Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Avoid being trapped by your liver: ischemia-reperfusion injury in liver transplant triggers S1P-mediated NETosis
Davide Scozzi, Andrew E. Gelman
Davide Scozzi, Andrew E. Gelman
Published February 1, 2023
Citation Information: J Clin Invest. 2023;133(3):e167012. https://doi.org/10.1172/JCI167012.
View: Text | PDF
Commentary

Avoid being trapped by your liver: ischemia-reperfusion injury in liver transplant triggers S1P-mediated NETosis

  • Text
  • PDF
Abstract

Liver transplantation can be a life-saving treatment for end-stage hepatic disease. Unfortunately, some recipients develop ischemia-reperfusion injury (IRI) that leads to poor short- and long-term outcomes. Recent work has shown neutrophils contribute to IRI by undergoing NETosis, a form of death characterized by DNA ejection resulting in inflammatory extracellular traps. In this issue of the JCI, Hirao and Kojima et al. report that sphingosine-1-phosphate (S1P) expression induced by liver transplant–mediated IRI triggers NETosis. They also provide evidence that neutrophil expression of the carcinoembryonic antigen–related cell adhesion molecule-1 (CC1) long isoform inhibited NETosis by controlling S1P receptor–mediated autophagic flux. These findings suggest stimulating regulatory mechanisms that suppress NETosis could be used to prevent IRI.

Authors

Davide Scozzi, Andrew E. Gelman

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 568 93
PDF 96 37
Figure 71 2
Citation downloads 67 0
Totals 802 132
Total Views 934

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts