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Abstract  

Background: Accurate detection of graft versus host disease (GVHD) is a major challenge in the 

management of patients that undergo hematopoietic stem cell transplantation (HCT). Here we 

demonstrated the use of circulating cell-free DNA (cfDNA) for detection of tissue turnover and 

chronic GVHD (cGVHD) in specific organs.  

Methods: We established a cocktail of tissue-specific DNA methylation markers and used it to 

determine the concentration of cfDNA molecules derived from the liver, skin, lungs, colon and 

specific immune cells in 101 HCT patients.  

Results: Patients with an active cGVHD showed elevated concentration of cfDNA, as well as 

tissue-specific methylation markers that agreed with clinical scores. Strikingly, transplanted 

patients with no clinical symptoms had abnormally high levels of tissue-specific markers, 

suggesting hidden tissue turnover even in the absence of evident clinical pathology. An integrative 

model taking into account total cfDNA concentration, monocyte/macrophage cfDNA levels and 

Alanine transaminase (ALT) was able to correctly identify GVHD with a specificity of 86% and 

precision of 89% (AUC of 0.8).  

Conclusions: cfDNA markers can be used for the detection of cGVHD, opening a window into 

underlying tissue dynamics in patients that receive allogeneic stem cell transplants.     

Funding: This work was supported by grants from the Ernest and Bonnie Beutler Research 

Program of Excellence in Genomic Medicine, The Israel Science Foundation, the Waldholtz / 

Pakula family, the Robert M. and Marilyn Sternberg Family Charitable Foundation and the 

Helmsley Charitable Trust (to Y.D).  
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Introduction 

 

Hematopoietic stem cell transplantation (HCT) is an essential and often the sole curative treatment 

strategy for high risk hematologic malignancies (1). Graft versus host disease (GVHD), the 

foremost complication of allogeneic HCT, is a major limitation of this procedure, accounting for 

deleterious effects on quality of life and increased mortality from HCT (2, 3). Current diagnosis 

of acute (aGVHD) and chronic GVHD (cGVHD) in bone marrow transplant patients is based on 

inaccurate, operator-dependent clinical markers, and less often on biopsies. These methods are 

time consuming, costly, invasive and yield late-stage diagnoses that negatively affect morbidity 

and mortality. In addition, current practice lacks accurate biomarkers for prediction of disease 

occurrence, identification of disease onset, prediction of disease response to treatment and accurate 

assessment of the actual response to treatment (4). Multiple prognostic and diagnostic biomarkers 

for cGVHD have been proposed, including IL2Rα, aminopeptidase N (CD13), IL4, IL6, TNFα, 

ST2, OPN, chemokine ligands such as CXCL9, CXCL10, and CXCL11 (5-14), cellular 

biomarkers including immune cells subpopulations (15-18), miRNA (19) and others. However, 

none of these biomarkers have been clinically validated. In addition, all these markers are 

indicative of immune system derangement, lacking information on the damaged tissue targeted by 

the allo-immune process. Thus, there is an unmet need for simple objective tools that can aid the 

treating physician in easier identification, scoring and assist personalization of management in 

patients suffering from cGVHD. 

Classic liquid biopsies analyze circulating cell-free DNA (cfDNA) via genetic variations or 

mutations in the DNA of a fetus, a tumor or a transplanted solid organ. However, these approaches 

are blind to DNA released from cells with a normal genome, as would occur in organs damaged 
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by pathologies such as GVHD. We and others have previously shown that tissue-specific DNA 

methylation patterns can provide powerful, universal biomarkers for detecting the tissue origins of 

cfDNA, reflective of elevated turnover or damage in specific organs and regardless of the 

underlying pathology (20-22). For example, we showed that genomic loci specifically 

unmethylated in lung epithelial cells or in hepatocytes can serve as cfDNA biomarkers detect 

specific lung or liver injury (20-26). 

The aim of this study was to establish a set of affordable highly specific and sensitive methylation 

markers for cell types relevant to patients at risk for developing cGVHD, to examine their utility 

for detection of damage to specific organs in patients with clinically suspected cGVHD, and to 

create a cfDNA-based model that can assist the treating physician in surveillance and treatment 

decisions. 

