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Extended Case Report

The index patient was born after an uneventful pregnancy at term, to highly consanguineous
parents in Syria during war time. Birth weight was normal (3400g). At birth, she presented
nail dysplasia. In the first days of life, she rapidly lost weight and became very weak due to
failure to thrive and dehydration. As two older siblings died in the same hospital soon after
birth with similar problems, she was quickly transferred to a bigger hospital for further
diagnostic tests (results not available). Diagnosis of primary adrenal insufficiency (PAI) was
made and treatment with mineralocorticoids (MC) and glucocorticoids (GC) (unknown
preparations and doses) was started successfully. After 40 days in the hospital, she was
discharged. Steroid treatment was mostly available to her during infancy and childhood,
although difficult to import into Syria, and mostly supplied as different GC preparations,
administered at different doses. At around 2 months of age, she was also diagnosed with
deafness. In addition, parents describe that she was growing very slowly and showed short
stature compared. Finger and toes nails remained dysplastic. Her psychomotor and
intellectual development was also delayed. However, this may have been confounded by her
hearing impairment and the fact that she never went to kindergarten or any kind of school for
hearing impaired/deaf children. She showed first signs of puberty at around the age of 13
years and menarche at age 16 years with normal menstrual cycles thereafter. At age 17, the
family moved to Switzerland as refugees from Syria. Upon entry, she was seen and treated
for a suspected adrenal crisis in an emergency room, before a first pediatric assessment was
performed at a local hospital (first visit in Table 1). She was then referred to our University

hospital for further diagnostic work-up of primary adrenal insufficiency of unknown etiology.

At first presentation, we saw a 17 3/12 years-old woman with deafness (Suppl Figure S1).
Height was 141 cm (- 3.1 SD), weight 33.5 kg, BMI 16.8 kg/m?. Head circumference 49 cm (-
3.5 SD); blood pressure 103/74 mmHg, HR 88/min. Physical exam revealed low
subcutaneous fat, nail aplasia (fingers and toes), typical external female genitalia, breast
Tanner B4, pubic hair P4-5. At presentation, she was on treatment with 27.5mg

hydrocortisone/d, 150ug/d fludrocortisone and 2000IE vitamin D.

Family history revealed that parents were first cousins (Figure 1). Father’s height was 170
cm; he reported normal puberty but was diagnosed with metabolic syndrome in middle age
(diabetes type 2, obesity, high blood pressure). The mother’s height was 148.5 cm; she had
menarche at age 16 years with regular menstrual cycles and fertility thereafter; menopause
was reported at age 50 years. The first two older brothers died after uneventful pregnancy
soon after birth at day 8 and 20, respectively. They were both noted to have nail dysplasia.

The next two older brothers were born without similar anomalies and developed normally. At
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age 22 and 20 years they are healthy (height 170 cm and 171 cm, respectively); no pubertal
delay was noted. Another sister was born two years after the index patient but died at 15
days of life, revealing the same phenotype. She was not offered treatment. In addition, the
extended family comprises two affected cousins (one female and one male). They are the
progeny of another first cousins’ marriage and show the same phenotype as our index
patient (Figure 1). They are alive under steroid replacement therapy but live in Syria, where

they are unfortunately unavailable for further studies.

In the index patient, laboratory work-up 24 hours after removal of replacement steroids,
revealed normal electrolytes, highly elevated renin and unmeasurable aldosterone, indicating
MC deficiency (Table 1). In contrast, baseline ACTH and cortisol were normal, and cortisol
increased normally with ACTH stimulation. All other measured GC and androgen metabolites
were normal.

Further investigations included brainstem electric response audiometry (BERA) and
otoacoustic emission testing, which showed highly pathologic results, consistent with
deafness. Echocardiography was normal. Ultrasound of kidneys showed a lack of
differentiation between cortex and mark as well as microcalcifications in the cortex; adrenals
were not visualized, while inner female sex organs and other abdominal organs were all
normal.

Following these investigations, the diagnosis of PAl was revised to isolated mineralocorticoid
deficiency (MC), and consequently hydrocortisone therapy was tapered off successfully.
Under isolated mineralocorticoid therapy the patient has been doing fine over the following

years. (Table 1).

At the most recent follow-up at age 21 years revealed mostly unchanged clinical findings with
the exception of insufficient cortisol response to ACTH stimulation testing (Table 1).
Menstrual cycles were still regular. Kidneys were small by ultrasound and showed multiple
cortical microlesions either equivalent to microcalcifications or microcysts (Suppl Figure S2).
MR imaging (1.5T Siemens Avanto) with acquisition of native and post contrast high
resolutions sequences of the brain, inner ear and orbits revealed unspecific anomalies of the
brain consisting of incomplete myelination and cerebral maturation, but normal structure of
the inner ear and the cochlea nerve on both sides (Suppl Figure S3). Bone morphometric
investigations showed low bone mineral density in the index patient as well as in the

heterozygote brother and mother (Suppl Figure S4 and Suppl Table S1) "2,



Of special note, the patient and all relatives gave written informed consent that the
photographs of the index patient and the clinical data given in Suppl Figures $S1-S4 and

Suppl Table S1 are shown in this report. This record of informed consent will been retained.

Supplementary Material and Methods

Genomic sequencing

Studies in humans or on human material were conducted in accordance with swissethics
(KEK Bern ID 04/07). Written Informed consent was obtained from all study subjects.
Pathogenic mutations in the CYP11B2 gene were ruled out for the proband by using a
classical Sanger method on DNA extracted from whole blood. Genomic DNAs were then
tested by whole exome sequencing for the proband, her parents and her two brothers.
Libraries were built using SeqCap EZ MedExome kit (Roche NimbleGen Madison,
Wisconsin, USA) and paired-end sequencing 2x150bp was performed on a Nextseq 500
(lumina, San Diego, CA, USA). For each sample, 1 ug of high-quality genomic DNA was
fragmented with a Covaris M220 instrument (Covaris, Woburn, MA, USA). Library
preparation was performed with the Kapa Library Preparation Kit for lllumina platforms (Kapa
Biosystems, London, UK). The manufacturer's DNA sample preparation protocol for Roche
NimbleGen SeqCap EZ Library (Roche, SeqCap-EZ_UGuide_v5p0) was followed, using
single index adapters (SeqCap Adapter Kit A et B) allowing the study of 24 samples
simultaneously. Validation of enrichment and quantification of enriched target DNA were
performed both on the Caliper LabChip GX using the High Sensitivity assay Kit (Caliper
LifeSciences Waltham, Massachusetts, USA) and the Qubit Fluorometric Quantitation
DSDNA HS Assay kit (ThermoFisher Scientific, lllkirch, France) according to the
manufacturers’ instructions. The libraries were paired-end sequenced (2x150 pb) on a
NextSeq500 sequencer (lllumina, San Diego, CA, USA).

The pipeline followed the GATK Best Practices recommendations provided by the Broad
Institute (https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-

Workflows). For each sample, read pairs were first trimmed using trimmomatic v 0.33 3 .

Then, reads were aligned against the hg19 version of the human genome using BWA-MEM v
0.7.12 #, producing for each sample a BAM file which was indexed and sorted with samtools
v 1.3.1 5. Mapped reads then underwent several treatments: (i) duplicate marking was
performed by PicardTools MarkDuplicates v 1.138 (Broad Institute

at http://broadinstitute.qgithub.io/picard; accessed 19 Sept 2018); (ii) indel realignment and (iii)

nucleotide recalibration were done using GATK IndelRealigner and GATK BaseRecalibrator,
respectively 6. FASTQ and BAM metrics were collected using FastQC (Andrews, 2010;
http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and PicardTools, respectively
(Picard Toolkit, 2018; Broad Institute, GitHub Repository;


https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows
https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows
http://broadinstitute.github.io/picard

http://broadinstitute.qithub.io/picard/). Variant calling was performed using GATK

HaplotypeCaller €, producing a genomic VCF for each sample. Genotyping was performed
using GATK GenotypeGVCFs ¢, merging all the samples in a unique VCF. Variants’
normalization and annotation (gnomad, hgmd, clinvar, omim, doNSFP were handled by
GATK LeftAlignAndTrimVariants ©, and the snpEff/SnpSift toolbox, respectively 7 . VCF
metrics were collected using snpEff/SnpSift (Cingolani, 2012). DeCovA, an in-house script,
was used for copy number variant detection. GenoFilter (an in-house script) was used to filter
the identified variants according to the hypothesized possible inheritance patterns
(autosomal recessive in a consanguineous family). We filtered for variants that had a depth
lower than 5X and >0.01 in gnomAD control databases. This left 187 variants. Only variants
annotated as missense variant, splicing region variant and nonsense variant were kept (17
variants) and annotated with a moderate or high impact, leaving 9 variants (Suppl Table S2).
Variants were classified according to the ACMG criteria and expression of the genes in the
adrenal was searched in GTEx portal. The variant annotated with the highest impact was in
the LGR4 gene: NM_018490.3: ¢.618-1G>C. Sanger sequencing confirmation was
performed for the variant and to confirm segregation of the variation. Both parents and one
brother were heterozygous, the proband was homozygous and one brother had no variation

(Figure 1).

Analysis of messenger RNA expression

For the index patient, we also obtained skin biopsy material to culture fibroblasts. For
transcript analysis, RNA was isolated from patient and control fibroblasts (Qiagen RNeasy
mini Kit, #74106, Hombrechtikon, Switzerland), reverse transcribed (ImProm-II™ Reverse
Transcriptase, #A3801, Promega, Diibendorf, Switzerland), cloned (0.GEM®-T Easy, #A1360,
Promega) and then characterized by direct Sanger sequencing (Microsynth, Balgach,

Switzerland).

Analysis of LGR4 protein expression in patient and control fibroblasts

Western blots were performed with 30 ug of total protein extracted from fibroblasts. Proteins
were separated on 8-16% precast gel from GenScript (Leiden, Netherlands) and blotted on
Immobilon FL transfer membrane (Millipore IPFLO0010, Merck KGaA, Darmstadt, Germany).
Standard western blot was performed with rabbit anti-human LGR4 antibodies 1:500 (Sigma
SAB2701954, Merck) using Licor IRDye 680RD 926-68071 1:500 as a secondary antibody
(Lincoln, Nebraska USA). For endogenous control, we used anti-beta-Actin 1:2000 (Sigma
A1978) and secondary antibody Licor IRDye 800CW 926-32210 1:500. Protein bands were

visualized with the Licor Odyssey SA apparatus.
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In silico analysis of LGR4 transcript variants

For the LGR4 and RSPO structure analysis, three-dimensional crystal structure of human
LGR4 extracellular domain in complex with a part of RSPO1 from the protein structure
database (PDB # 4KT1) was used. First, the sequences of different LGR isoforms as well as
analogs of LGR4 from different species were downloaded from the NCBI protein database to
compare position and sequence conservation of mutated arginine. We used human (H.
sapiens NCBI # NP_060960), cattle (B. taurus, NCBI #NP_001192440), mouse (M.musculus
NCBI # NP_766259) and rat (R.norvegicus NCBI # NP_775450), among a range of other
species for the cross-species conservation analysis. Sequence alignments were performed
with ClustalW 8. After generating a structural alignment, using multiple iterations with
PhiBLAST °, model building was performed using AMBER '°. Sidechains of modeled
residues missing in temple structures were optimized by the screening of rotamer libraries !
and molecular dynamics (MD) simulations using YASARA 2. The protein structures were
then subjected to 500 steps of steepest descent and simulated annealing minimizations
using AMBER force filed '® and TIP3P water model "4, followed by 1000 ps of explicit solvent
MD simulations at 310 K. Structural analysis was performed after the MD simulation systems

were stable. All illustrations were prepared with PyMOL (www.pymol.org) and rendered as

ray-traced images using PovRay (www.povray.org). Models of two different mutants with 8

and 24 amino acid deletions were built from scratch to account for proper folding with
modified amino acid sequence. Separate models of three different versions of LGR4 (WT, -
8AA and -24AA) were created for all structural analysis to study the interaction of LGR4 with
RSPO proteins and the impact of deletion mutations in LGR4 on the loss of interaction with
RSPO proteins. Sequences of RSPO isoforms in human as well as different RSPO analogs
in other species were analyzed for conservation of sequences at the contact points of LGR4
and RSPO proteins in the complex structure. Models of RSPO3 were generated using
AlphafoldAl '® as well as RoseTTa fold '® and then combined into a single model using
threading with the YASARA 7. Docking of RSPO3 on LGR4 extracellular domain was
performed with AUTODOCK-Vina '8 and contact analysis between LGR4 and
RSPO1/RSPO3 was performed with LigPlot *°.

Functional studies of LGR4 variants on Wnt signaling in patient and control
fibroblasts, and HEK293T cells

Fibroblasts were seeded in 12 well plates at a density of 400 000/well. Cells were transfected
with TOP Flash or FOP Flash plasmids (400 ng/well) and pRL-TK (10 ng/well) using
Lipofectamine 3000 reagent according to the manufacturer’s instruction (Thermo Fisher
Scientific (Schweiz) AG, Basel, Switzerland). The M50 Super 8x TOPFlash vectors were a

gift from Randall Moon who developed this beta-catenin-mediated transcriptional activation
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assay (Addgene plasmid # 12456; http://n2t.net/addgene:12456; RRID:Addgene_12456).
After 24h, 100ng RSPO1/ml (human SRP3292, Sigma) was added for 21h. Firefly and
Renilla luciferase signals were measured with the Dual-Luciferase Reporter Assay Kit

(Promega) according to the protocol provided by the manufacturer.

Similarly, HEK 293T cells (CRL-3216™, American Tissue Culture Collection; Manassas, VA,
USA) were seeded in 12-well plates at a density of 400 000/well. Cells were transfected with
pcDNA3-LGR4 wt, pcDNA3-LGR4 mt-24bp or pcDNA3-LGR4 mt -72bp plasmids or pcDNA3
control plasmid (1ug/well), along with TOP Flash or FOP Flash plasmid (1ug/well) and pRL-
TK (20 ng/well) using Lipofectamine 3000 reagent according to the manufacturer’s
instruction. After 48h, 100ng RSPO1/ml was added for 6h. Luciferase and Renilla signals
were measured with the Dual-Luciferase Reporter Assay Kit (Promega) according to the
protocol provided by the manufacturer. At least three independent experiments were

performed in duplicates and data summarized.

Solution-based and cell-based LGR4 — RSPO1 localization and binding studies
HEK293T cells were transiently transfected (Lipofectamine 3000) with pcDNA3-LGR4 wt,
pcDNA3-LGR4 mt-24bp or pcDNA3-LGR4 mt -72bp plasmids comprising C-terminal HA-
tagged LGRA4 for cell-based binding assays. In parallel, RSPO1-GFP was produced in
HEK293T cells by transient transfection using a plasmid containing human RSPO1cDNA in
pCMV3-C-GFPSpark (SinoBiological Co., Ltd, Beijing, China). Centrifuged cell supernatant
was harvested after 48 hours. Then, LGR4 transfected cells were incubated with RSPO1-
GFP conditioned medium for 1 h at 37°C. Cells were washed with PBS, fixed with Carnoy’s
solution, stained with anti-HA-Tag antibodies (anti-HA-Tag A00187 GenScript; anti-mouse
Alexa 546 Thermofisher), and analyzed by fluorescent confocal microscopy. Quantitative
analysis of protein localization and interaction was performed using Imaris (Bitplane AG,
Zurich, Switzerland). Confirmatory analysis was performed with CellProfiler (Broad Institute).

Three independent experiments were performed and data summarized.

Mouse model and study methods

The Lgr4 knock-out mice were generated by mating Lgr4FoFloxmice generated by Hans
Clevers group 2° with Sf1:Cre mice generated by Bingham and colleagues 2'. Animals were
maintained in a 12 light / 12h dark cycle. Data were generated from 5 weeks old female
mice, maintained on mixed background (mostly composed of C57BL6/J). To ensure
consistency, control mice were littermates of knockout mice. At 5 weeks of age, 10 Lgr4 KO
mice and 11 of their control littermates were euthanized by decapitation and blood was

collected in vacuum blood collection tubes (VF-053STK, Terumo). For each mouse, adrenals
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were either frozen in liquid nitrogen for molecular analysis or fixed in 4% PFA for

immunohistochemical analyses.

Immunohistochemistry of mouse tissues

Immunohistochemistry was performed on tissues embedded in paraffin, after unmasking by
boiling for 20 min in sodium citrate 10 mM, Tween 0.05% or Tris 10mM, EDTA 1mM, pH 9.0
depending on the primary antibody and/or combinations of antibodies to be used. For
CYP11B2, unmasking with Tris-EDTA was followed by 5 min incubation in 10% SDS. After
blocking for 1h, slides were incubated overnight at room temperature, with primary antibodies
at the indicated concentrations (Supplementary Table S4). Primary antibodies were
detected with appropriate polymers (ImmPress Polymer Detection Kit, Vector Laboratories).
Polymer coupled HRP activity was then detected with either Vectastain ABC (PKD4000,
Vector Laboratories) for brightfield images or TSA Alexa coupled fluorochromes for
fluorescence (Invitrogen). Images were acquired with a Zeiss Axioscan Z1 slide scanner. Cell
counting and adrenal surface measurements were done using QuPath software

(https://qupath.github.io) 22 . CZI images generated by the slide scanner were extracted with

identical setting across genotypes, using Zen software (Carl Zeiss AG). Extracted TIFFs
were then minimally processed for global level and white balance using Affinity Photo®.

Image settings and processing were identical across genotypes.

Total RNA extraction, cDNA synthesis, and qRT-PCR

Total mMRNAs were extracted from mouse adrenals using RNeasy Micro Kit (Qiagen)
according to the manufacturer’s instructions. Five hundred nanograms of mMRNAs were
reverse transcribed for 1 hour at 37°C with 5 pmol of random hexamers primers, 200 units
reverse transcriptase (MDMLV RT, M1701, Promega), 2 mM dNTPs and 20 units RNAsin
(N2615, Promega). g-PCR was performed using two microliters of a one-tenth dilution of
cDNA using the SYBR gqPCR Premix Ex Taq Il Tli RNase H+ (TAKRR820W, #Takara) and
200nM of specific primers (Supplementary Table S5). For each experiment and primer pair,
the efficiency of PCR reactions was evaluated by amplification of serial dilutions of a mix of
cDNAs. Relative gene expression was calculated using the AACt method with normalization

to expression of thp.

