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Introduction
Most basic physiological functions, including the process of urine 
formation in kidneys, exhibit substantial daily oscillations orches-
trated by the circadian system. This circadian system allows 
organisms to anticipate and prepare for changing functional 
demands throughout the day and night cycles. In mammals, the 
circadian timing system is hierarchically organized with a cen-
tral clock located in the suprachiasmatic nucleus (SCN) of the 
hypothalamus that coordinates the circadian clocks in peripheral 
tissues (peripheral clocks) to keep phase coherence between the 
different tissue clocks (1). At the molecular level, the circadian 
clock is based on series of transcriptional and translational feed-
back loops that drive rhythmic expression of numerous genes in an 
organ-specific manner (2).

Daily rhythms in specific renal functions are generated and 
maintained by a variety of factors, including the intrinsic renal 
circadian clock and the rhythmic systemic stimuli orchestrated by 
the central circadian clock, such as circulating metabolites or hor-
mones (reviewed in refs. 3, 4). In humans, disruption of circadian 
rhythms due to shift work or sleep disorders are associated with 
a decreased glomerular filtration rate (GFR) (5), increased risk of 

chronic kidney disease (CKD) (6), polyuria, and nocturia (7). Sys-
temic perturbation of the circadian clock in different transgenic 
mouse models resulted in a partial loss of blood pressure control 
(8), substantial changes in the circadian pattern of urinary water, 
sodium and potassium excretion (9), and accelerated progression 
of CKD (10). Conditional deletion of the circadian clock gene Bmal1 
(brain and muscle ARNT-like 1, also known as Arntl) in glomerular 
podocytes caused disruption of the circadian rhythm in GFR and 
parallel alterations in the circadian patterns of plasma aldosterone 
levels and urinary excretion of creatinine, sodium, potassium, and 
water (11). Inactivation of Bmal1 in the renal tubule does not lead to 
an overt phenotype in unstressed conditions, except a reduction (of 
approximately 20%) in kidney weight and kidney weight–to–body 
weight ratio (12). However, in a model of type I diabetes, these mice 
displayed exacerbated hyperglycemia caused by the enhancement 
of the gluconeogenic pathway in the kidney (13). These and other 
results gave rise to the hypothesis of a second-hit role of the renal 
tubular circadian clock in the development of kidney and/or sys-
temic diseases. In the absence of other hits, the dysfunction of 
renal tubular clocks does not lead to an overt phenotype. However, 
in stress or disease situations, the disorganization of renal metabol-
ic pathways and/or transport processes along the renal tubule may 
become critical. Moreover, a large body of literature exists on the 
bidirectional relationship between CKD and the circadian clock 
system, where CKD causes multiorgan or whole-body chronodis-
ruption and the dysfunction of the circadian clock or perturbation 
of circadian rhythms aggravate CKD and its complications (4).

Urine formation in kidneys involves 3 main processes: glo-
merular filtration, tubular reabsorption, and tubular secretion. 

Circadian rhythmicity in renal function suggests rhythmic adaptations in renal metabolism. To decipher the role of the 
circadian clock in renal metabolism, we studied diurnal changes in renal metabolic pathways using integrated transcriptomic, 
proteomic, and metabolomic analysis performed on control mice and mice with an inducible deletion of the circadian clock 
regulator Bmal1 in the renal tubule (cKOt). With this unique resource, we demonstrated that approximately 30% of RNAs, 
approximately 20% of proteins, and approximately 20% of metabolites are rhythmic in the kidneys of control mice. Several 
key metabolic pathways, including NAD+ biosynthesis, fatty acid transport, carnitine shuttle, and β-oxidation, displayed 
impairments in kidneys of cKOt mice, resulting in perturbed mitochondrial activity. Carnitine reabsorption from primary 
urine was one of the most affected processes with an approximately 50% reduction in plasma carnitine levels and a parallel 
systemic decrease in tissue carnitine content. This suggests that the circadian clock in the renal tubule controls both kidney 
and systemic physiology.
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ad libitum feeding (sampled every 4 hours over a 24 hour cycle; 5 
independent replicates). We subsequently investigated temporal 
gene expression in the kidney using RNA-Seq and performed a dif-
ferential rhythmicity analysis using dryR (27) (Supplemental Table 
1; supplemental material available online with this article; https://
doi.org/10.1172/JCI167133DS1). This analysis is based on multi-
ple harmonic linear regression with a subsequent model selection 
approach that assigned transcripts to 5 different models according 
to their rhythmic or nonrhythmic expression pattern in control 
and cKOt mice (Supplemental Figure 1A). Transcripts assigned to 
model 1 (nonrhythmic) did not exhibit rhythmicity in both con-
ditions. Model 2 (loss-of-rhythm) comprised transcripts that lost 
their rhythmic expression pattern in cKOt mice; model 3 (gain-of-
rhythm) represented transcripts that gained rhythmicity in cKOt 
mice; and transcripts that exhibited unaltered rhythms in both gen-
otypes were assigned to model 4 (unaltered rhythm). If the rhythms 
were altered in acrophase and/or amplitude, transcripts were clas-
sified as model 5 (altered rhythm). Transcripts that could not be 
clearly assigned to one of these models were named “unassigned” 
(model 0) (Supplemental Figure 1A). Of all detected transcripts, 
33.9% (sum of models 2, 4 and 5) and 31.1% (sum of models 3, 4 
and 5) were rhythmic in kidneys of control and cKOt mice, respec-
tively (Figure 1A). While the majority (67.7%) of rhythmic tran-
scripts in at least 1 genotype demonstrated unaltered rhythm (sys-
tem-driven transcripts), 16.7% of transcripts lost their rhythmicity 
in cKOt mice (BMAL1-driven transcripts), 9.2% gained rhythmicity 
(transcripts that became rhythmic after the deletion of Bmal1), and 
6.4% exhibited altered rhythm (BMAL1-modulated transcripts) 
(Figure 1B and Supplemental Figure 1B). Rhythmic transcripts that 
lost rhythmicity in cKOt mice (model 2) did not present clear phase 
enrichment but did show higher amplitudes (Figure 1, C and D), 
as expected for direct BMAL1 target genes in clock-deprived ani-
mals (27). Transcripts from models 3 and 4 exhibited a bimodal 
distribution of phases and lower amplitudes (Figure 1, C and D), 
suggesting that they were likely driven by systemic signals. Tran-
scripts with altered rhythm in cKOt mice (model 5) demonstrated 
a bimodal distribution only in cKOt mice, while the phase was not 
biased in controls, which was expected for genes regulated by both 
the circadian clock and systemic signals (27). The phase of these 
genes was shifted by about –4 or +4 hours and also presented a low-
er amplitude in cKOt mice than in control mice (Figure 1, C and D 
and Supplemental Figure 1C). As shown in Figure 1E, a substantial 
number of transcripts (more than 50%) from models 2, 3, 4, and 
5 also displayed a differential mean expression. The differential 
mean expression was even higher among transcripts with differ-
ential rhythmicity (models 2, 3, and 5) suggesting a link between 
rhythmicity and differential expression (Figure 1E) (27).

Effect of induced Bmal1 deletion in the renal tubule on the kid-
ney rhythmic proteome. To decipher the relationship between the 
rhythmic transcriptome and proteome, we performed, in parallel, 
a proteomic analysis of kidneys from control and cKOt mice. A 
total of 3,809 proteins were quantified in both control and cKOt 
kidney samples (Supplemental Table 2). dryR analysis revealed 
18.9% and 21.4% of rhythmic proteins in kidneys of control and 
cKOt mice, respectively (Figure 1F). Among proteins rhythmic in 
at least 1 genotype, a surprisingly high number (32.8%) gained 
rhythmicity in the kidneys of cKOt mice, while only 24.3% proteins 

Evidence suggests that tubular reabsorption/secretion varies 
markedly throughout the day in parallel with the circadian fluc-
tuations in GFR, renal blood flow (RBF), and plasma concentra-
tion of some solutes. For instance, GFR displays daily fluctuations 
with the acrophase, or circadian peak time, occurring in the active 
phase and amplitude, or the difference between circadian peak 
and trough, ranging from 20%–50%, depending on species and 
experimental conditions (14–18). For water and most solutes, this 
implies parallel rhythmic changes in their filtered loads. Daily 
oscillations in filtered loads impose, in turn, rhythmic fluctuations 
in tubular transport processes. Considering that tubular transport 
is the primary determinant of kidney energy expenditure, this sug-
gests a requirement for daily adjustments in energy production by 
renal tubular cells. Moreover, daily oscillations in RBF (19) gen-
erate substantial fluctuations in kidney tissue oxygenation (20) 
and metabolic substrate availability, thereby suggesting rhythmic 
changes in renal metabolic pathways. While the rhythmic regula-
tion of main tubular transporters has been addressed in several 
studies (21–25), the role of the circadian clock in the adjustment 
of renal metabolism throughout the day remains largely unknown.