 

Results 

 

DNA methylation markers for targeted assessment of cGVHD-relevant tissue damage  

We compared publicly available methylomes of specific human tissues (21) and identified 

genomic loci containing CpG sites that are uniquely unmethylated in specific tissues or cell types, 

relevant to cGVHD. These included hepatocytes (5 markers), skin (5 markers), lung epithelial cells 

(10 markers) and intestinal epithelial cells (8 markers). We designed multiplex PCR cocktails to 

amplify all these loci from genomic DNA after bisulfite conversion, and sequenced the products 

to determine the fraction of unmethylated DNA molecules present in the starting material. Figure 

1 shows the fraction of methylation blocks from each marker locus that were unmethylated in the 

indicated samples. As we have shown previously, molecules containing multiple unmethylated 
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CpG sites could be assigned with extreme specificity to a given tissue of origin. We also spiked 

genomic DNA from specific tissues into genomic DNA of leukocytes to determine assay 

sensitivity and linearity and found that as little as 0.5% from the target tissue could be robustly 

identified when present in a mixture (not shown). These findings establish a cocktail of DNA 

methylation markers that can be used to identify DNA derived from the liver, skin, lungs and 

intestine with extreme specificity and sensitivity. We also used methylation markers specific to 

selected immune and inflammatory cell types: neutrophils, eosinophils, monocytes, B 

lymphocytes and T lymphocytes (including CD8+ and regulatory T cells); all of which showed 

extreme specificity and sensitivity (27).   

 

Elevated cfDNA levels in HCT patients with and without clinical GVHD 

The overall scheme of the experiment is shown in Figure 2. We recruited a total of 101 HCT 

patients, obtained blood samples, and recorded clinical cGVHD score as well as blood counts and 

standard blood biochemistry. We determined plasma cfDNA concentration and methylation 

patterns, compared findings to clinical and biochemistry data, and then developed and validated a 

model for inference of cGVHD based on cfDNA parameters combined with blood biochemistry 

markers. The characteristics of the 101 recruited patients and samples are detailed in 

Supplementary Tables S2-4 and in the Methods section.  

 

We compared total and tissue-specific cfDNA concentration in samples from healthy individuals 

(median age 37 years old (range 24-68), 58% females), samples from HCT patients that had no 

evidence of  from HCT patients defined by the treating physician as having clinically evident 
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cGVHD . The NIH 2014 criteria were used for defining disease severity (mild, moderate and 

severe) and organ scoring (0-3).  

Analyzing 101 samples from 101 patients, HCT patients suffering from cGVHD (in any organ) 

had statistically significant higher concentrations of total cfDNA compared to HCT patients with 

no clinical evidence of cGVHD (p<0.0001) (Figure 3A). Total cfDNA levels in HCT patients were 

similar to those in healthy controls (p=0.63). 

CfDNA signals from skin (p=0.0188), intestine (p=0.009), liver (p=0.0023) and lungs (p=0.0050) 

were also significantly higher in the clinically evident cGVHD group compared to the group of 

patients who did not meet the NIH 2014 criteria for cGVHD (Figure 3B-E). In addition, the 

concentration of cfDNA originating from GI, liver and lung was significantly higher in patients 

who underwent HCT with no evidence of clinical GVHD compared to healthy controls (p=0.0002, 

p=0.0003, p<0.0001, respectively) (Figure 3C-E,). Moreover, cfDNA originating from skin and 

liver significantly correlated with organ specific clinical GVHD presence (score 0 versus score 1-

3) (p=0.0022, p=0.0003, Supplementary Figures S1A and S1C, respectively). Interestingly, HCT 

patients with and without lung cGVHD (score 0 vs 1-3) had significantly higher levels of lung 

cfDNA compared with healthy controls (p<0.0001), but lung cfDNA did not correlate with the 

presence of clinical lung score (Supplementary Figure S1B). 

Analysis of immune-derived cfDNA showed a significantly higher concentration of cfDNA 

originating from neutrophils, monocytes, eosinophils, B and T lymphocytes in HCT patients 

diagnosed with clinical cGVHD compared with patients who were not (Figure 4). cfDNA from 

neutrophils, T cells and CD8+ T cells was elevated in HCT patients that have no clinical cGVHD 

compared with healthy volunteers (Figure 4A, E, F).  
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We next sought to identify correlations between cfDNA parameters and cGVHD clinical scores 

among HCT patients. We produced a correlation matrix for all 101  plasma samples for which all 

tested parameters were available. cfDNA parameters were highly correlated internally (for 

example, samples with high concentration of total cfDNA tended to also have high levels of organ 

specific cfDNA) (Figure 5 and Supplementary Figure S2), and there was a significant internal 

correlation among cGVHD clinical scores  (between cGVHD severity assessment and specific 

organ grading) (Supplementary Figures S3 and S4). Moreover, we found a significant correlation 

between clinical cGVHD severity assessment and total cfDNA as well as organ specific cfDNA 

levels (Figure 5 and Supplementary Figures S3-5 ). 

 

A combined score for blood-based detection of cGVHD 

We wished to create a model which could aid the treating physician to predict the likelihood that 

a patient has active cGVHD. Employing Shapley analysis on 17 clinical and cfDNA features (see 

Methods) yielded positive Shapley values for 7 features (ALT, total cfDNA, cfDNA of monocytes, 

cfDNA of skin, GGTp, cfDNA of neutrophils and cfDNA of eosinophils). Figure 6A shows 

distribution graphs for these features, and Figure 6B shows the average absolute SHAP value for 

each individual feature. We conducted repeated 5-fold cross-validations across these 7 feature sets, 

starting from the feature having the highest value (ALT) and sequentially adding the next feature 

in line (ALT and total cfDNA; ALT, total cfDNA, cfDNA of monocytes etc.). The metrics 

(specificity, NPV, PPV, AUC and precision) for each number of features selected are illustrated 

in Figure 7. Notably, the three first features maximize the AUC, as well as displaying favorable 

behavior across the other metrics. Therefore, we opt for these three features (consisting of ALT, 

total cfDNA and cfDNA of monocytes) as the optimal feature set. Recall, specificity, AUC, NPV 
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and PPV of logistic regression models trained using only ALT, only cfDNA features (total cfDNA 

and cfDNA of monocytes) and all three features are shown in Figure 8A. The ROC curves of these 

models are shown in Figure 8B.  

Finally, we compared the performance of our models to the exact equivalent set of models, where, 

instead of using a constrained optimization, we used an unconstrained optimization (allowing 

negative coefficients). Shapley values are shown for all 17 features (Supplementary Figure S6). 

The metrics (specificity, NPV, PPV, AUC and precision) for each 𝑛 are illustrated in 

Supplementary Figure S7. Favorable behavior across all metrics was reached at  𝑛 = 6 (ALT, 

GGTp, total cfDNA, cfMonocytes, cfEosinophils, ALP) and repeated 5-fold cross-validation was 

performed to compare the recall, specificity, AUC, NPV and PPV of logistic regression models 

trained using these features (Supplementary Figure S8A), as well as the ROC curves of these 

models (Supplementary Figure S8B). 

Evidently, both constrained and unconstrained optimization techniques demonstrate comparable 

performance, suggesting minimal overfitting with either optimization technique. Moreover, the 

findings emphasize the high predictive capability of a small set of features, consisting of 

biochemical and cfDNA measurements. This aligns with our hypothesis that cGVHD leads to 

increased cell death, consequently elevating the levels of the observed markers. 

 

Discussion 

 

Our study shows that tissue-specific DNA methylation patterns can serve as plasma biomarkers 

for detection of tissue turnover in cGVHD. We demonstrated a general elevation in cfDNA 

concentration in cGVHD patients, and an elevation of cfDNA from specific organs as well as 
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immune and inflammatory cells. Combining cfDNA markers with standard biochemical markers 

allowed us to discriminate patients with and without cGVHD with good sensitivity, accuracy and 

precision, suggesting feasibility of a blood-based objective assessment of disease. 

In agreement with our findings, it has been demonstrated that mitochondrial cfDNA (COX1 DNA) 

is higher in patients undergoing SCT compared to normal controls and correlates with the presence 

of cGVHD (29). To our knowledge, this is the first report of potential tissue-specific cfDNA utility 

in the context of chronic GVHD. Our findings are consistent with, and expand upon, recent studies 

that focused on the distinct setting of acute GVHD (30). Cheng et al used a smaller number of 

patients (n=27) and performed shallow whole genome bisulfite sequencing followed by 

deconvolution, to assess the levels of cfDNA from different recipient sources. Their key finding 

was that acute GVHD (within the first 3 months after HCT) was associated with elevated levels of 

cfDNA from solid organs (multiple tissues combined). Waterhouse et al demonstrated substantial 

differences in the concentration of one colon specific and one liver specific cfDNA marker in 10 

and 14 patients with liver and colon aGVHD respectively. Moreover, they have demonstrated a 

decline in these markers in patients successfully treated.  The clinical condition that we studied – 

chronic GVHD – is more challenging, as clinical manifestation is typically less abrupt and 

therefore tissue damage/turnover (which might be reflected by elevated cfDNA levels) is likely to 

increase gradually. In addition, our approach differs from Cheng et al in that we use a PCR-

sequencing of targeted methylation markers to assess the contribution of specific cell types – a 

method that gives up breadth (i.e. information obtained is limited to a pre-planned subset of tissue 

sources) for specificity, depth, simplicity and low cost. In contrast to the Waterhouse study, our 

methodology probes multiple indicators for each organ, allowing to examine a broader spectrum 

of damaged end organs. Altogether, these three studies support the notion that organ 
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damage/turnover and immune deregulation in GVHD are amenable for a cfDNA methylation-

based analysis, and that liquid biopsies can be developed into an objective, quantitative, clinically 

useful tool aiding the treating physician in diagnosing chronic, as well as acute GVHD. 

 

An important observation of our study was that most HCT patients with no clinically detected 

GVHD had an elevated concentration of the cfDNA derived from donor T cells and recipient 

intestine, liver and lung. We propose that this is a reflection of inflammation and increased cellular 

turnover in HCT patients, which are taking place even while clinically evident organ function 

remains in the normal range. This idea is consistent with the model proposed by Cooke et al, 

whereby chronic GVHD develops through early inflammation and tissue injury, chronic 

inflammation and dysregulated immunity, and eventually aberrant tissue repair leading to fibrosis 

(31). Our study was not designed to test if elevated cfDNA from a given tissue source is predictive 

of future cGVHD. Additionally, larger cohorts will be needed to assess the prognostic potential of 

methylation-based biomarkers. Such studies will also be able to test the provocative idea that 

elevated tissue-specific cfDNA takes place chronically even without an overt clinical 

manifestation, reflecting a low level of allogeneic damage to host tissues that is offset by organ 

regeneration.  

 

Our study also provides a distinct angle on the nature of immune processes taking place in cGVHD. 

Extensive studies have revealed the involvement of reactive donor T cells (mainly Th/Tc17), 

thymic dysfunction, reduced memory B-cell formation concomitant with enrichment of 

alloreactive B cells, reduced levels of T follicular helper cells, macrophage tissue sequestration 

and activation, and more (3, 16, 17). These studies have typically not characterized immune cell 
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turnover. Our findings suggest that allogeneic HCT causes high turnover of donor T cells 

(including CD8 and to a lesser extent regulatory T cells), at any point after HCT and more so 

during cGVHD. We hypothesize that the elevated turnover of donor adaptive and innate immune 

cells, even years after HCT, results from the continuous interaction with allogeneic host tissues. 

The mechanisms and implications of this phenomenon remain to be elucidated. At a practical level, 

it is possible that combining cfDNA biomarkers of solid tissues with cfDNA biomarkers of 

inflammatory / immune cells may increase the specificity of liquid biopsies, e.g. will allow to 

differentiate organ damage due to immune attack from damage due to other etiologies (32). Further 

studies are needed to examine this intriguing possibility.      

 

Implementation of tissue-specific cfDNA biomarkers in clinical GVHD will require additional 

studies to optimize specificity and sensitivity and to understand how cfDNA dynamics relate to, 

and predict, clinical phenotype. We note that the nature of DNA methylation offers a tremendous 

potential for refining cfDNA analysis. For example, methylation atlases (21, 33) allow to develop 

new methylation markers that are specific to hepatocytes from different zones in the liver, alveolar 

or bronchial epithelial cells, epithelial cells of different segments of the intestine, as well as subsets 

of immune cells such as tissue-specific macrophages. With regard to sensitivity, emerging lessons 

from cfDNA-based early cancer detection suggest that parallel assessment of multiple specific 

markers in the same plasma sample can boost sensitivity by increasing the chance of identifying 

cfDNA from the tissue of interest. Such refinements of cfDNA assays may facilitate discrimination 

between suggested biological subgroups of GVHD (resolved GVHD, active late acute GVHD, 

active chronic GVHD, inactive chronic GVHD and no GVHD), which is challenging in the current 

clinical setting. In particular, it will be important to search for cfDNA biomarkers that distinguish 
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active chronic from inactive chronic disease, given the relevance for treatment decisions (31). We 

note that while our results reveal a good correlation between cfDNA and clinical overt cGVHD, 

there are outliers showing high cfDNA with no clinical disease and low counts with clinically 

graded disease. We propose that this discrepancy partly results from the inability of the current 

clinical grading system to accurately assess the active versus inactive state of cGVHD. 

Longitudinal studies assessing this hypothesis are warranted. 

Using multivariate logistic regression, we pinpointed a trio of pivotal features (ALT, total cfDNA 

concentration and monocyte/macrophage cfDNA concentration) yielding compelling results: 

specificity of 86%, a positive predictive value (PPV) of 89%, and a robust area under the curve 

(AUC) value of 0.8. Notably, what sets our approach apart is its efficiency in capitalizing on a 

balanced selection of one biochemical parameter and two distinct cfDNA parameters. This 

pragmatic strategy not only streamlines the diagnostic process but also markedly enhances the 

ability to accurately discern cases of cGVHD. Conceptually, we believe that combined 

measurements of classical markers such as liver enzymes and cell counts with cfDNA biomarkers 

is expected to synergize. The reason is that cfDNA provides distinct biological information: it 

reveals cell turnover (which is different from cell counts); it is a definitive marker of cell death 

(while cytoplasmic proteins may be released to blood upon transient cell injury); and it is cleared 

rapidly, revealing information about acute tissue damage. Particularly intriguing is the role of 

cfDNA derived from monocytes/macrophages, suggesting a pivotal role of macrophage turnover 

in the context of cGVHD. This observation is consistent with current understanding of the 

contribution of macrophage infiltration and activation within affected organs to the pathobiology 

of the disease (34). 
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Our study has several limitations. First, we acknowledge that the assay used in this study, based 

on massively parallel sequencing, may pose challenges to implementation in a standard clinical 

setting. However, as we have shown before, the small number of target loci makes it possible for 

translation into a simpler version, based on quantitative PCR (20). Such a version will have the 

advantage of delivering results faster (same day), at a low cost and in a point-of-case setting.  

Second, the process underlying elevated tissue-specific cfDNA is not fully understood; for 

example, it could reflect an increased rate of cell death in the tissue of origin, enhanced turnover 

rate, or disruption of local removal of debris from dying cells. Regardless, elevated cfDNA appears 

to correlate well with clinical cGVHD. Third, our study was designed for diagnostic purposes only 

and not for predictive, prognostic or response to treatment purposes. These need to be explored in 

separate well-designed prospective, longitudinal studies including a large cohort of transplanted 

patients. This research should delve into the changes in cfDNA patterns over various time points, 

commencing prior to the conditioning protocol, spanning the transplantation phase, and 

encompassing the periods of acute and chronic GVHD. Fourth, this is a single center study and 

further validation studies using independent cohorts from additional centers are needed.  

In conclusion, we demonstrate the potential utility of tissue-specific methylation markers for 

objective and clinically useful detection of chronic GVHD. We envision that cfDNA biomarkers 

can transform GVHD treatment into a highly personalized process, where patients are monitored 

by liquid biopsy many times post-transplant and during treatment to monitor disease and adjust 

treatment.  
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Methods 

 

Methylation analysis 

We prepared cfDNA and measured its concentration (in nanograms per milliliter plasma), then 

treated with bisulfite to expose the status of methylation and performed multiplex PCR as 

described (35) to amplify marker loci. PCR products were sequenced on a NextSeq machine, and 

the fraction of molecules carrying a tissue-specific pattern of methylation was determined. We 

used this information, averaged over the markers for each tissue, to assess the relative contribution 

of each tissue to cfDNA. In addition, by multiplying the proportion of cfDNA from each tissue by 

the total concentration of cfDNA in a sample, we calculated the absolute concentration of cfDNA 

from each tissue to plasma, expressed in genome equivalents per milliliter plasma, as described 

(27, 35). Primer sequences of all markers, as well as clinical and methylation data for all samples 

are provided in Supplementary Tables S1 and S2. 

 

Clinical assessment of HCT patients in the chronic setting  

To assess the utility of cfDNA for detecting organ damage in chronic GVHD, we prospectively 

collected 101 plasma samples from 101 individuals that were >100 days post allogeneic stem cell 

transplantation, arriving for planned routine clinical follow up, at the BMT day care unit at 

Hadassah medical center. Patients agreeing to participate, regardless of their cGVHD status, signed 

an informed consent. Upon each visit blood was drawn for regular blood tests (extra 10 ml of blood 

was drawn for cfDNA analysis) and the patient underwent a full assessment by the treating 

physician which included cGVHD grading according to the 2014 National Institute of Health 
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(NIH) criteria. During the course of this 38-month study, 65 patients were diagnosed at any point 

with clinically evident cGVHD, while 36 were not found to have clinical signs of cGVHD.  

 

Patient Characteristics 

The median age of patients was 47 years. Sixty five percent of the patients were males. The 

majority of patients were transplanted due to acute myeloid leukemia (57%), had a matched sibling 

(63%), were treated with a myeloablative conditioning regimen (64%) and received stem cells 

withdrawn from peripheral blood (PBSC, 92%). Most of the patients (55%) received a transplant 

from a matched gender while 25% were transplanted from a mismatched donor gender, in a female 

to male direction.  

Fifty-seven percent of the 101 samples were collected from patients with a history of acute GVHD. 

None had signs of overlap (both acute and chronic) GVHD at the time of sampling. One patient 

developed liver GVHD one month post Donor Lymphocyte Infusion (DLI). The median time from 

transplantation was 783 days (range 101-7878 days).  Half of the samples (49) were taken from 

patients receiving one or more immunosuppressive agents at the time of collection. Only seven 

patients had evidence of CMV viremia at the time of collection. One patient had biopsy proven 

colitis, which did not show CMV inclusion bodies while none of the remaining six had any 

evidence for CMV disease. Four patients were treated for CMV infection. Eleven patients had a 

positive EBV-PCR in peripheral blood (with a median of 300 copies/ml), none of which was 

clinically significant.  One patient was positive in the upper respiratory tract for RSV and one for 

influenza. One patient had staphylococcus epidermis bacteremia. Chimerism levels were routinely 

monitored. Ninety eight percent of the samples were obtained from patients with a blood driven 

STR assay indicating 100% donor-derived hematopoietic cells. Two samples exhibited a donor 
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chimerism ranging from 88% to 92%, precluding analysis of the relationship between degree of 

chimerism, cfDNA methylation profiles and a potential relapse. None of the samples were taken 

at the time of relapse.  

 

Statistical analysis 

Assessment of cfDNA plasma levels in healthy controls versus allogeneic transplanted patients 

with and without clinical signs of cGVHD was performed using nonparametric, unpaired, Mann 

Whitney test. Analyses were performed using GraphPad Prism (version 10.0.1) and results were 

considered statistically significant for p-values of ≤0.05. 

We used machine learning to evaluate the predictive power of both cfDNA and biochemical 

measurements in relation to clinical evident cGVHD. We compared multivariate logistic 

regression (MLR), XG boost and random forest (RF) classifiers on our data set. MLR, XGboost, 

RF had an average accuracy of 0.74, 0.67, 0.65, respectively, by Repeated-K-fold cross-validation 

(K=5) with a standard deviation of 0.23, 0.22, 0.3, respectively.  As the MLR model had both 

higher accuracy with similarly robust results by cross-validation, we applied MLR for further 

analyses. Furthermore, MLR emerges as the most fitting estimator based on the following 

considerations: 

· We anticipate that GVHD will consistently increase the levels of measured markers, 

signifying increased cell death. Hence, a monotonous model which consistently increases 

in response to changes in its features, should be appropriate.  

· The size of our data does not support models with a large number of parameters – MLR 

bears a single parameter per measurement, reducing the risk of overfitting. 

· MLR inference naturally provides a probability score. 
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We hypothesize that measurements of cfDNA and blood biochemical values possess significant 

predictive potential for the presence of cGVHD. We leveraged Shapley values to gauge the 

magnitude of the predictive capability of each feature. This latter technique offers a principled 

approach to feature selection, promoting enhanced performance with reduced overfitting. Since 

we expect higher cell-free DNA levels to indicate cGVHD, we constrained the parameter space of 

the model to be non-negative for all coefficients. and compared the performance to an 

unconstrained optimization in order to explore the overfitting potential of the model. A total of 93 

samples (for which data was available for all parameters) were used for the analysis. We employed 

Shapley analysis (28) on a collection of 17 features (comprising of GGT, ALP, ALT, AST, TBil, 

Total cfDNA level [presented in ng/ml], and organ specific cfDNA: cfSkin, cfLung, cfGI, cfLiver, 

cfNeutrophils, cfMonocytes, cfEosinophils, cfB cells, cfT cells, cfCD8 cells, cfTregs cell). Next, 

to robustly validate the predictive potential of the features, we utilized Repeated-K-Fold cross-

validation (36). We conducted repeated 5-fold cross-validations across the feature sets given a 

positive coefficient (constrained optimization). Each set, labeled 𝑛 = 1,… ,17, consists of the 

highest-ranking 𝑛 features, meaning, set 𝑛=1 is the single top-ranking feature, set 𝑛=2 consists of 

the 2 top ranking features, set 𝑛=3 of the 3 top ranking features and so on. The metrics (Specificity, 

NPV, PPV, AUC and Precision) for each 𝑛 were calculated. The selection of the best feature set 

was determined based on those achieving the highest AUC (Area Under the Curve) and 

demonstrating favorable performance across other metrics. We calculated recall, specificity, AUC, 

NPV and PPV of logistic regression models trained using only the best feature set. A comparison 

between cfDNA features compared to blood biochemical features and to the combination of both 

(meaning the entire set) was performed. All analyses were performed using Python 3.10. 
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Using the model, accuracy ([(TP+TN)/Total testing samples] x100%), specificity ([TP/(TP+FN)] 

x100%), sensitivity([TN/(TN+FP)] x100%, positive predictive value (PPV) ([TN/(TN+FN)] 

x100%) and negative predictive value (NPV)/precision ([TP/(TP+FP)] x100%) were measured.  

Graphical representation of the tradeoff between specificity and sensitivity was done using the 

receiver operating characteristics curve (ROC). Area under the curve (AUC) was calculated in 

order to determine the ability of the classifier to distinguish positive and negative results. Spearman 

rank correlation was used to determine the significance of correlation between each pair of 

variables and other parameters.  

 

Study Approval 

The study was approved by the Hadassah Medical Center IRB committee and is consistent with 

the declaration of principles of Helsinki. Written informed consent was received prior to 

participation.  

 

Data Availability 

Primer sequences of methylation markers, as well as clinical and methylation data values for all 

samples are provided in Supplementary Tables S1 and S2. Values for all data points in graphs 

can be found in the Supplementary Table S5: Supporting Data Values file. 
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Figure 1: characterization of methylation biomarkers. Tissue-specificity of methylation markers for Liver (A), intestinal epithelium (B), lung epithelium (C) and skin (D).



101 HCT patients

Clinical cGVHD scoring performed by treating 
physician

Analysis of total cfDNA and organ specific 
methylation markers

Blood counts and biochemistry tests (Serum  
AST, ALT,  Total Bilirubin, alkaline 

phosphatase, GGTp)

