ferret, mouse) IAV (umifenovir, IV [approved in Russia, China]) ~ 81-85
inhibitors 110 0.7-17 Herpesviridae (HSV-2) HSV-2 (mouse) SARS-CoV-2 (umifenovir, IV)
Pneumoviridae (RSV)
Filoviridae (EBOV, Lassa virus)
Coronaviridae (SARS-CoV-2)
Flaviviridae (ZIKV)
Togaviridae (CHIKV)
Antiviral LL-37 5-20pg/mL  Coronaviridae (SARS-CoV-2) ZIKV (mouse) ND 90-92
peptides MXB-9 7 pg/ml Herpesviridae (HSV)
AH 001-02 Flaviviridae (ZIKV, DENV, YFV, JEV)
Togaviridae (VEEV)
Programmable  LNAs <1 Flaviviridae (HCV) SARS-CoV-2 (mouse, hamster) ND 93-95
antivirals (viral  LNAASOs <1 Coronaviridae (SARS-CoV-2) IAV (mouse)
RNA structure) Orthomyxoviridae (IAV)

MARYV, Marburg virus; WNV, West Nile virus; YFV, yellow fever virus; JEV, Japanese encephalitis virus; ND, not determined.

SARS-CoV-2 replication in vitro (65) — somewhat surprising find-
ings since coronaviruses encode cysteine proteases whereas HIV-1
encodes an aspartic protease. However, while potential bene-
fit in reducing lung injury was demonstrated in a retrospective
study in SARS-CoV-1-infected patients treated with a combina-
tion of lopinavir-ritonavir and ribavirin (66), no such benefit was
observed in SARS-CoV-2-infected ferrets and humans (67-69).
Thus, the overall broad-spectrum utility of viral protease inhibi-
tors to date has been limited.

Targeting of viral methyltransferases (MTases) — enzymes
essential for capping the mRNA 5’ ends of some viruses for effi-
cient translation and evasion of immune responses — has also been
explored (70). Competition with S-adenosyl-L-methionine (SAM)
on MTase binding, such as by sinefungin, was shown to suppress
MTases of alphaviruses, flaviviruses, and SARS-CoV-2 in vitro
(71-73), yet severe toxicity in preclinical models, attributed to lack
of selectivity, hampered the clinical development of this approach
(74). Greater selectivity achieved by targeting of conserved pockets

near the SAM-binding site, combined with conservation of MTase
structure within viral families, has enabled the discovery of inves-
tigational pan-flaviviral inhibitors with reduced toxicity, yet the
feasibility of developing MTase inhibitors with activity across viral
families is low (75-78). Similarly, the broad-spectrum potential of
inhibitors targeting other viral enzymes including exonucleases
and helicases remains to be defined.

Targeting viral fusion proteins, lipid envelope, and genome. Tar-
geting class I fusion glycoproteins of enveloped viruses is another
strategy explored for its broad-spectrum potential. The transmem-
brane subunit (TmS) of these proteins is highly conserved and thus
an attractive target for broad viral inhibition (reviewed in ref. 79).
Umifenovir (Arbidol), one example of such a strategy, binds to
a hydrophobic pocket in the stem region of the TmS of IAV hem-
agglutinin, thereby blocking viral fusion with endosomal mem-
branes (80). Umifenovir has shown efficacy in cell culture and ani-
mal models of IAV infection (81), and in a phase IV trial in 359 flu
patients (82), leading to its approval for flu treatment in Russia and
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China. Umifenovir suppresses replication of other RNA viruses in
vitro, albeit with moderate EC,  values (5.7-32.3 uM) (81). Where-
as an open-label study suggested potential benefit of umifenovir
treatment in 100 COVID-19 patients (83), a retrospective study
showed increased mortality in severe COVID-19 patients (84), and
the results of a phase IV randomized study are unavailable (Clini-
calTrials.gov NCT04260594), making it difficult to draw conclu-
sions. Beyond small molecules, suppression of viral fusion by a-he-
lical lipopeptides that disrupt a-helix-mediated interactions of the
TmS is another strategy that shows broad-spectrum potential. IIQ,
one such candidate, suppresses the replication of multiple RNA
viruses in vitro and achieves good exposure levels in rats (85). EK1
and EK1C4, peptides that target the heptad repeat-1 (HR1) domain
of TmS of human coronaviruses, have shown prophylactic and
therapeutic effects when administered intranasally to mice infect-
ed with coronaviruses (86). However, the broad-spectrum poten-
tial of these and other fusion-suppressing peptides demonstrating
activity against specific viruses (87, 88) remains to be defined.

The viral envelope is another emerging target for broad-spec-
trum antiviral interventions. The utilization of antimicrobial pep-
tides has been challenged by cytotoxicity resulting from a lack of
selectivity to the viral lipid envelope and by rapid degradation by
cellular proteases. Nevertheless, recent efforts indicate that har-
nessing differences between the membrane curvature of viral
particles and that of cells can achieve selectivity, and that modi-
fying peptides — such as by stapling or designing synthetic pep-
tidomimetics that resist proteolytic degradation (peptoids) — can
improve biostability. Indeed, various amphipathic, a-helical (AH)
peptides and self-assembling peptoids have demonstrated effec-
tive viral membrane lysis and abrogation of infectivity without
impacting cellular viability (89, 90). In a mouse model, an AH
peptide suppressed ZIKV infection and reduced inflammation
and blood-brain barrier injury (91). LL-37 and MXB-9, with activ-
ity against multiple viruses in cultured cells and/or mice infected
with SARS-CoV-2 pseudovirus (90, 92), provide additional proof
of concept for the potential utility of this approach.

Targeting of the viral genome as a broad-spectrum antiviral
approach has also shown promise recently. “Programmable anti-
virals,” such as locked nucleic acids (LNAs) and LNA antisense
oligonucleotides (LNA ASOs) targeting highly conserved viral
RNA structures involved in viral packaging or replication, are one
example of this approach. Such LNAs and LNA ASOs suppressed
replication of HCV, 1AV, and SARS-CoV-2 in vitro (93-95), and
reduced mortality, viral load, and /or transmission (94, 95) in mice
infected with SARS-CoV-2 and IAV (94).

Taken together, while the design of DAAs with activity across
viral families is overall challenged by the extensive sequence and
structural diversity of virally encoded proteins, targeting of viral
polymerases and non-enzymatic viral functions holds promise.

Host-targeted broad-spectrum antiviral
approaches

The cellular machineries co-opted to support the life cycle of virus-
es are often conserved across viral families, representing attractive
targets for broad-spectrum antiviral strategies. With approximately
20,000 proteins, the human proteome offers a much larger reper-
toire of candidate targets than a viral proteome. Indeed, the discov-
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ery of such proviral factors required by multiple viruses has been the
subject of fruitful research. Aided by breakthroughs in multi-omics
approaches, these efforts have led to the discovery of numerous
druggable proviral factors. Some examples are discussed below.

Beyond a larger target repertoire, an important advantage of
the host-targeted approach is its higher barrier to viral resistance.
Since cellular targets are not under genetic control of a virus, the
likelihood that escape mutations will emerge is lower than with
DAAs. This advantage was demonstrated in cell culture models,
such as with inhibitors targeting various cellular kinases (96-98),
and in animal models, such as DENV-infected mice treated with
a-glucosidase inhibitors (99). In patients, cyclophilin inhibitors
and other host-targeted approaches have demonstrated longer
time to resistance and lower levels of resistance than DAAs (100).

Targeting cellular functions can also provide opportunities
not only to suppress viral replication but also to moderate delete-
rious host responses, which play key roles in the pathogenesis of
multiple viral infections, including dengue, EVD, and COVID-19.
Targeting p38 MAPK or ErbBs, for example, as we and others have
demonstrated in preclinical models, can reduce inflammation and
protect from tissue injury beyond suppression of viral replication
(98, 101). Another example is enhancement of type I interferon
responses contributing to the protective effect of tamoxifen treat-
ment in vesicular stomatitis virus-infected (VSV-infected) mice
(102). Lastly, since most approved drugs target cellular functions,
there is an opportunity to repurpose existing drugs for antiviral
indications, as was extensively explored during the COVID-19
outbreak (reviewed in ref. 103).

Below are examples of classes of host-targeted approaches
that show some promise (Figure 3 and Table 2).

Targeting protein folding and transport. Cyclosporin A (CsA) and
experimental non-immunosuppressive inhibitors of cyclophilin A
(CypA) —a cellular factor involved in protein folding — such as alis-
porivir (Debio-025) and SCY-635, suppress the replication of mul-
tiple viruses in vitro (104). Blockage of interactions between CypA
and the HIV-1 nucleocapsid and HCV NS5A proteins is thought to
mediate the antiviral effect (105, 106). Other mechanisms of anti-
viral action were reported, including suppression of HBV binding
to its entry receptor (107), of coronaviral RNA synthesis (104), and
of nuclear import of IAV genome (108). The effect of these com-
pounds in mouse models has been variable (100), yet prevention
of disease progression was demonstrated in mice infected with
coronaviruses (109). Accordingly, transplant recipients receiving
CsA treatment for their underlying condition experienced reduced
morbidity and mortality upon SARS-CoV-2 infection (110). Where-
as alisporivir significantly reduced viremia in chronically infected
HCV patients, a phase III trial was terminated due to toxicity.

a-Glucosidase is another protein required for proper fold-
ing of proteins — including viral glycoproteins — that serves as a
broad-spectrum antiviral target. Celgosivir and other iminosugars
are competitive substrates for a-glucosidases with activity against
multiple viruses in cultured cells (111). These inhibitors have
demonstrated efficacy in murine models of RNA and DNA virus-
es (111, 112). The utility of celgosivir for the treatment of dengue
infection is currently being explored, although safety but little or
no efficacy have been documented to date in a dengue pilot study
and in patients infected with HCV or HIV-1 (113-115).
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The molecular chaperones heat shock protein 70 (HSP70) and
HSP90, involved in protein folding and transport, are also broad-
ly required factors shown to function at temporally distinct stag-
es of viral life cycles (116, 117). Stabilization and transport of viral
proteins were among the proposed underlying mechanisms (117,
118). Pharmacological inhibition of HSP70 by TH3289 blocked
replication of flaviviruses, coronaviruses, and Crimean-Congo
hemorrhagic fever virus in vitro (116, 119). In murine models of
ZIKV and Chikungunya virus (CHIKV) infections, small-molecule
inhibitors of these chaperones reduced viral titers, inflammation,
and/or mortality (120, 121). While thus far demonstrated with tool
compounds only, these examples provide evidence for the poten-
tial utility of targeting HSPs.

Oligosaccharyltransferase (OST), an endoplasmic reticulum
protein complex that catalyzes N-glycosylation, was discovered as
a candidate antiviral target via CRISPR screens for flaviviral provi-
ral factors (122). OST subunits interact with DENV nonstructural
proteins and are required for viral RNA replication (122). NGI-1,
a small-molecule inhibitor of OST, has shown antiviral activity
against flaviviruses and more recently HSV-1 and SARS-CoV-2
(123-125). Interestingly, whereas the anti-DENV activity is inde-
pendent of the canonical role of OST in N-linked glycosylation,
the anti-IAV effect is associated with reduced hemagglutinin

(HA) and neuraminidase (NA) glycosylation (123). A concern was
recently raised that glycome-modified viruses generated upon
NGI-1 treatment can reduce antibody responses in IAV-infected
mice and requires further investigation (126).

Targeting cellular kinases. Multiple cellular kinases are hijacked
by viruses, representing candidate targets for broad-spectrum
antivirals (127). The epidermal growth factor receptor family of
tyrosine kinases (ErbBl, 2, 4) is one example. A requirement for
ErbBs was documented in the entry and/or post-entry stages of
multiple viruses (128). Several anticancer ErbB inhibitors, includ-
ing gefitinib, demonstrate activity against HCV, human cyto-
megalovirus (HCMV), poxvirus, and Lassa virus in cultured cells
(129-133), and CMV in guinea pigs (132). In human lung and brain
organoid models of SARS-CoV-2 and VEEV infections, respec-
tively, we have recently shown that, beyond suppressing viral
replication, lapatinib, an anticancer pan-ErbB inhibitor, protects
from virus-induced activation of pathways implicated in non-in-
fectious tissue injury downstream of ErbBs, proinflammatory
cytokine production, and epithelial or blood-brain barrier injury
(98). Moreover, we have validated ErbB inhibition as the mecha-
nism of antiviral action (98). Remarkably, ibrutinib, a BTK inhib-
itor with potent pan-ErbB activity (134), has demonstrated pro-
tection from progression to severe COVID-19, albeit in a small
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Table 2. Classification, cellular targets, and antiviral activity in vitro, in vivo, and in clinical models of host-directed compounds with
broad-spectrum antiviral activity

Classification Generic name Molecular target(s) EC_ (uM) In vitro In vivo Humans/Status Refs.
Cyclophilin Cyclosporin A CypA 0.42-10 Orthomyxoviridae, Flaviviridae, SARS-CoV-2 (mouse) SARS-CoV-2 (cyclosporin A, I1); 104-110
Alisporivir 0.04-83 Coronaviridae, Hepadnaviridae, MERS (mouse) HCV (alisporivir, IIl)
SCY-635 0.07-0.15 Retroviridae
a-Glucosidase  Celgosivir Endoplasmic reticulum 0.06-51.0 Orthomyxoviridae, Flaviviridae, DENV, JEV (mouse)  DENV (celgosivir, Ib, lla ongoing); 111-115
IHVR-19029 a-glucosidases 1.25-16.9 Filoviridae, Coronaviridae, EBOV, MARV (mouse) HCV (celgosivir, II);
UV-4B land Il 2.1-86.49 Herpesviridae IAV (mouse) HIV-1 (miglustat, Il)
Miglustat 10.6-80 HSV-1 (mouse)
Heat shock TH3289 HSP70 2.7-18.7 Orthomyxoviridae, Flaviviridae, ZIKV (mouse) ND 116,
proteins TH6744 HSP90 2.7-10.9 Filoviridae, Togaviridae, CHIKV (mouse) 119-121
Apoptozole 1-10 Coronaviridae, Bunyaviridae
Geldanamycin 0.5-5
0sT NGI-1 0ST complex 0.85-2.2 Orthomyxoviridae, Flaviviridae, 1AV (mouse) ND 123-126
Coronaviridae, Herpesviridae
ErbB kinases  Gefitinib ErbB1,2, 4 3.9-4.93 Flaviviridae, Filoviridae, CMV (guinea pig) Approved, ND for virus 98,
Lapatinib 0.18-0.7 Coronaviridae, Herpesviridae, 129-133
Ibrutinib 1-13 Arenaviridae, Alphaviridae,
Afatinib 2-412 Poxviridae
NAK kinases  Sunitinib AAK1 0.12-12.9 Flaviviridae, Filoviridae, DENV (mouse) Approved, ND for virus 96, 97,
Erlotinib GAK 0.12->20 Togaviridae, Coronaviridae, EBOV (mouse) 137-140
5Z-7-oxozeaenol BIKE 0.52-4.09 Arenaviridae, Retroviridae,
RMC-76 STK16 0.3-1 Paramyxoviridae, Alphaviridae,
SGC-GAK-1 0.2-23
STK16-IN-1 1-1.8
Lipid kinases  Apilimod PIKfyve 0.023-0.01 Filoviridae, Coronaviridae, SARS-CoV-2 (mouse) SARS-CoV-2 (apilimod, II, 142,143,
YM201636 1-10 Arenaviridae ongoing) 148
WX8 0.02-01
Cellular Camostat mesylate ~ TMPRSS2 0.087-1 Orthomyxoviridae, Flaviviridae, 1AV (mouse) SARS-CoV-2 (camostat mesylate, 153-156
proteases Nafamostat mesylate Cathepsins B, L 0.005-22.5 Coronaviridae SARS-CoV-2 (mouse) Il; nafamostat mesylate, Ib/lla)
E64d 1.27-30
Lipid Simvastatin HMG-CoA reductase  1.5-13.9 Orthomyxoviridae, RSV (mouse) EBOV (11); 157-162,
biosynthesis ~ Fluvastatin 149-4.2 Flaviviridae, Filoviridae, SARS-CoV-2 (mouse)  SARS-CoV-2 (1)
Lovastatin 0.9-14.6 Coronaviridae, Hepadnaviridae, CMV (mouse)
Atorvastatin 73-211 Pneumoviridae, Herpesviridae  DENV (mouse)
HIV-1(SCID mouse)
Alirocumab PCSK9 0.001-1 Flaviviridae, Hepadnaviridae ~ ND SARS-CoV-2 (I1) 163, 164
Evolocumab ND
AMPK activator Metformin AMPK 2.75-9mM Orthomyxoviridae, Flaviviridae, 1AV (mouse) DENV (I1); 166-174
Coronaviridae, Hepadnaviridae DENV (mouse) SARS-CoV-2 (IIb); HIV (1)
Estrogen Tamoxifen Unknown 0.2-6.6 Flaviviridae, Filoviridae, EBOV (mouse) HCV (tamoxifen, I); 175-181
receptor Clomiphene 0.32-6.6 Coronaviridae, Retroviridae, ~ SARS-CoV-2 (mouse) SARS-CoV-2 (raloxifene, )
Raloxifene 1.68-11.53 Herpesviridae, Rhabdoviridae VSV (mouse)
CHIKV (mouse)
Antiparasitic  Nitazoxanide Unknown 0.58-748 Orthomyxoviridae, Flaviviridae, MERS (mouse) 1AV (I1b/1m); 183-190,
Togaviridae, Coronaviridae,  JEV (mouse) HCv (11); 192
Hepadnaviridae, Retroviridae SARS-CoV-2 (IV)
Abl Dasatinib ABL1 21-12.2 Flaviviridae, Coronaviridae, Vaccinia (mouse) SARS-CoV-2 (imatinib, Ill); 193,194
Imatinib 2-177 Poxviridae KSHV (imatinib, I1)

ND, not determined; SCID, severe combined immunodeficiency disease.

number of patients (135), highlighting that clinical evaluation of
these ErbB inhibitors is warranted.

The numb-associated (serine/threonine) kinases (NAKs) —
AAKI, BIKE, GAK, and STK16 — have also been studied as targets
for broad-spectrum antivirals. We have demonstrated a require-
ment for NAKs in the regulation of intracellular cotrafticking of
specific cellular cargo adaptor proteins with viral particles during
entry, assembly, and/or release of HCV, DENV, EBOV, and SARS-
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CoV-2 (96, 97, 136, 137). Approved anticancer drugs with potent
anti-NAK activity, including sunitinib-erlotinib combinations,
5Z-7-oxozeaenol, and chemically distinct more selective inhibi-
tors, demonstrate broad-spectrum antiviral activity against eight
viral families in vitro (96, 97, 137-139). A combination treatment
with sunitinib-erlotinib was shown to protect mice from DENV
and EBOV challenges (96, 138). Inhibition of intracellular mem-
brane trafficking regulated by NAKs was validated as an important
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mechanism of antiviral action (96, 97,140). The safety and efficacy
of NAK inhibition for the treatment of viral infections in humans
remain to be determined.