Here, we studied the role of intrinsic renal circadian clocks in 
the control of renal metabolism. To address this question, we per-
formed an integrated time-resolved analysis of the renal transcrip-
tome and proteome in parallel with the renal and plasma metabo-
lomes in control mice and mice with an induced deletion of Bmal1 
in the renal tubule. Of note, the kidney is composed of several doz-
en highly differentiated cell types characterized by both overlap-
ping and distinct metabolic programs. For instance, metabolism 
of the proximal tubule differs from the rest of the nephron by the 
presence of a high-capacity gluconeogenic pathway and an inca-
pacity to use glucose as metabolic fuel. In contrast, β-oxidation of 
fatty acids (FAs) is an important source of energy production in all 
tubular segments, but especially in the proximal tubule. Thus, cir-
cadian regulation of metabolic pathways may be different in dif-
ferent parts and/or cell types of the renal tubule.

Our study showed that the intrinsic circadian clock in the renal 
tubule exerted control over renal metabolism by regulating several 
key metabolic pathways, including carnitine shuttle, β-oxidation of 
FAs, and nicotinamide (NAM) adenine dinucleotide (NAD+) bio-
synthesis. As a result, kidney mitochondrial activity was affected, 
leading unexpectedly to a de novo rhythm in cKOt, suggesting a 
disruption of the renal energy homeostasis. Moreover, we revealed 
the critical involvement of the renal circadian clock in the systemic 
control of tissue carnitine levels. Altogether, the data sets gener-
ated here (https://bix.unil.ch/circadian-kidney/) provide a unique 
resource for the understanding of rhythmic kidney physiology.

Results
Effect of induced Bmal1 deletion in the renal tubule on the kidney 
rhythmic transcriptome. Inactivation of Bmal1 in the renal tubule 
was induced by 2-week treatment with doxycycline (DOX; 2 mg/
mL in drinking water) of 8-week-old Bmal1lox/lox/Pax8-rtTA/LC1-
Cre male mice (hereafter referred to as cKOt mice) (12, 26). Their 
littermate controls (Bmal1lox/lox mice; hereafter referred to as con-
trol mice) received the same DOX treatment. Kidneys and plasma 
were collected 1 month after the end of DOX treatment from mice 
maintained under a standard 12 hour light/12 hour dark cycle with 
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models did not display clear biased distribu-
tion of phases, likely because of the relatively 
low number of rhythmic proteins compared 
with mRNAs (Figures 1H and Supplemen-
tal Figure 1D). There was no clear tendency 
for phase-shift distribution for proteins from 
model 5 (Supplemental Figure 1E). Proteins 
that gained or lost rhythmicity (models 2 and 
3) showed higher amplitudes compared with 
the other groups (Figure 1I). While this was 
expected for model 2 proteins that are likely 
directly regulated by BMAL1, this was more 
surprising for proteins that gained rhythmicity 
(model 3). This suggested that the deletion of 
Bmal1 generated compensatory mechanisms 
that induced the rhythmicity of new proteins 
in response to a potential modification of renal 
tubular functions.

Strikingly, a high number of proteins — 
more than 80% — from all models exhibited 
differential mean expression between control 
and cKOt mice (Figure 1J), demonstrating the 
substantial effect of Bmal1 deletion on the 
renal proteome.

Relationship between the rhythmic transcriptome and the pro-
teome in kidneys of control and cKOt mice. Global pairwise compar-
ison of rhythmic mRNA and proteins revealed that only approxi-
mately 20% of rhythmic mRNAs encoded rhythmic proteins in the 

lost their rhythmicity, 8.2% had altered rhythmicity, and 34.7% 
showed unaltered rhythm (Figure 1G). Interestingly, only proteins 
in model 4 (unaltered rhythm) showed a clear bimodal phase dis-
tribution as expected for system-driven proteins. Proteins in other 

Figure 1. Alterations of renal transcriptome and 
renal proteome in cKOt mice. (A) Donut charts 
showing the percentage of rhythmic, nonrhythmic 
and unassigned renal transcripts in control (Ctrl) and 
cKOt mice. (B) Histogram showing the number and 
percentage of renal rhythmic transcripts assigned to 
dryR rhythmicity models. (C) Histogram showing the 
acrophase distribution of renal transcripts assigned 
to dryR rhythmicity models 2, 3, 4, and 5. Red 
dashed lines: kernel density estimates. (D) Cumula-
tive number of renal transcripts assigned in the indi-
cated rhythmicity pattern in function of amplitude. 
(E) Donut charts showing the proportion of renal 
transcripts displaying a differential mean expression 
according to limma R package (72) in Ctrl versus cKOt 
mice for each dryR rhythmicity model. (F) Donut 
charts showing the percentage of rhythmic, not 
rhythmic, and unassigned renal proteins in Ctrl and 
cKOt mice. (G) Histogram showing the number and 
percentage of renal rhythmic proteins assigned to 
dryR rhythmicity models. (H) Histogram showing the 
acrophase distribution of renal proteins assigned to 
dryR rhythmicity models 2, 3, 4, and 5. Red dashed 
lines: kernel density estimates. (I) Cumulative num-
ber of renal proteins assigned in the indicated rhyth-
micity pattern in function of amplitude. (J) Donut 
charts showing the proportion of renal proteins 
displaying a differential mean expression according 
to limma R package in control (Ctrl) versus cKOt mice 
for each dryR rhythmicity model.

https://doi.org/10.1172/JCI167133
https://www.jci.org/articles/view/167133#sd
https://www.jci.org/articles/view/167133#sd
https://www.jci.org/articles/view/167133#sd


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

J Clin Invest. 2023;133(8):e167133  https://doi.org/10.1172/JCI1671334

as many as 20 were already affected at the mRNA level (Figure 
2E and Supplemental Tables 3 and 4). Notably, xenobiotic detox-
ification; FA metabolism; proliferator-activated receptor agonist 
(PPAR) signaling; peroxisomal function; and nicotinate, NAM, 
and tryptophan metabolism pathways were commonly affected.

Consequences of Bmal1 deletion in the renal tubule on kidney 
and plasma metabolomes. Out of 814 metabolites quantified in the 
kidneys of control and cKOt mice, only approximately 20% were 
rhythmic (Figure 3A and Supplemental Table 5). While a majority 
of metabolites were rhythmic in both genotypes, 25 and 39 were 
rhythmic only in control or in cKOt mice, respectively (Figure 
3B). Accordingly, the global distributions of phases (Figure 3C) 
and amplitudes (Figure 3D) of rhythmic metabolites were highly 
similar between controls and cKOt. Overall, approximately 50% 
of detected metabolites exhibited differential levels in control and 
cKOt kidneys, suggesting that the deletion of Bmal1 has a greater 
effect on the abundance of metabolites than on their rhythmici-
ty (Figure 3E). Numerous important metabolic components dis-
played substantial changes in their mean abundance between kid-
neys of control and cKOt mice, including carnitine, NAD+, flavin 

kidneys of control and cKOt mice, while only approximately 37% 
of rhythmic proteins were encoded by rhythmic mRNAs (Figure 
2A). This is consistent with previous results that showed that most 
rhythmic mRNAs encode nonrhythmic proteins and that most 
rhythmic proteins are regulated at the posttranscriptional levels 
(28–31). These data were confirmed by a weak correlation in mod-
el-to-model comparisons of rhythmicity patterns between mRNAs 
and proteins that they encode (Figure 2B). However, a strong cor-
relation was found between fold-changes in mean expression lev-
els of mRNA and protein pairs in control versus cKOt mice (Figure 
2C, Pearson’s R correlation coefficient: 0.4626: P value<0.0001). 
A comparison of phase distributions revealed a tendency in both 
control and cKOt mice for a phase delay of approximately 2-to-6  
hours between mRNA and protein expression likely explained 
by the time of accumulation of proteins after the peak of mRNA 
synthesis (Figure 2D) (28). Pathway analysis based on over repre-
sentation analysis (ORA) of mRNAs or proteins exhibiting differ-
ential mean expression between control and cKOt mice revealed a 
substantially similar set of molecular pathways modified on both 
mRNA and protein levels. Among 30 altered protein pathways, 

Figure 2. Comparison of changes observed in renal transcriptome and proteome. (A) Venn diagram showing the number of rhythmic transcripts and 
proteins among all detected pairs in control (Ctrl) and cKOt mice. (B) Table showing the frequency of transcripts and proteins pairs falling in the same dryR 
rhythmicity model. (C) Scatter plot and regression line with 95% confidence intervals of log2 fold changes in mean expression between Ctrl and cKOt mice 
at transcriptional (x axis) and protein (y axis) levels. (D) Histogram showing the distribution of the acrophase shift between transcripts and proteins in Ctrl 
(upper panel) or cKOt (lower panel) mice. Red dashed lines: kernel density estimates. (E) Scatter plot of all KEGG metabolic pathways significantly altered 
(Padj < 0.25) in both transcriptomic and proteomic renal data sets. Results are based on over representation analyses (ORA) of transcripts or proteins show-
ing a significantly altered mean expression (Padj < 0.05 obtained with limma R package) with an absolute fold change > 1.2. The size of each dot depends 
on the number of transcripts or proteins, or components, of the pathway significantly affected in cKOt mice. Pathways are sorted from the lower to the 
higher value obtained by multiplication of Padj of both data sets.
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is not modified in the kidneys of cKOt mice, there was an approx-
imately 30% reduction in NMN levels. The effect of impairment 
in salvage pathway on the NAD+ pool might be partially alleviated 
by compensatory mechanisms affecting 2 other NAD+ synthesis 
pathways, namely the de novo NAD+ synthesis pathway and the 
Preiss-Handler pathway, which, respectively, use circulating tryp-
tophan and nicotinic acid (NA) to produce the NAD+ precursor NA 
mononucleotide (NAMN). No difference in abundance of trypto-
phan and kynurenine suggested that there were no alterations in 
the initial steps of the de novo pathway, despite downregulation 
of the kynurenine formamidase (AFMID) enzyme (Figure 4 and 
Supplemental Figure 3). However, 3 enzymes involved in the last 
steps of the de novo pathway, namely kynurenine 3-monooxy-
genase (KMO), 3-hydroxyanthranilate 3,4-dioxygenase (HAAO), 
and the rate limiting nicotinate-nucleotide pyrophosphorylase 
(QPRT) were upregulated in the kidneys of cKOt mice (Figure 4 
and Supplemental Figure 3). Moreover, the rate limiting enzyme 
of the Preiss-Handler pathway, nicotinate phosphoribosyltrans-
ferase (NAPRT), was overexpressed, as well as NAMN adenylyl-
transferase 3 (NMNAT3), an enzyme converting NAMN into the 
NAD+ precursor NA adenine dinucleotide (NAAD). The purine 
nucleoside phosphorylase (PNP), an enzyme that mostly produc-
es NA from NA riboside (NAR) was upregulated at both transcript 
and protein levels (Supplemental Figure 3). Finally, the expres-
sion of the Nicotinamide nucleotide transhydrogenase (NNT), an 
enzyme that produces NAD+ from NADH pool in mitochondria 
was dramatically increased at the protein level. This suggests the 
activation of a compensatory pathway to counteract the deficient 
NAD+ synthesis in cKOt animals.

Impaired FA transport, carnitine shuttle, and β-oxidation in 
cKOt mice. Both transcriptome and proteome pathway analyses 
and changes in the kidney tissue metabolome suggested alter-
ations in FA metabolism in the kidneys of cKOt mice. We per-
formed a detailed analysis of changes in the levels of mRNAs, 
proteins, and metabolites related to different steps of FA metab-
olism, the principal source of energy in the proximal tubule. As 
shown in Figure 5, expression of CD36 and SLC27A2 (FATP2), 2 
major FA transporters in the proximal tubule (38), were reduced 
in the kidneys of cKOt mice at both the mRNA and protein levels. 
Interestingly, kidney tissue levels of FA were increased, especial-
ly during the inactive phase (Figures 5 and Supplemental Figure 
4A), probably due to impairments in downstream steps of FA 
metabolism. Palmitoyl-CoA levels were decreased, but no clear 
tendency was observed for expression of different members of 
the acyl-CoA-synthetase family (Figure 5 and Supplemental Fig-
ure 4B). Expression of carnitine palmitoyltransferase 1A (CPT1a) 
and of carnitine-acylcarnitine translocase (CACT or SLC25A20), 
enzymes critical for the transfer of long-chain FA through the 
outer and inner mitochondrial membranes, respectively, were 
substantially reduced in the kidneys of cKOt mice (Figure 5). This 
reduction was paralleled by a decrease in tissue levels of major-
ity of acylcarnitines (Figure 5 and Supplemental Figure 5A). A 
substantial reduction in expression was also observed for car-
nitine palmitoyltransferase 2 (CPT2), an enzyme that catalyzes 
the formation of acyl-CoAs from acylcarnitines and CoA, a step 
preceding β-oxidation (Figure 5). mRNA and protein expression 
of short-chain, medium-chain, long-chain, and very-long-chain 

adenine dinucleotide (FAD+), and flavin mononucleotide (FMN) 
(Figure 3F). Notably, analysis of metabolite categories revealed 
that those related to energy production or cofactors and vita-
mins showed a tendency for reduced abundance, whereas lipids 
displayed an increased abundance in cKOt (Supplemental Table 
5 and Figure 3E). In subcategories of lipids, a substantial reduc-
tion was observed for acyl-carnitines, whereas long-chain FAs 
and monoacylglycerols were enriched in the kidneys of cKOt mice 
(Supplemental Figure 2A).

Absolute quantitation and dryR analysis of 599 metabolites 
was also performed on the plasma of the same control and cKOt 
mice. We retained 333 metabolites detected in all samples for fur-
ther analyses (Supplemental Table 6). In contrast to the kidney, a 
high percentage (approximately 60%) of plasma metabolites were 
rhythmic in control and cKO mice (Figure 3G). Most of them were 
identically rhythmic in the plasma of both control and cKOt mice 
and a few were rhythmic only in control or cKOt mice (Figure 3H). 
In both genotypes, rhythmic plasma metabolites displayed a uni-
modal phase distribution with a broad peak around Zeitgeber time 
0 (ZT0) (Figure 3I). Differential analysis of plasma concentrations 
of metabolites from different categories revealed an increase in 
many phosphathidylcholines, triglycerides, and sphingomyelines 
in the plasma from cKOt mice (Figures 3J and Supplemental Fig-
ure 2B). However, the most important difference was observed for 
carnitine and its derivatives acetylcarnitine and propionylcarni-
tine, which were substantially reduced in cKOt, while creatinine 
was increased (Figure 3, K and L).

The circadian clock in the renal tubule controls multiple pathways 
of NAD+ replenishment. Based on these observations, we focused 
our attention on the effect of Bmal1 deletion on NAD+ metabolism. 
NAD+ is a cofactor for more than 400 enzymatic redox reactions, 
many of which are critical to cell metabolism. NAD+ biosynthetic 
pathways differ widely across tissues and display tissue-specif-
ic preference for different NAD+ precursors. Imbalance in renal 
NAD+ has been proposed as a causative factor for progression 
from acute kidney injury (AKI) to CKD (32, 33). Our metabolome 
analysis revealed a reduction in NAD+ levels in the kidneys of 
cKOt mice to a degree comparable to that observed in AKI, with a 
reduction of approximately 20% (34) (Figure 4). In addition, joint 
analysis of omics data sets showed substantial modifications in 
principal pathways contributing to the maintenance of intracel-
lular NAD+. A dramatic reduction was observed in both mRNA 
and protein levels of NAM phosphoribosyltransferase (NAMPT), 
the rate-limiting enzyme in the NAD+ salvage pathway that con-
verts NAM, a metabolite mostly derived from local NAD+ cleav-
age by NAD+-consuming enzymes, into NAM mononucleotide 
(NMN) (35). Lower expression in the kidneys of cKOt mice was 
also observed for the nicotinate riboside kinase (NRK1) that can 
produce NMN from NAM riboside (NR). Expression of CD73, an 
enzyme that opposes NRK1 action by converting NMN into NR 
was substantially increased in the kidneys of cKOt mice both at 
mRNA and protein levels. While the quantitative role of NRK1 in 
NAD+ production in the kidney remains unknown, this enzyme is 
expressed at high levels in the renal proximal tubule (36). Impor-
tantly, both Nampt and Nrk1 displayed circadian clock-dependent 
rhythmicity, as previously shown in the liver (37). Interestingly, 
while the renal content of NAM is only slightly decreased and NR 
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acyl-CoA dehydrogenases (ACADS, ACADM, ACADL, and 
ACADVL, respectively) which catalyze the rate-limiting step of 
β-oxidation, were substantially decreased in cKOt mice (Figure 
5 and Supplemental Figure 5B). Finally, the decrease in acetyl- 
carnitine levels was correlated with reduced expression of car-
nitine acetyltransferase (CRAT), an enzyme that catalyzes the 
exchange of acyl groups between carnitine and CoA. Collectively, 
these data demonstrated multilevel impairment in the metabolism 
of FA in kidneys of cKOt mice. Interestingly, reduced expression 
of enzymes involved in FA transport and β-oxidation was paral-
leled by substantial modifications in PPARs, a family of FA-acti-
vated nuclear receptors, with attenuated expression of Pparα and 
Pparγ and a dramatic increase in Pparβ/δ expression in cKOt mice 
(Supplemental Figure 6).

The circadian clock in the renal tubule controls renal and system-
ic carnitine levels. The metabolome data of kidney tissue (Figure 
3E and Figure 6A) and plasma (Figure 3K) revealed a substan-
tial reduction in carnitine abundance in cKOt mice throughout 
the entire circadian cycle. The maintenance of intracellular car-
nitine levels is critical for FA oxidation and energy production. 
In the kidney proximal tubule, 2 mechanisms contribute to the 
control of intracellular carnitine levels, i.e., transcellular carni-
tine reabsorption and carnitine biosynthesis. These latter data 
confirm and extend results by Nikolaeva, et al. who showed at 
2 time-points (ZT4 and ZT16) that Bmal1 deletion results in a 
drop in plasma carnitine levels (12). These results tempted us to 
explore the role of the renal tubular circadian clock in the renal 
handling of carnitine and in the control of tissue carnitine levels 
in the kidney and other tissues. The kidney is the major site of 
carnitine biosynthesis (Figure 6B) (39). As shown in Figure 6C, 
kidney levels of N6-trimethyllysine (TML), the first metabolite 

of carnitine synthesis pathway, were not different between con-
trol and cKOt mice. Expression of N6-trimethyllysine dioxygen-
ase (TMLHE) which catalyzes the transformation of TML into 
hydroxy-N6-trimethyllysine (HTML) was not different between 
genotypes. The identity of the second enzyme, HTML aldolase 
(TMLHA), which catalyzes the transformation of HTML into 
4-N-trimethylaminobutyraldehyde (TMABA), remains unclear. 
However, expression of TMABA dehydrogenase (TMABADH or 
ALDH9A1), which converts TMABA into deoxycarnitine, was 
reduced both at the mRNA and protein levels in cKOt mice. Inter-
estingly, deoxycarnitine levels were increased in the kidneys of 
cKOt mice. Finally, mRNA encoding the last and rate-limiting 
enzyme in the enzymatic chain, γ-butyrobetaine dioxygenase 
(BBOX1), was significantly increased in the kidneys of cKOt mice.

Carnitine is freely filtered by renal glomeruli and approximate-
ly 98% is reabsorbed in the proximal tubule (Figure 6D). At the 
apical membrane, carnitine is transported inside the cell via the 
sodium-coupled carnitine transporter SLC22A5 (OCTN2) (40). 
The basolateral carnitine extrusion is less well characterized, but a 
role of organic cation transporter 2 (SLC22A2 or OCT2) in this pro-
cess has been proposed (41, 42). Analysis of the diurnal transcrip-
tome and proteome revealed that both mRNA and protein expres-
sion of SLC22A5 were dramatically reduced in the kidneys of cKOt 
mice throughout the entire circadian cycle, whereas expression of 
SLC22A2 was slightly increased (Figure 6E). In a kinetic experi-
ment, there was no difference in plasma carnitine levels between 
control and cKOt mice at baseline, before DOX treatment (Figure 
6F). However, 3 days after the beginning of the DOX treatment, a 
reduction in plasma carnitine concentration was already observed 
in cKOt mice. Similar levels of urinary carnitine excretion in the 
2 genotypes (Figure 6G) and reduction in fractional excretion of 
carnitine in cKOt mice (FE, Figure 6H) indicated that a reduction 
in plasma carnitine levels occurred in parallel with decreased car-
nitine reabsorption in the kidney. Analysis of tissue carnitine lev-
els demonstrated reduction in heart, brain, and muscle, but not in 
the liver (Figure 6I). Despite a substantial decrease in the muscle 
carnitine content (approximately 50%), there was no difference 
in spontaneous or running-wheel activities between control and 
cKOt mice (Supplemental Figure 7).

Consequences of Bmal1 deletion on mitochondrial activity. We 
found that cKOt mice showed deficient β-oxidation associated 
with deficient carnitine transport, which led to a decreased concen-
tration of acetyl-CoA, an important fuel of the tricarboxylic acid 
(TCA) cycle. In addition, cKOt mice presented decreased produc-
tion of NAD+, a key coenzyme of sirtuins including SIRT3, which 
is an important regulator of mitochondrial activity (43, 44). There-
fore, we speculated that mitochondrial activity might be perturbed 
in cKOt mice. To test this hypothesis, we measured the activity of 
the different mitochondrial complexes at 2 time points (ZT4 and 
ZT16) in the kidneys of control and cKOt mice. The activity of com-
plex IV was unaffected and the activity of complex I was rhythmic 
and not significantly impacted by the deletion of Bmal1 (Figure 
7, A and B). The activity of complex II was reduced in cKOt mice 
compared with controls at ZT4; however, it caught up to controls 
at ZT16, surprisingly gaining rhythmicity in cKOt mice (Figure 7, A 
and C). As shown in Figure 7D, the time-dependent activity of com-
plex I was associated with rhythmicity in a number of complex I  

Figure 3. Alterations of renal and plasma metabolomes in cKOt mice. 
(A) Donut charts showing the percentage of rhythmic, nonrhythmic, and 
unassigned renal metabolites in control (Ctrl) and cKOt mice. (B) Venn 
diagram showing the number of rhythmic metabolites in kidneys of Ctrl 
and cKOt mice. (C) Histogram showing the acrophase distribution of 
rhythmic metabolites in kidneys of Ctrl and cKOt mice. Red dashed lines: 
kernel density estimates. (D) Cumulative number of rhythmic metabolites 
in Ctrl and cKOt mice in function of amplitude. (E) Donut charts showing 
the proportion of renal metabolites showing an increased, decreased, or 
not significantly altered mean level according to limma R package in cKOt 
versus Ctrl mice for each class of metabolites. (F) Volcano plot depicting 
metabolites significantly (Padj < 0.05) more abundant (purple dots) or less 
abundant (yellow dots) in kidneys of cKOt mice compared with Ctrl mice. 
(G) Donut charts showing the percentage of rhythmic, nonrhythmic, and 
unassigned plasma metabolites in Ctrl and cKOt mice. (H) Venn diagram 
showing the number of rhythmic metabolites in plasma of Ctrl and cKOt 
mice. (I) Histogram showing the acrophase distribution of rhythmic 
metabolites in plasma samples of Ctrl and cKOt mice. Red dashed lines: 
kernel density estimates. (J) Volcano plot depicting metabolites signifi-
cantly (Padj < 0.05) more abundant (purple dots) or less abundant (yellow 
dots) in the plasma of cKOt mice compared with Ctrl mice. (K) Donut charts 
showing the proportion of plasma metabolites showing an increased, 
decreased, or not significantly altered mean level according to limma R 
package in cKOt versus Ctrl mice for each class of metabolite. (L) Temporal 
plots showing the plasma concentration, dryR rhythmicity model, and 
limma R package result of mean expression comparison between Ctrl and 
cKOt mice for carnitine, acetylcarnitine, propionylcarnitine, and creatinine 
in plasma metabolomes of Ctrl and cKOt mice.
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trol mice and mice deficient for circadian clock genes (total or 
kidney specific) have already been published (9, 48), temporal 
high-throughput proteomics analyses have been limited to the 
WT mouse liver (28, 49, 50), macrophages (30), SCN (31), and 
forebrain synapse (51). None of these studies were complemented 
with a temporal metabolomics data set. Therefore, this data set is 
unique, to our knowledge, and allowed a comprehensive analysis 
of rhythmic genes, protein expression, and associated metabol-
ic pathways, as well as the effect of the deletion of the circadian 
clock regulator BMAL1 on these processes (of note, BMAL1 is a 
transcription factor that may have functions unrelated to the cir-
cadian clock). Compared with the liver, where only 6%–8 % of the 
quantified proteome is rhythmic, we found approximately 20% 
of rhythmic proteins in the kidney, close to what was found in the 
SCN or macrophages. However, a common observation in all of 
these studies is the critical role of posttranscriptional regulation: 
as in other tissues, a majority (78%) of rhythmic proteins were 
encoded by nonrhythmic mRNA.

The integrated omics approach allowed us to examine major 
pathways involved in the maintenance of intracellular NAD+ lev-
els. We demonstrated that a large reduction in the NAD+ content in 
kidneys of cKOt mice was paralleled by a dramatic decrease in the 
expression of NAMPT, a key enzyme in NAD+ salvage pathway, and 
increased expression of QPRT and NAPRT, rate-limiting enzymes 
in de novo and Preiss-Handler pathways of NAD+ synthesis, respec-
tively. These results suggest that decreased capacity of the salvage 
pathway accounts for the reduction in the NAD+ content in the 
kidneys of cKOt mice. The circadian clock regulation of NAMPT 
expression has been shown as one of the central mechanisms of cir-
cadian metabolic oscillations (52, 53). Our data demonstrate that 
this mechanism is also involved in the circadian clock–regulated 
adjustment of the NAD+ content in renal tubular cells.

FAs are the main metabolic fuel for the proximal tubule, a part 
of the renal tubule in which 60%–70% of tubular reabsorption 
and most of the tubular secretion takes place. We demonstrated 
that the expression of key enzymes involved in FA metabolism 
were substantially reduced in the kidneys of cKOt mice, particu-
larly enzymes involved in FA uptake (CD36 and FATP2), shuttling 
of acylcarnitines into the mitochondria (CPT1, CPT2, CRAT, and 
CACT), and catalysis of the initial step of β-oxidation (ACADS, 
ACADM, ACADL, and ACADVL). In parallel, kidney content of 
palmitoyl-CoA, acetyl-CoA, and acetylcarnitine was substantial-
ly reduced in cKOt mice. For cells that cannot use glucose, this 
reduction suggests a substantial impairment in the energy pro-
duction capacity. Regulation of different enzymes involved in FA 
metabolism by the circadian clock has been shown in several stud-
ies. To our knowledge, we present the first evidence that the cir-
cadian clock can influence the process of FA oxidation as a whole.

Our study provides what we believe to be novel insights 
regarding the role of the renal circadian clock in the control of 
intrarenal as well as systemic carnitine levels. Decreased intra-
renal carnitine content in cKOt mice in parallel with decreased 
OCTN2 expression and increased fractional carnitine excretion 
in the urine suggested an impaired apical entry of carnitine in the 
proximal tubule rather than dysregulation of basolateral carnitine 
transport. Enhancement of the renal carnitine synthesis path-
way does not compensate for this phenotype. OCTN2 is strongly 

proteins (model 4), while the gain of rhythmicity of complex II 
was associated with a gain of rhythmicity in some proteins of the 
complex (model 3). The decreased activity of this complex at ZT4 
could be the result of a deficient SIRT3-dependent deacetylation 
of the complex II catalytic subunit SDHA in cKOt mice caused by 
the decrease in NAD+ concentration (45, 46). Additional analysis of 
metabolomics data showed that the levels of fumarate and malate, 
metabolites downstream of complex II in the TCA cycle (Figure 
7E), were increased in cKOt (Figure 7F). This increase was partic-
ularly significant at ZT16 (Figure 7, G and H) when SDHA was sup-
posed to be deacetylated by SIRT3 (37). These data suggest that the 
TCA cycle is likely partially blocked downstream of complex II in 
cKOt mice. This block could also be caused by the decreased abun-
dance of acetyl-CoA (Figure 5), which is a critical reagent for the 
synthesis of citrate by citrate synthase. Therefore, the decreased 
NAD+ and Acetyl-CoA synthesis in cKOt mice may both contribute 
to the perturbation of the TCA cycle.

Discussion
Tissue-intrinsic circadian clocks govern a wide range of molecular 
processes involved in the adjustment of tissue physiology over the 
course of the circadian cycle (reviewed in (47)). The kidney is one 
of the most metabolically active organs in the body. The bulk of 
the energy produced by the kidney is used to fuel transepithelial 
reabsorption and secretion transport processes in the renal tubule. 
Using a multiomics approach (i.e., transcriptomics, proteomics, 
and metabolomics), we showed that the circadian clock in the 
renal tubule strongly affects several key metabolic pathways in 
the kidney, including NAD+ synthesis, β-oxidation of fatty acids, 
carnitine handling, and mitochondrial activity. Importantly, the 
spectrum of identified clock-dependent mechanisms ranges from 
presumably ubiquitous ones to those restricted to the kidney and a 
limited number of other tissues.

The characterization of these mechanisms was enabled by 
the unique nature of our data set. To ease access to this resource, 
we made all the data sets and statistical analyses available via a 
web application with an interactive interface (https://bix.unil.
ch/circadian-kidney/). While temporal RNA-Seq data from con-

Figure 4. Alteration of renal NAD+ metabolism in cKOt mice. Schematic 
of the NAD+ metabolism depicting enzymes and metabolites involved 
in NAD+ synthesis from NAM, NAM riboside, nicotinic acid, and trypto-
phan (upper part). Enzymes in blue are involved in NAD+ synthesis, while 
enzymes in red are NAD+-consuming. Enzymes surrounded with red are 
rate limiting. Numbers link components of the pathway to temporal plots 
depicted in the lower part of the Figure. Temporal plots of major renal 
metabolites (peach), transcripts (yellow), and proteins (green) involved 
in NAD+ metabolism detected in renal transcriptomic, proteomic or 
metabolomic data sets in control (Ctrl) and cKOt mice. On each plot are 
mentioned the rhythmicity model and Padj obtained, respectively, from 
the dryR comparison of rhythmicity patterns and the limma R package 
mean expressions comparison in Ctrl and cKOt mice. CD73, cluster of 
differentiation 73 also known as ecto-5′-nucleotidase; NADK, NAD+ kinase; 
NADSYN1, glutamine-dependent NAD+ Synthetase; NAMPT, nicotinamide 
phosphoribosyltransferase; NAPRT, nicotinate phosphoribosyltransferase; 
NMNAT3, nicotinamide nucleotide adenylyltransferase isoform 3; NNT, 
NADP transhydrogenase; NRK1, nicotinamide riboside kinase 1; PARPs, 
poly(ADP-ribose) polymerases; PNP, purine nucleoside phosphorylase; 
QPRT, quinolinate phosphoribosyltransferase; SIRTs, sirtuins.
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clocks and environmental cycles can be induced by a variety of 
factors. Disease, medication, professional obligations (e.g., shift 
workers), or unhealthy lifestyle (e.g., irregular sleep and feeding 
rhythms) have been shown to strongly affect circadian rhythms in 
peripheral tissues. Thus, results of this study highlight the impor-
tance of rhythmic behavior for renal health. A lifestyle that aligns 
with diurnal changes in the environment could be even more 
important for patients with CKD, since this disease is per se char-
acterized by a circadian disruption (62).

Methods
Animals. All experiments were performed with male mice housed 
under 12-hour light/dark cycles with ad libitum access to drinking 
water and a standard laboratory chow diet (KLIBA NAFAG). Proce-
dures used to generate Bmal1lox/lox/Pax8-rtTA/LC-1 Cre mouse strain 
(bred on the genetic background of the C57BL/6J mouse from The 
Jackson Laboratory) were described previously (12). Eight-week-old 
Bmal1lox/lox/Pax8-rtTA/LC-1 mice and their Bmal1lox/lox littermate mice 
were treated for 2 weeks with DOX at 2 mg/mL in drinking water along 
with 20mg/mL sucrose to induce the Cre recombinase inactivation of 
the Bmal1 (Arntl) gene. This model of tubular core-clock mechanism 
deletion has been previously described and validated (12). We did not 
predetermine sample sizes; instead, we selected group sizes based on 
contemporary work in the literature and accepted guidelines in the 
field (63). The investigators were not blinded during experiments.

For production of omics data sets, plasma and kidneys from con-
trol and cKOt mice were harvested 4 weeks after the end of DOX treat-
ment and immediately stored at –80°C. Before freezing, both left and 
right kidneys were cut transversely into 2 approximately equal pieces. 
The 2 halves of the left kidney were used for transcriptomics and pro-
teomics analyses and a half of the right kidney was used for metabo-
lomics. Blood samples were collected from the tail and centrifuged to 
produce plasma samples. Before organ collection, mice were anesthe-
tized with ketamine and xylasine and perfused with PBS through their 
abdominal aorta. A total of 72 mice were used; 6 control and 6 cKOt 
mice at each point, sacrificed at 6 different Zeitgeber time points: ZT0, 
ZT4, ZT8, ZT12, ZT16, and ZT20 (with ZT0 and ZT12 corresponding 
to times when light is switched on and off, respectively).

Details for carnitine measurements, physical activity exper-
iments and respirometry experiments are described in the Supple-
mental Methods.

Production of transcriptomics data set by RNA-Seq. RNA from 
frozen half-kidneys of 72 mice were extracted and purified using 
RNAeasy MiniElute Spin Column (Qiagen). RNA quality was assessed 
on a Fragment Analyzer (Agilent Technologies). All RNAs had an RNA 
quality number (RQN) between 7.5 and 9.7. RNA-Seq libraries were 
prepared from 200 ng of total RNA with the Illumina TruSeq Strand-
ed mRNA reagents (Illumina) using a unique dual indexing strategy 
and following the official protocol automated on a Sciclone liquid han-
dling robot (PerkinElmer). Libraries were quantified by a fluoromet-
ric method (QubIT, Life Technologies) and their quality assessed on 
a Fragment Analyzer (Agilent Technologies). Clusters were generated 
with 2 nM of an equimolar pool from the resulting libraries using the 
Illumina HiSeq 3000/4000 SR Cluster Kit reagents. Sequencing was 
performed on the Illumina HiSeq 4000 using HiSeq 3000/4000 SBS 
Kit reagents for 150 cycles (single read). Sequencing data were demul-
tiplexed, filtered for failed reads, and written to FASTQ files using the 

expressed in the kidney, small intestine, heart, pancreas, and pla-
centa, and, to a much lesser extent, in other tissues (54), suggest-
ing that the effect of circadian clock–regulated OCTN2 expression 
may be, in part, tissue specific. A drop of approximately 50% in 
plasma carnitine observed in cKOt mice corresponds to the clini-
cal feature of carnitine deficiency in people. To date, the carnitine 
deficiency phenotype was observed in the context of (a) prima-
ry carnitine deficiency resulting from inactivating mutations in 
Octn2 gene, (b) secondary carnitine deficiency that may be caused 
by different metabolic abnormalities all ultimately leading to the 
loss of carnitine in the urine, and (c) patients with CKD undergo-
ing hemodialysis and losing carnitine through the dialysis mem-
brane (reviewed in ref. 55). In all 3 cases, clinical manifestations 
of carnitine deficiency do not occur until plasma carnitine levels 
drop to less than roughly 20% of normal values. Our study sug-
gests that dysregulation of the renal tubular circadian clock could 
be an important aggravating factor or second hit in the progression 
of carnitine deficiency.

This data set allowed us, for what we believe to be the first 
time, to describe the role of the circadian clock on kidney mito-
chondrial function. Previous reports showed that the disruption 
of the circadian clock abrogated the mitochondrial dynamic 
and rhythmic activity in mouse liver, heart, skeletal muscle, and 
embryonic fibroblasts (56–61). Conversely, the deletion of Bmal1 
in the kidney, surprisingly, led to a gain of rhythmicity in mito-
chondrial complex II activity and protein expression.

There are 2 limitations to our study that should be consid-
ered. The first is that it included only males. The influence of sex-
ual dimorphism on the circadian regulation of renal metabolism 
needs to be addressed in future studies. The second is related to 
the complexity of the cellular composition of the kidney with prox-
imal tubule cells representing approximately 70% of kidney mass. 
Obviously, the circadian clock may have a different impact on 
metabolism in different renal cell types. For instance, our conclu-
sions regarding the role of the circadian clock in regulation of car-
nitine homeostasis are limited to the proximal tubule, as OCTN2 
expression is restricted to this tubular segment. In contrast, the 
NAMPT-dependent NAD+ salvage and β-oxidation pathways are 
ubiquitously distributed, thus leaving the possibility of a different 
(or no) role of the circadian clock in the regulation of these path-
ways in, e.g., the thick ascending limb or the distal nephron. It is 
well established that desynchrony between peripheral circadian 

Figure 5. Alterations of renal fatty acid metabolism in cKOt mice. 
Schematic (center) and temporal plots (edges) of FA metabolism depict-
ing major renal metabolites (peach), transcripts (yellow), and proteins 
(green) involved in FA entry and activation, acyl-carnitine shuttle into 
mitochondria, and acyl-CoA β-oxidation. Proteins surrounded with red 
are rate limiting. Numbers link components of the schematic to temporal 
plots. Rhythmicity model and Padj obtained, respectively, from the DryR 
comparison of rhythmicity pattern and limma R package mean expres-
sions comparison in Ctrl and cKOt mice are mentioned in each plot. ACADL, 
acyl-coenzyme A dehydrogenase, long chain; ACSL4, acyl-CoA synthetase 
long chain family member 4; CACT, mitochondrial carnitine/acylcarnitine 
carrier protein; CD36, cluster of differentiation 36 also known as fatty acid 
translocase (FAT); CPT1A, Carnitine palmitoyltransferase 1A; CPT2, carni-
tine palmitoyltransferase 2; CRAT, carnitine O-acetyltransferase; FATP2, 
fatty acid transport protein 2.
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Figure 6. Carnitine metabolism and renal handling in cKOt mice. (A) Temporal plot showing the renal carnitine content in Ctrl and cKOt mice. (B) Sche-
matic of renal carnitine synthesis pathway where BBOX1 (surrounded with red) is the rate limiting enzyme. (C) Temporal plots of major renal metabolites 
(peach), transcripts (yellow) and proteins (green) involved in carnitine synthesis detected in kidneys of Ctrl and cKOt mice. (D) Schematic of renal carnitine 
handling in proximal tubules: OCTN2 (SLC22A5) transporter (surrounded in red) is rate limiting for apical reabsorption of filtered carnitine. (E) Temporal 
plots showing the relative expression of renal carnitine transporters in kidneys of Ctrl and cKOt mice. Numbers link components of B to temporal plots. 
(F–H) Carnitine concentrations in plasma (F) or urine (G) and carnitine-excreted fraction (H) in Ctrl and cKOt mice before DOX treatment (baseline), 3 or 
7 days after the beginning of the DOX treatment (3d or 7d DOX), and 2 weeks after the end of DOX treatment (14d post-DOX). (I) Carnitine content in 
liver, brain, skeletal muscle (right rectus femoris), and heart of Ctrl and cKOt mice 4 weeks after the end of DOX treatment. Throughout the Figure, the 
rhythmicity model obtained from dryR and Padj value obtained from limma mean expressions comparison in Ctrl and cKOt mice are mentioned on temporal 
plots. Results in panels F to I are mean ± SEM (n= 4 in each genotype) determined by 2-way ANOVA and Sidak’s multiple comparison posthoc tests. OCT2, 
organic cation transporter 2 (OCT2); BBOX1, γ-butyrobetaine hydroxylase 1; HTML, hydroxytrimethyllysine; OCTN2, organic cation transporter novel family 
member 2 (SLC22A5); TMABA, trimethylaminobutyraldehyde; TMABADH, trimethylaminobutyraldehyde dehydrogenase; TMLHA, hydroxyl-trimethyl-ly-
sine aldolase; TMLHE, trimethyl-lysine hydrolase ϵ.