93 samples used for Modeling

Figure 2: Experimental design.
One hundred and one plasma samples were collected from 101 individuals arriving for planned clinical follow-up, at the BMT day care unit. Upon each visit blood was drawn for 
regular blood tests and the patient underwent a full assessment by the treating physician which included cGVHD grading according to the 2014 National Institute of Health (NIH) 
criteria. Ninety-three samples were employed for modeling, excluding those with missing data. 
*Abbreviations: cf=cell free;. cGVHD=chronic Graft Versus Host Disease; AST- Aspartate transaminase; ALP- Alkaline phosphatase; GGTp- gamma glutamyl transpeptidase. 
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Figure 3: cfDNA levels correlate with clinical 
presence of chronic GVHD.
(A) Level of total cfDNA in healthy volunteers, 
and allogeneic HCT patients with and without 
clinical signs of cGVHD. (B-E) Tissue-specific 
cfDNA(genome equivalents per ml plasma) in 
healthy volunteers, allogeneic HCT patients 
with and without clinical signs of cGVHD, 
using average signals from methylation 
markers of skin (B), gastrointestinal tract (C), 
liver (D) and lung (E). Each dot represents one 
plasma sample. Statistical analysis was 
performed using non-parametric two-tailed 
Mann-Whitney test.  *Abbreviations: 
cfDNAng/ml= Total cell free DNA levels in 
ng/ml. cGVHD=chronic Graft Versus Host 
Disease; GI= gastrointestinal. 



A B C D

E F G
N

eu
tr

op
hi

l G
E/

m
l

M
on

oc
yt

e 
GE

/m
l

Eo
sin

op
hi

l G
E/

m
l

B 
ce

ll 
 G

E/
m

l

T 
ce

ll 
GE

/m
l

Tr
eg

 G
E/

m
l

CD
8 

GE
/m

l

N=    39          36 63 N=    69            35 60 N=      38            35 60 N=      40            36 63

N=    37               36 62 N=    39                36               63 N=    68               36                63

Figure 4: Immune-derived cfDNA levels correlate with clinical presence of chronic GVHD.
Level of immune specific cfDNA in healthy volunteers and allogeneic HCT patients with and without clinical signs of cGVHD, using average signals from methylation markers 
of neutrophils (A), monocytes (B), eosinophils (C), B cells (D), T cells (E), CD8+ cells (F) and Tregs (G). Each dot represents one plasma sample. Statistical analysis was 
performed using non-parametric two-tailed Mann-Whitney test. *Abbreviations: cGVHD=chronic Graft Verus Host Disease. 



Figure 5: Matrix of correlations between cfDNA and clinical parameters among transplanted patients. Spearman rank correlation coefficient and 
significance of correlations (*<0.05 **<0.01 ***<0.001).
*Abbreviations: cf=cell free DNA; cfDNAng/ml= Total cell free DNA levels in ng/ml. cGVHD=chronic Graft Versus Host Disease. 
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Figure 6: Shapley analysis of cfDNA and 
clinical features. Evaluation of the contribution of 
each feature to the model's prediction of cGVHD. 
The parameter space of the model was constrained 
to be non-negative for all coefficients, thus 
showing only features with a non negligible 
coefficient. (A) SHAP value distributions (B) The 
average absolute SHAP value for each individual 
feature (ALT, cfDNA ng/ml, cfMonocytes, cfSkin, 
GGTp, cfNeutrophils,  cfEosinophils). 
*Abbreviations: cf=cell free DNA; 
cfDNAng/ml=Total cell free DNA levels in ng/ml; 
ALT- Alanine transaminase; GGTp- gamma 
glutamyl transpeptidase.



Figure 7: Variation of Metrics based on Number of Features. Visual representation of metrics (specificity, sensitivity, AUC, NPV, PPV) based on the addition of 
features according to their importance as determined by SHAP analysis (purple line=PPV, blue line=specificity, green line=ROC, orange line=sensitivity, red 
line=NPV). 
*Abbreviations: NPV-Negative Predictive Value, PPV-Positive Predictive Value.



Figure 8: Repeated 5-fold cross-
validation results on the best feature set. 
(A) Bar plot of metrics for solely clinical 
laboratory features (red; ALT), solely 
cfDNA features (green; cfDNAng/ml, 
cfMonocytes) and combined (blue; ALT, 
cfDNA ng/ml, cfMonocytes) (B) ROC 
curves for solely clinical laboratory features 
(red; ALT, AUC = 0.65), solely cfDNA 
features (green; cfDNAng/ml, cfMonocytes; 
AUC = 0.74) and combined (blue; ALT, 
cfDNAng/ml, cfMonocytes; AUC = 0.81). 
*Abbreviations: cf=cell free DNA; 
cfDNAng/ml=cell free total DNA levels in 
ng/ml.
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