Hormone measurements in mice
Plasma aldosterone and corticosterone concentrations of mice were determined using
commercially available ELISA kits (CAN-ALD-500, DBC; AR E-8100, Eurobio, respectively),

following the manufacturer’s instructions. Renin activity rate in plasma was determined using
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a Fluorimetric Sensolyte 520 Mouse Renin Assay Kit (AnaSpec Inc). ACTH, LH and FSH

concentrations were determined using a multiplex assay (MPTMAGD-49K, Merck Millipore).

Statistical analysis

Results are presented as means +/- SEM. The D’agostino and Pearson normality test
demonstrated the absence of normality of the data. Therefore, statistical analyses between
two or several groups were performed using Mann-Whitney or Kruskal-Wallis, respectively,
using GraphPad Prism 7. A P value below 0.05 was considered statistically significant.
*P<0.05; **P<0.01; ***P<0.001.
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Supplementary Figure S1. Pictures of the 21-years-old index patient
with a homozygote LGR4 splice variant causing syndromic severe
salt-wasting at birth. Note short stature (-3.1 SD), microcephaly
(-3.5 SD) and dysplastic finger and toes nails. The young women is
deaf and has some psychodevelopmental deficit. Picture taken with
consent of patient and both parents.
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Supplementary Figure S2: Ultrasound of left and right kidneys showing diminished
cortex to medulla demarcation, few triangular surface retractions and echo-rich
cortical microlesions either corresponding to microcysts or microcalcifications (Figure
courtesy of Dr. Enno Stranzinger, Bern)
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Supplementary Figure S3: Summary of MR imaging findings of the brain and inner ear structures. The patients was scanned on a our 1.5T
Siemens Avanto MRI. Native and post contrast high resolutions sequences of the brain, inner ear and orbits were acquired. The axial T2-
weighted image (A) shows periventricular hyperintensity (white arrows), indicating an incomplete myelination / incomplete cerebral
maturation. That white matter hyperintensities are prominent seen around both anterior and the left occipital horns of the lateral ventricles.
The fat-saturated coronal T2w (B) shows a noticeable malrotation of both hippocampi (black stars) with preservation of the internal
architecture of both hippocampi. Associated there is slightly difference in the volume of the hippocampi with consecutive asymmetry and
slightly enlargement of the choroidal fissure on both sides (B, black arrows). The posterior fossa is very small (C, white arrow). The sagittal
T2w image revealed a flattening of the brainstem, especially at the pontomedullary junction (C, black arrow). The inner ear structures,
especially the cochlea were inconspicuous on both sides in the axial CISS sequence (D, white arrows). The cochlear nerve appeared with
normal caliber and regular course on both sides (E and F). The white arrows in E and F point to the right and left cochlear nerve in the
parasagittal reconstructions of the CISS. 13
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Supplementary Figure S4: Bone morphometric measurements of the index patient and
family members. Measurements were performed with a Stratec XCT 3000 scanner
(Stratec Medizintechnik, Pforzheim, Germany). PQCT measurements of the radius were
performed on the non-dominant side and according to manufacturer's recommendations
at 4% and 66% of the bone's total length measured from the reference line. Slice
thickness was 2.2 mm, and voxel size was set at 0.5 mm with a scanning speed of 20
mm/s. Analysis were performed by manufacturer's software XCT 6.00 B (Stratec
Medizintechnik, Pforzheim, Germany). Densitiy is shown as total density (on the left) and
trabecular density (on the right) of females on the upper panel (homozygote index patient,
red dot; heterozygote mother of index, green triangle) and of heterozygote males on the
lower panel (brother, blue triangle; father, black dot). The white area indicates +/- 1 SD of
the mean density in normal controls, the yellow area to the adjacent line +/- 2SD.
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Danio renio DNSLTEVPI QHOSNLCA LTLALNRITH N SLVVLHLHNN RIQEIGKNCF NGLDNLETLD
(e
e e 8 LA P il 1)
- NS ICITVA PL §