Lipid kinases have also been shown to be required for effective
replication of multiple viruses. For example, the endosomal phospha-
tidylinositol-3-phosphate 5-kinase (PIKfyve) (141) has been implicat-
ed in the entry of filoviruses, Lassa virus, and coronaviruses (142).
The PIKfyve inhibitors apilimod and YM201636 suppress trafficking
and maturation of endolysosomes, preventing viral fusion and/or
egress (142, 143). Apilimod is currently being studied as a COVID-19
therapeutic (NCT04446377). Whereas a suboptimal pharmacoki-
netic profile (144, 145) limits its development, the excellent safety
profile demonstrated with apilimod in clinical trials for inflamma-
tory diseases has de-risked PIKfyve as a target (146, 147). While two
chemically distinct small molecules with anti-PIKfyve activity were
recently shown to increase SARS-CoV-2-induced pathology in a
mouse model, since their selectivity has not been reported, it is
possible that other targets have mediated this effect (148). Further
evaluation of the potential of PIKfyve inhibition in other animal
models and ideally human organoid models is therefore warranted.
Pharmacological inhibition of other lipid and protein kinases by
approved and investigational compounds has also shown promise in
vitro with variable results in animal models (reviewed in ref. 149).

Targeting cellular proteases. Proteases are another group of cel-
lular enzymes co-opted by viruses. Influenza viruses and coronavi-
ruses, for example, rely on proteases, such as TMPRSS2 and cathep-
sins, for cleavage and activation of their surface glycoproteins (150,
151). Among cellular protease inhibitors showing antiviral activity,
camostat mesylate and nafamostat mesylate, oral serine protease
inhibitors approved for the treatment of chronic pancreatitis and
other conditions (152), have shown TMPRSS2-dependent suppres-
sion of viral fusion in vitro (151) and protection in mouse models
of IAV and coronaviral infections (153, 154). However, when stud-
ied for the treatment of COVID-19 patients, these compounds had
no significant impact on clinical outcomes (155, 156). Thus, the eval-
uation of other strategies targeting cellular proteases for the treat-
ment of viral infections is warranted.

Targeting lipid metabolism. Cholesterol-lowering drugs, like
statins, have demonstrated in vitro activity against HCV, attribut-
ed to their effect on lipid biosynthesis. Indeed, antiviral activity in
cells was reversed upon addition of mevalonate or geranylgera-
niol, and resistance to these drugs coincided with an increase in
HMG-CoA reductase level — statins’ target (157). Nevertheless, a
variable, modest, and short-lived effect was demonstrated in HCV
patients when statins were combined with peginterferon-ribavirin
(158). Beyond HCV, statins have demonstrated efficacy in animal
models of multiple viral infections, including respiratory viruses,
CMYV, HIV-1, and DENV (159, 160). Owing to their ability to restore
endothelial stability, statins were used, albeit in a non-formal study,
in combination with an angiotensin receptor blocker for treating
EVD, an infection whose pathogenesis is associated with endothe-
lial dysfunction — showing reduced mortality in 100 patients (161).
Recently, reduced morbidity and mortality were documented also
in COVID-19 patients with statin prescriptions, albeit in obser-
vational studies only (162). Inhibitors of proprotein convertase
subtilisin kexin type 9 (PCSK9), such as the monoclonal antibod-
ies alirocumab and evolocumab, represent another class of lipid-
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lowering agents shown to suppress DENV replication in vitro and
reduce mortality and inflammation in severe COVID-19 patients
(163, 164). Whereas statins showed no antiviral activity in dengue
patients (165), PCSK9 inhibitors may offer greater protection given
the recent discovery that PCSK9 expression is induced by DENV
infection in cells residing in physiologically hypoxic conditions and
is increased in severe dengue patients, reducing cholesterol uptake
and dampening susceptibility to statins (163).

Host-targeted approaches with complex mechanisms of action.
Metformin, an approved oral drug for the treatment of diabetes,
has demonstrated potent antiviral activity against multiple virus-
es in vitro. Activation of AMP-activated protein kinase-dependent
(AMPK-dependent) type I interferon signaling was proposed as an
underlying mechanism in DENV and HCV infections (166, 167).
Metformin reduced morbidity and mortality in mice infected with
DENV and IAV, but not ZIKV (168, 169). Diabetic patients on met-
formin treatment were found to have lower morbidity and mortali-
ty upon influenza virus infection (170) and a trend toward reduced
mortality when infected with SARS-CoV-2 (171). Contrastingly,
metformin showed no clinical benefit in nondiabetic COVID-19
patients (172). The therapeutic potential of metformin in reducing
HIV-1 reservoirs and combating DENV infection is currently being
studied clinically (173, 174).

Tamoxifen and other inhibitors of the estrogen receptor (ER)
approved for the treatment of breast cancer inhibit the replication
of multiple RNA and DNA viruses in vitro (175). The proposed
mechanisms of antiviral action include blockage of a chloride
channel required for HSV-1 entry; endosomal/lysosomal proteins
required for EBOV entry; SARS-CoV-2 spike-mediated membrane
fusion (176,177); and binding of ER to HCV and CHIKV polymeras-
es (178, 179). In rodent models of VSV, EBOV, CHIKV, and SARS-
CoV-2 infections, treatment with ER antagonists reduced viral
titers, inflammation, and/or mortality (175, 179, 180). Treatment
with ER antagonists in humans shortened the time of SARS-CoV-2
shedding (181), reduced HCV viremia but not the resulting liver
inflammation (NCT00749138), and did not impact HIV-1 viremia
(182). Thus, further studies are required to define the clinical utility
of ER antagonists as antivirals.

Nitazoxanide, approved for the treatment of parasitic infec-
tions, is another candidate drug for repurposing with a complex
mechanism of antiviral action. Nitazoxanide suppresses rep-
lication of multiple RNA viruses in vitro and in vivo (183, 184).
While the precise target remains unknown, several mechanisms
of action have been proposed, such as blocking of the maturation
of the influenza hemagglutinin (185) and the coronaviral spike
proteins (186, 187) and, in the case of HCV and HBV infections,
blocking of protein kinase R-mediated phosphorylation of eIF2a
(183, 188). Nitazoxanide modestly reduced the time to resolution
of flu symptoms in a phase II trial and is currently being evaluated
in a phase III trial for this indication (189). Whereas the addition
of nitazoxanide to peginterferon-ribavirin improved sustained
virologic responses in HCV patients in a phase II trial (190), no
such improvement was observed in a phase III trial in genotype 4~
infected patients (191). In a recent randomized, double-blind pilot
study in 50 COVID-19 patients, nitazoxanide shortened hospital-
ization, accelerated viral clearance, and reduced inflammatory
cytokine production (192), warranting a larger-scale study.

J Clin Invest. 2023;133(11):e170236 https://doi.org/10.1172/JCI170236



The Journal of Clinical Investigation

Ongoing challenges and future perspectives
Collectively, these examples highlight the potential held in expand-
ing the repertoire of candidate targets from viral proteins to other
viral elements and to cellular functions, and provide proof of con-
cept for the potential utility of broad-spectrum antiviral strategies.
Nevertheless, major challenges remain to be overcome to expand
the clinical applications of these strategies.

Toxicity is a major concern, particularly in targeting cellular
factors, requiring careful safety investigations. For example, dasat-
inib, an inhibitor of the Src and c-Abl kinases, has demonstrated
broad-spectrum antiviral activity in cultured cells, yet in a murine
model of vaccinia virus, it induced immunosuppression rather
than protection (193, 194). Nevertheless, since all non-infectious
human diseases are treated with drugs targeting cellular func-
tions, the increased risk posed by host-targeted antivirals is theo-
retical and can be potentially mitigated by the identification of a
therapeutic window within which a drug level is sufficient to sup-
press viral replication without causing cellular toxicity. Directing
the use of host-targeted approaches toward acute viral infections
requiring shorter duration of treatment should further help limit
toxicity. Indeed, chronically infected HCV patients receiving alis-
porivir unexpectedly developed fatal cases of pancreatitis during
a phase III trial, albeit after several months of treatment (195).
Broad-spectrum DAAs are also not devoid of toxicity: brincidofovir
administration to patients infected with MPXV was complicated by
liver toxicity (57), and caution is needed with favipiravir and mol-
nupiravir treatment due to teratogenicity (196). Significant toxicity
caused by lack of selectivity to the viral targets has hampered the
clinical development of some DAAs, such as sinefungin targeting
cellular MTases and nucleoside analogs targeting mitochondrial
RNA polymerase (74, 197).

Another challenge of host-targeted approaches is that the
mechanism of antiviral action is often elusive and the molecular tar-
gets underlying the antiviral effect are unvalidated. This challenge
is driven in part by the complex network of interactions in which
cellular proteins function and the limited selectivity of some of their
inhibitors. For example, whereas the effect of erlotinib on HCV
infection was first attributed solely to its effect on its cancer tar-
get, EGFR, inhibition of GAK, another target of erlotinib, was then
shown to play a role (96, 129). The mechanism of antiviral action of
some drugs, such as nitazoxanide and tamoxifen, is even less clear
and is often pathogen specific (176-179, 185-188).

But the greatest challenge of all antiviral approaches is the
limited translatability of protective effects observed in preclini-
cal models into clinical benefit in humans. While this limitation
would be predicted to impact primarily host-targeted approaches
owing to potential differences in the sequence and/or structure of
proviral factors across species, this does not appear to be the case.
The translation of broad-spectrum DAAs seems to be comparably
impacted. For example, remdesivir showed excellent protection
from EVD in NHPs, yet no benefit in EBOV-infected patients (19).
The narrow window of opportunity for therapeutic interventions in

REVIEW

the case of acute viral infections undoubtedly contributes to these
low clinical translation rates.

These challenges underscore the need to consider revising
the procedures currently in place to assess antivirals. Preclinically,
careful consideration of differences in pharmacological properties
including pharmacokinetics and tissue distribution between species
may improve the success rate of clinical translation. The use of more
biologically relevant human organoids and organ-on-chip models
to mimic human tissue architecture may also help address this chal-
lenge. Indeed, the use of such models is now being encouraged by the
FDA (198). On the clinical front, the design of clinical studies, partic-
ularly those conducted in the setting of outbreaks, could be consider-
ably improved. The adaptive platform design — adapted from clinical
studies in cancer (199) and approved by the FDA (NCT02380625)
(200) — is one solution showing promise during the COVID-19 pan-
demic (NCT04280705) (reviewed in ref. 103). Improving patient
selection in clinical trials by targeting treatment to patients more
likely to develop severe outcomes may further enhance the resolu-
tion of clinical studies. Recent breakthroughs in omics approaches
and machine learning algorithms enabling the discovery of clinically
usable biomarkers — such as those we and others have identified to
predict progression to severe dengue infection and other severe viral
infections (201-203) — may aid with this effort.

Taken together, while much progress has been achieved in the
field of broad-spectrum antivirals, the need to establish a thera-
peutic portfolio for future pandemic preparedness is far from being
met. Developing and stocking host-targeted broad-spectrum anti-
virals as the first line of defense, and in parallel developing DAAs
for representative viruses from each major viral family — efforts
currently supported by US government funding — should bring us
closer to achieving this goal.
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