https://doi.org/10.1172/JCI167133


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

1 3J Clin Invest. 2023;133(8):e167133  https://doi.org/10.1172/JCI167133

Figure 7. Mitochondrial activity in Ctrl and cKOt mice. (A–C) Oxygen consumption rates (OCR) of mitochondrial respiratory chain complexes I (CI), II (CII) or IV 
(CIV) in the kidneys of Ctrl and cKOt mice at ZT4 and ZT16. In A, data are presented as individual values, with mean ± SEM determined by 2-way ANOVA and 
Sidak’s multiple comparison posthoc tests. In B and C, data are resented as mean ± SEM and vertical dashed lines depict time-points of metabolic substrates 
injection during OCR measurement. (D) Heatmaps showing the relative expression and the fold change in mean expression of proteins forming CI to CIV com-
plexes in the kidneys of Ctrl and cKOt mice. Statistics determined by limma comparison at 6 circadian time-points. Fold changes ≥ 1.10 are depicted in blue or 
red. Rhythmicity models are shown to the right of the heatmap. (E) Schematic of the Tricarboxylic acid (TCA) cycle and electron transport chain in mitochondrial 
matrix. Numbers are related to plots in H. (F and G) Plots showing the relative abundance of major TCA cycle metabolites at 6 circadian time points (F) or at ZT16 
(G) in kidneys of Ctrl and cKOt mice. Data are individual values with mean ± SEM. In F, means were compared using limma and Padj < 0.1 are shown. In G, means 
were compared using 2-tailed multiple t tests and resulting P values were corrected using the FDR approach (2-stage Step-up method of Benjamini, Krieger and 
Yekutieli). (H) Temporal plots of fumarate and malate abundance with corresponding rhythmicity model and Padj from dryR and limma comparisons in kidneys of 
Ctrl and cKOt mice. SDH, Succinate dehydrogenase. *P < 0.05; **P < 0.001; ***P < 0.0001.
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and 6 cKOt mice), with each batch corresponding to a full time series 
for each genotype. Details for tissue extraction, trypsin digestion, sam-
ple cleanup, and fractionation and liquid chromatography–mass spec-
troscopy (LC-MS) analysis are described in Supplemental Methods.

Protein identification and quantification. Raw MS data were pro-
cessed by the MaxQuant software (version 1.6.14.0) integrating the 
Andromeda search engine (68). The SWISSPROT mouse proteome 
database of September 19th, 2020, including validated splice variants 
was used (25,321 sequences), with sequences of common contami-
nants added. FDR filtering of both peptide spectrum matches (PSM) 
and protein identifications was fixed at 1%. Search parameters allowed 
for 2 missed cleavages and protease specificity was set to trypsin (K, R) 
with cleavage after prolines included. Carbamidomethyl on cysteines 
was set as fixed modification, and acetyl at the protein N-terminal 
and oxidation on methionines as variable modification. The SILAC- 
labeled kidneys were frozen at –80°C until time of extraction. Quanti-
tation of individual protein intensities relative to the reference was per-
formed by MaxQuant as described (68) and was based on the median 
ratio of peptides for each protein. Global normalization of total protein 
intensities relative to the heavy standard in each heavy:light mix (to 
correct for uneven mixing ratios) was also performed automatically by 
the software as part of the standard MaxQuant workflow for SILAC 
quantitation (68). Initial mass precursor tolerance was 20 ppm and 
was then dynamically adjusted to 5–6 ppm by MaxQuant after reca-
libration, and fragment mass tolerance was fixed at 0.5 Da. The Max-
Quant output file proteinGroups.txt was further processed with the 
Perseus software (69). We used SILAC ratios normalized internally by 
MaxQuant for all further analyses. Proteins only identified by modi-
fied peptides, reverse hits, and known contaminants were eliminated, 
and all SILAC ratios were log2 transformed. The resulting raw table 
contained 6,993 protein groups.

Data processing: imputation and RUV. Further data processing 
was performed in R (version 4.1.0). The proteomics data set had 34% 
missing data values. Proteins with fewer than 48 out of 60 data val-
ues (3,164 features) were removed from the data set prior to statisti-
cal analysis. Also, proteins that did not have at least 2 peptides used in 
quantification (data column “razor+unique” < 2) were removed (272 
features). The resulting filtered data table contained 3,809 features. 
The missing values in this filtered data table were imputed with the R 
package missForest with default settings (70), using a random forest 
trained on the available data values to predict the missing data points.

An RUV normalization was applied to the proteomics data to 
correct for batch effect and unwanted variation of unknown sources. 
All RUV correction steps described hereafter were performed with 
the method RUVIII from the R package ruv, which relies on replicate 
groups like the method RUVs that were used for RNA-Seq data. We 
used all features as negative control features.

We employed a hierarchical approach similar to the inter-batch 
correction strategy presented in (71), which was implemented in the R 
package hRUV and was developed for large omics data sets with batch 
effect. This publication introduced the concept of sequential batch 
correction: instead of treating a large data set all at once for batch cor-
rection, one can start with a subset of the data and correct only this, 
then add more and more batches sequentially for several correction 
rounds, allowing one to dynamically change normalization factors 
from round to round. The authors propose 2 tree-structured approach-
es (balanced and concatenating) for sequential, hierarchical merging 

bcl2fastq2 conversion software (version 2.20, Illumina). Details for 
RNA-Seq reads mapping are described in Supplemental Methods.

Data processing: normalization and RUV. Further data processing 
was performed in R (version 4.0.3). Raw counts were transformed 
to counts per million (CPM), and genes with a low number of counts 
were filtered out according to the following rule: at least 1 sample in 
the whole data set had to have at least 1 CPM reads for a gene to be 
retained in the data set. Library sizes were then scaled using TMM 
normalization. Subsequently, the normalized counts were trans-
formed to CPM values and a log2 transformation was applied using the 
R Bioconductor package edgeR (64).

The RUVs method from the R Bioconductor package RUVSeq 
was used to correct for unwanted variation in data (65). This R pack-
age offers a family of normalization methods that correct for complex 
unwanted technical effects of unknown origin or not aligned with the 
experimental design. They are based on the remove unwanted varia-
tion (RUV) strategy developed in (66, 67). The RUVs method, specifi-
cally, uses factor analysis on the differences between replicate groups 
of samples for estimating factors of unwanted variation, which can 
then be included in a linear model. As for parameter settings in the 
current analysis, the number of factors of unwanted variation estimat-
ed was 2 (k=2), and all genes in the normalized data set were used as 
control genes (default setting for control genes). A quality check by 
hierarchical clustering and by plotting of the 2 first principal compo-
nents confirmed that sample clustering into replicate groups improved 
after applying the RUVs method with these parameters. The 2 geno-
types are well separated; the time points of the light phase until the 
onset of darkness cluster together (ZT04, ZT08, and ZT12) as do the 
time points of the dark period until the light switches on (ZT16, ZT20, 
and ZT0). These quality control plots are provided for raw data, nor-
malized data before RUVs treatment, and normalized data after RUVs 
treatment as Supplemental Figures 8–13.