Supplementary Figure S5: A. Amino acid composition of WT (NP_060960) and mutant LGR4
proteins used in this study. B. Alignment of human RSPO4 with RSPO proteins across species.
Only the region around Exon 6 is shown to highlight the conservation of amino acids involved in
binding with RSPO proteins that are missing in the mutant version of LGR4 found in patients.
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Figure S6: Amino acid sequence alignment of different human RSPO proteins. Sequences of
RSPO1-4 were obtained from NCBI database and aligned with CLUSTALW. Amino acids
involved in binding to LGR4 are highly conserved and RSPO3 (NP_116173) shares high
sequence homology with the RSPO1 (NP_001033722). The high sequence similarity allowed us
to analyze the binding of RSPO3 to LGR4 using the crystal structure of LGR4 bound to RSPO1
protein.
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Figure S7: A multiple sequence alignment of RSPO1-4 proteins from human along with RSPO
proteins from multiple other species to study the conservation of amino acids interacting with LGR4.
Amino acids of RSPO proteins, like Arg 60 and Arg 88 are found in every single sequence analyzed.
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Figure S8: Interaction of LGR4 with RSPO3. A. contact points of LGR4-WT with RSPO3.
Several amino acids located in LRR7 and LRR8 of LGR4 (His 207, Val 204, Asn 210, Thr 229,
Tyr 234, and Glu 252) affected by deletion of exon 6 in LGR4. B. Changes in LGR4-RSPO3
contact points due to deletion of 24 nucleotides (8 AA) in LGR4 of patient. Multiple contacts
between the two proteins are lost, including the crucial interaction points with Arg 88 of RSPO3.
C. Contact of LGR4-72nt (-24 AA, deletion of exon 6). Deletion of whole exon 6 in LGR4 results
in altered interaction profile and loss of multiple contacts between the two proteins, resulting in
highly unstable interaction compared to WT LGR4. D. A closeup of LGR4-RSPO3 complex.
LGR4 is shown as a ribbons model in green, while RSPO3 is shown as a surface and ribbons
model in blue. Amino acids coded by exon 6 of LGR4 are shown in red. The amino acids
deleted by loss of exon 6 in the patient are located exactly at the LGR4-RSPQO3 interaction site
and their loss would result in destabilization of the complex and downstream signaling.
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Supplementary Figure 9. A. RT-gPCR analysis of mMRNA encoding Lgr4 gene. B. Immunohistochemical
detection and quantification of Ki67expression. C. Immunohistochemical detection and quantification of
Cleaved Caspase 3. D. Quantification of hematocrit percentage. All analyses were conducted in 5 weeks
wild type and Lgr4cKO female mice. Bars represent the mean expression + SEM. Numbers of individual
samples analysed are indicated within the bars. Statistical analyses in panels A, B, C & D were conducted
using Mann-Whitney tests in GraphPad Prism 9. ns, not significant *P<0.05, ****P<0.0001.



Supplementary Table S1. Bone morphometrics in individuals carrying homozygous (index) and heterozygous LGR4 variants.
A. Measurements were performed by GEHC-Lunar Prodigy (GEHC, Madison, WI, USA). BMD was measured at the lumbar spine (antero-posterior
projection of L1 through L4) and the proximal femur (neck and trochanteric regions). Lean soft tissue mass was assessed for the entire body using
GEHC-Lunar Prodigy. The measurements were performed in the array mode with standard positioning techniques. BMD and Body composition

were analyzed using the DXA enCORE software (version 2004 8.80 001). T-Scores and Z-Scores refer to ISCD official positions 2019 * .
B. Volumetric Bone mineral density measurements were performed with a Stratec XCT 3000 scanner (Stratec Medizintechnik, Pforzheim,
Germany). PQCT measurements of the radius were performed on the non-dominant side and according to manufacturer's recommendations at 4%

and 66% of the bone's total length measured from the reference line. Slice thickness was 2.2 mm, and voxel size was set at 0.5 mm with a
scanning speed of 20 mm/s. For Z-Scores the manufacturer's software XCT 6.00 B (Stratec Medizintechnik, Pforzheim, Germany) *or age-

dependent reference data for pQCT analyses** were used 2.

A Index (21 yrs.) Brother (26 yrs.) Mother (55 yrs.) Father (51 yrs.)
BMD Z-score BMD Z-score BMD Z-score / BMD Z-score /
(mg/cm?) (mg/cm?) (mg/cm?) T-score (mg/cm?) T-score
Areal BMD
- total Hip left 657 -2.2SD 720 -2.6SD 796 -1.1SD/ 980 -0.9SD/
-1.7SD -0.8SD
- femoral neck 601 -2.6SD 755 -2.2SD 750 -1.1SD/ 826 -1.7SD/
-1.9SD -1.9SD
- spine (L1-4) 905 -1.3SD 934 -1.9SD 828 -2.2SD/ 1052 -1.9SD/
-2.9SD -1.4SD
- whole body 777 -1.7SD 1000 -1.3SD 907 -1.1SD/ 1169 -1.3SD/
-1.7SD -0.3SD

Fractures

none

none

none

none




B Index (21 yrs) Brother (26 yrs) Mother (55 yrs) Father (51 yrs)
Radius Z-value* | Z-value** Z-value* | Z-value** Z-value* | Z-value** BMD Z-value* | Z-value**
trab BMD 123.62 -1.8SD | -2.0SD 141.02 -22SD | -2.0SD 100.91 -2.2SD 191.98 -0.9SD
(mg/cm?)

cort BMD 1026.28 -3.0SD | 1066.83 -1.8SD | 1019.42 1112.59

(mg/cm3)

Total BMD 237.28 -2.3SD - 328.99 -1.5SD 336.75 -1.6SD 433.3 0.3sD
(mg/cm?)

Total CSA 107.75 1935 151.00 171.25

(mm?)

cort CSA 42.75 69.50 45.75 93.5

(mm?)
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Table S2. List of alternative variants segregating with the clinical phenotype and an autosomal recessive mode of inheritance

Chr Start End Ref[Alt| Gene Transcript cDNA AAChange OoMIM Function Impact GnomAD | CADD_PHRED SIFT PolyPhen Hum Var dbSNP ID ACMG classification | Adrenal expression*
chr7 881651 881651 C | T| SUN1 | NM_001130965.3 | ¢.335C>T | p.Thrl12Met | * 607723 missense_variant MODERATE [ 0.0003 10.69 Tolerated Benign rs183872262 VUS 33.67
chr10| 88446830 | 88446830 | G | A | LDB3 NM_001171610.1 | c.694G>A | p.Asp232Asn | * 605906 missense_variant MODERATE [ 0.0070 23.4 Tolerated Benign rs121908338 likely benign 0.46
chr10| 93756290 | 93756290 | C | A | BTAF1 NM_003972.3 €.3474C>A | p.Asp1158Glu | * 605191 missense_variant MODERATE | no match 19.14 Tolerated Benign no match VUS 18.91
chr10| 102242476 | 102242476 | G | T | WNT8B NM_003393.4 c.959G>T p.Arg320Leu | * 601396 missense_variant MODERATE [ 3.489e-05 26.1 Damaging Benign rs773989054 VUS 0.083
chrll| 27405955 | 27405955 | C | G [ LGR4 NM_018490.5 €.618-1G>C . * 606666 | splice_acceptor & intron_variant HIGH no match na na na no match pathogenic 21.25
chrl5| 86123809 | 86123809 | C | T | AKAP13 NM_007200.5 c.2510C>T | p.Thr837Met | * 604686 missense_variant MODERATE [ 0.0047 15.83 Tolerated Benign rs114703106 likely benign 11.1
chrl5| 86273745 | 86273745 | A | C | AKAP13 NM_007200.5 c.7089A>C | p.Glu2363Asp | * 604686 | missense & splice_region_variant | MODERATE [ 0.0025 45.55 Tolerated Benign rs116261620 likely benign 11.1
chrl7| 76823418 | 76823418 | G | T | USP36 | NM_001321291.2 c.598C>A p.His200Asn | *612543 missense_variant MODERATE | 0.0047 22.8 Damaging Benign rs150547254 likely benign 15.29
chr19| 53854857 | 53854857 | G | A | ZNF845 NM_138374.3 c.929G>A p.Arg310GIn | no match missense_variant MODERATE [ 0.0001 0.05 Tolerated Benign rs565297561 Vus 2.45

Filtering strategy: Variants kept were homozygous in the proband, heterozygous or absent in the parents, as well as heterozygous or absent in the unaffected
siblings. Variants were kept if a low AF was found in control cohorts ( <0.01 in GhomAD). Only variants annotated as missense variant, splicing region variant and
nonsense variant with moderate or high impact were kept.

Abbr.: VUS - variant of uncertain significance; na - not applicable

*Median gene and transcript expression in the adrenals as of the GTEx Portal, numbers show Transcripts Per Million (TPM)
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Supplementary Table S3. Phenotype of LGR4 variants in humans and KO mice

Pubertal delay Low bone Lgrd mouse
Index family cohort?! density cohort? | models
C.286A>G,
Genetic NM_018490.3 NM_018490.3 c.1087G>T,
characteristics €.618-1G>C €.618-1G>C €.2531A>G c.376C>T
homozygote het Phenocopies het het
splice variant splice variant missense nonsense
First degree Consanguineous | 17 subjects of 6 Islandic GWAS
Index relatives cousins families cohort
Organ system
Fetal death (in 3 siblings) no unknown Yes 34
Size at birth normal normal normal smaller Yes 35
Adult height short stature shorter short stature shorter normal
Adult weight/BMI low variable low lower
Electrolyte
imbalance yes no yes yes Yes
Aldosterone (MC) | decreased low normal Increased ©
Cortisol/corticoster
one (GC) subnormal low Normal ©
variable pubertal Pubertal delay
Puberty/fertility: delay pubertal delay pubertal delay Lgr4+/-1
Structural and
functional
abnormalities
(epididymides,
.male normal lower testosterone | testes) 4710
Lack of pubertal
development and
small gonads;
abnormal sexual
development
(Wolffian ducts
and somatic cells)
female pubertal delay pubertal delay pubertal delay 1911
Reduced size 3912
Kidney abnormal unknown unknown normal unspecific defects | 1°
.Renin increased unknown Increased *?
Reduced size
Liver/gut normal normal by history | unknown 312,13
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High Hb and Hct
Blood 6.16
Bone density decreased decreased unknown reduced Reduced 517
Hearing (hair cells, Defective cochlea
cochlea) deafness normal deafness development 8
undefined vision
Eye anomalies vision problems none problems none none Variable 91920
Neuroendocrine
Neurodevelopmen | impaired/structural anomalies (GnRH
t/Brain anomalies normal impaired normal normal network) 1°
Hair follicle
Hair/nails/skin dysplastic nails normal dysplastic nails impairment 321,22
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Antibody Species Dilution factor Source Catalog number

AKR1B7 Rabbit 1:600 Homemade

Beta catenin Mouse 1:500 BD Biosciences 610153
Cleaved caspase 3 Rabbit 1:200 Cell signaling 9661
CYP11B2 Rabbit 1:500 Gift, Gomez Sanchez

DAB2 Mouse 1:500 BD Biosciences 610464
Kl67 Rabbit 1:1500 Abcam ab15580
LEF1 Rabbit 1:200 Abcam ab137872

Supplemental table S4 : List of antibodies used for immunohistochemistry. Akr1b7 : aldo-keto reductase
family 1, member B7 ; Cyp11b2 : cytochrome P450 family 11 subfamily B member 2 ; Dab2 : disabled
homolog 2 ; Lef1 : lymphoid enhancer binding factor 1.

Gene symbol Forward Primer Reverse Primer
Akr1b7 GCCAGTGACCAACCAGATTGAGA ACGGGGTCTTCTGGCTTGGCAT
Apcdd1 CTCAGCCCCACACTCATTCC TGGCACGGAGTTTGTGTTCA
Axin2 ATGGGGAGTAAGAAACAGCTCC CCAGCTCCAGTTTCAGTTTCTC
Beta catenin AGTGCAGGAGGCCGAGG GAGTAGCCATTGTCCACGCA
Cyp1iat TACTAACCTAGCCCGCCTCG GCTCCTGCGCATAGAGAGAG
Cyp11b1 GCAGAGATGATGCTCCTGCTT GAGAGGGCAATGTGTCATCAGAA
Cyp21 GCTGTGGCTTTCCTGCTTCAC GGCCCAGCTTGAGGTCTAACT
Dab2 CCTGCATCTTCTGATCCCCAC CATGTTTCTGGCTGTCTGCTT
Hsd3b1 CCTACATTCTGAACTGAGCGGCTGC GGTCTGTCCTTCCCAGTGATTGATAAAC
Hsd3b6 CATCCTTCCACAGTTCTAGC TGGTGTGAGATTAATGTACA
Lef1 GACGAGCACTTTTCTCCGGG TGGGGTGATCTGTCCAACGC
Lgr4 GCTGCGGACTCTGGACTTAT TCGCAAAAGCTCCACTGTGA
Star TCGCTACGTTCAAGCTGTGT ACGTCGAACTTGACCCATCC

Supplemental table S5 : List of primers used for quantitative real-time PCR analysis. Akr1b7 : aldo-keto
reductase family 1, member B7 ; Apcdd1 : adenomatosis polyposis down-regulated 1 ; Axin2 : axis inhibition
protein 2 ; Cyp11a1 : cytochrome P450 family 11 subfamily A member 1 ; Cyp11b1 : cytochrome P450 family
11 subfamily B member 1 ; Cyp21 : cytochrome P450 Family 21 ; Dab2 : disabled homolog 2 ; Hsd3b1 :
hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 ; Hsd3b6 : hydroxy-delta-5-
steroid dehydrogenase, 3 beta- and steroid delta-isomerase 6 ; Lef1 : lymphoid enhancer binding factor 1 ; Lgr
: leucine rich repeat containing G protein-coupled receptor ; Star : steroidogenic acute regulatory protein.
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