For the subsequent statistical analysis of rhythmic patterns 
using the R package dryR, RUVs was applied to normalized logCPM 
data, and the corrected data table was used as input. For differential 
expression analysis using the R package limma (27) (see below, sec-
tion “Comparison of group means”), 2 parameters estimated by RUVs 
were included as covariates in the linear model, while the normalized 
logCPM data without RUVs correction was used as expression matrix 
input, as is recommended by the authors of the RUVSeq package for 
this type of analysis.

Sample selection for analysis. From 6 biological replicate samples 
that were available per time point and genotype, 5 were selected for 
further data analysis, which allowed for the removal of outliers and 
reduced the size of the RNA-Seq data set from 72 to 60 samples (6 
time points × 2 genotypes × 5 replicates). Selection criteria were the 
RNA integrity number (RIN) from the Agilent Bioanalyzer system, 
which measures RNA quality and distance from the other replicate 
samples in principal component analysis (PCA) or multi-dimensional 
scaling (MDS) plots. Supplemental Table 8 displays decision criteria 
and RIN values for all 72 mice. The same 60 individual mice chosen 
were then also used to procure samples for proteomics and metabolo-
mics analyses in order to have matching data sets.

Production of proteomics data set by LC-MS. The kidney proteomics 
data set has been produced using 60 half-kidney samples from control 
and cKOt mice sacrificed at 6 different circadian times. The 60 sam-
ples were processed in 5 batches of 12 (each time point had 6 controls 
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ZBRTVhWZPap). All reagents, softwares, mouse lines, and data repos-
itory information are available in Supplemental Table 7.

Statistics. For differential rhythmicity analysis, analysis of rhyth-
mic patterns was performed using the R package dryR (27). dryR per-
forms differential rhythmicity analysis of omics data sets with 2 or 
more sample groups. The present study used a 2-group design (i.e., 
2 genotypes: control and cKO); in this scenario, dryR fits 5 models to 
each feature and selects a model using the Bayesian information cri-
terion (BIC). Model 1 had no rhythmicity in either group; model 2 had 
rhythmic genes in control mice and nonrhythmic genes in cKO (loss of 
rhythm); model 3 had nonrhythmic genes in control, rhythmic genes in 
cKO (gain of rhythm); model 4 had rhythmic genes in both groups with 
identical acrophase and amplitude (unaltered rhythm); model 5 had 
rhythmic genes in both groups with differing acrophase or amplitude 
between groups (altered rhythm).

For all data sets including RNA-Seq, proteomics, metabolomics in 
kidney, and metabolomics in plasma, preprocessed normalized data 
were analyzed using dryR’s drylm function. This function expects nor-
mally distributed data and internally uses the base R function lm for 
fitting the sinusoidal curves.

Internal to drylm, a model selection method, based on the BIC, 
is employed to determine the best-fitting model for each feature. 
Starting from the BICs from all 5 models, Schwartz weights (BICW) 
are calculated for the models, and the one with the greatest BICW is 
retained. The BICWs give an indication of how well a model’s BIC is 
distinguished from the lowest BIC among the 5 models. The 5 BICWs 
are used as a measure of confidence in the model that was selected 
for a particular feature. A threshold can be applied to the BICWs to 
separate out features with low-confidence model assignment. In the 
present study, features with BICW of less than 0.65 for the best-fitting 
model were considered not classifiable (“ambiguous” model). Details 
for comparison of group means are described in Supplemental Meth-
ods. Comparisons of more than 2 means were performed by 2-way 
ANOVA and Šidák’s multiple comparison posthoc tests or by using 
2-tailed multiple t tests and the FDR approach of P value correction.

Study approval. Experiments with animals were performed in accor-
dance with the Swiss guidelines for animal care, which conform to the 
NIH animal care guidelines and approved by Swiss cantonal (Canton de 
Vaud) and federal veterinary authorities (authorization #3488 to DF).

Author contributions
YB, FG, FA, and DF conceptualized the project. YB, CA, GC, FD, 
and SL performed the experiments. LW, LG, MQ, SP, MI, BDW, and 
MW curated the data and performed the formal analysis. FG and DF 
acquired funding for the project. DF wrote the original draft of the 
manuscript. YB, LW, FG, BDW, MW, SL, FA, and DF reviewed and 
edited the manuscript. The order of the co–first authors was decided 
based on scientific contribution to the paper. All authors reviewed 
and approved the final version of the manuscript.

Acknowledgments
This work was supported by the Swiss National Science Founda-
tion research grant 310030-188499 (to DF). FG receives support 
from the Institute for Molecular Bioscience, The University of 
Queensland. We thank the Genome Technology Facility, Protein 
Analysis Facilit, and Electron Microscopy Facility of the University 
of Lausanne for technical support. We thank Robin Liechti from 

of batches. We used a mix of the 2 types of structures in a 2-level strat-
egy. In a first step, the data was divided into cKOt and control sample 
subsets and a concatenation strategy was applied to the samples from 
each genotype separately. There were 5 batches of 6 samples from 
each genotype. We started with 3 batches to create a starting data set 
large enough for an RUV normalization and applied RUVIII to it, then 
added the fourth batch and ran RUVIII again, then included the fifth 
batch and ran RUVIII once more. The number of factors of variation 
to estimate was set to k=3, k=4, and k=5, respectively, in the 3 rounds 
of RUVIII (number of batches that were included in each round). In 
a second step, we combined the corrected data from the 2 genotypes 
and performed RUVIII for a final correction, with k=2. We conceived 
this step as a data merging procedure with a simple balanced structure. 
As a quality control and aid in fine-tuning the details of our approach, 
hierarchical clustering, plots of the first 2 principal components, and 
RLE plots were generated and used to visually assess improvement 
in sample clustering and reduction in variability. After completion of 
this 2-level RUVIII–based normalization, the initially imputed values 
were removed, then reimputed using the now-normalized data. Plots 
of hierarchical clustering and of principal components before RUV 
treatment and after RUV treatment with reimputation are provided in 
Supplemental Figures 14–17.

Mapping of proteins to genes. Details are described in Supplemental 
Methods.

Production of renal metabolomics data set. Kidney and plasma 
metabolomics data sets have been produced using 60 half-kidney 
samples or 60 plasma samples, from control and cKOt mice sacrificed 
at 6 different circadian times. Kidney metabolomics data were pro-
duced by Metabolon, according to its standard methods (see details in 
Supplemental Methods). Before statistical analysis, metabolites with 
more than 20% missing data values across all samples were removed 
from the data set. The remaining missing values were imputed with 
the R package missForest with default parameters. Data was treated 
with glog2 from the R package MKmisc for variance stabilization, and, 
as a final processing step, data imputation with missForest was recom-
puted with the transformed data. The data table used for statistical 
analysis contained 814 metabolites.

Production of plasma metabolomics data set. Plasma metabolomics 
data were produced by Biocrates according to its standard operating 
procedures and state-of-the-art techniques, using the MxP Quant 500 
kit (see details in Supplemental Methods). Metabolites with missing 
data values were removed from the data set, making data imputation 
unnecessary. The data table used for statistical analyses contained 332 
metabolites plus a metabolite ratio (kynurenine/tryptophan).

Respirometry. Details for respirometry experiments are described 
in Supplemental Methods.

KEGG pathway over-representation analysis. Details are described 
in Supplemental Methods

Data availability. All RNA-Seq raw data sets generated in this 
work have been deposited into the Gene Expression Omnibus (GEO) 
database (GSE216252). The mass spectrometry proteomics data have 
been deposited to the ProteomeXchange Consortium via the PRIDE 
partner repository (proteomexchange.org) with the data set identifi-
er PXD036803 (https://proteomecentral.proteomexchange.org/cgi/ 
GetDataset?ID=PXD036803). The mass spectrometry metabolomics 
data (2 data sets from kidney and plasma, respectively) have been depos-
ited to the Zenodo repository (https://zenodo.org/record/7225427#.
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