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Presentation of tumor-associated antigens (TAAs) via the major 
histocompatibility complex (MHC) class I and II (human leukocyte 
antigen [HLA] in humans) is fundamental for building a robust 
immune response and assuring the success of immunotherapies, 
including immune checkpoint blockade and immune cell–based 
immunotherapies (1, 2). MHC class I–mediated presentation of 
antigens (Ags) is fundamental to activation of granzyme- and per-
forin-producing cytotoxic CD8+ T cells. This process is vital for 
cytotoxic CD8+ T cells to target and kill undesirable cells such as 
virus-infected or cancerous cells. To promote an effective antitu-
mor response, TAAs should be taken up and cross-presented by 
professional antigen-presenting cells (APCs), primarily dendritic 
cells (DCs), for the priming of naive CD8+ T cells (3). Subsequent-
ly, the TAA must be directly presented by tumor cells for recogni-
tion and killing by primed CD8+ T cells. Tumors develop multiple 
immune evasion mechanisms and reduce Ag presentation, includ-
ing suppression of DC function and downregulation of HLA-I 
expression by tumor cells (4). Activation of CD4+ T cells by MHC 
class II (5), expressed preferentially by professional APCs such 
as DCs, macrophages, or B cells, also plays a fundamental role in 
mounting a therapeutic antitumor immune response. CD4+ T cells 
in brain tumors are best known for their protumoral effect driv-
en by regulatory Foxp3+ T cells. However, effector CD4+ T helper 
cells can promote cytotoxic CD8+ T cell function via activation of 
DCs and regulate the myeloid compartment and tumor cells via 
secretion of immunomodulatory factors such as IFN-γ and TNF-α. 
In addition, CD4+ T helper cells can modulate the antitumoral 
humoral response by inducing plasmablast differentiation. CD4+ 

T cells are necessary to build a humoral response against tumor 
Ags by providing help via CD40 ligand signaling to CD40 on B 
cells to drive their differentiation and maturation into affinity- 
matured, class-switched plasma cells (6). Figure 1 summarizes 
MHC class I and II–mediated T cell activation and subsequent T 
cell subset differentiation.

APCs in gliomas
High-grade malignant glioma and glioblastoma (GBM) are aggres-
sive types of primary brain tumors that are almost universally 
fatal despite some progress in treatment and management. Most 
therapeutic benefit has been gained when the upfront treatment 
includes maximal safe resection followed by adjuvant multimo-
dality chemotherapy (temozolomide) and radiotherapy. In clinical 
trials, the median progression-free survival is 5 to 7 months, and 
the median survival is 15 to 20 months. Better treatments and a 
more sustained efficacy are needed (7). These tumors are charac-
terized by poor lymphocytic infiltration and a microenvironment 
preferentially populated by myeloid cells (8). Tumor-associated 
myeloid cells form a large and heterogeneous population of cells, 
including brain-resident microglia and bone marrow–derived 
macrophages, neutrophils, and DCs. Tumor-associated myeloid 
cells represent the primary APC compartment. Nonmyeloid cells 
such as B cells can rarely infiltrate gliomas and act as APCs. This 
section will briefly discuss the APC function of tumor-associat-
ed myeloid cells, DCs, and B cells and how gliomas inhibit their 
immune activation functions.

Macrophages and monocytes. Bone marrow–derived myeloid 
cells, including macrophages and monocytes, represent the major 
immune cells infiltrating gliomas (9, 10). They have a vast immune 
and nonimmune effector function that ranges from thrombosis, 
phagocytosis, and debris clearance to Ag presentation and immu-
nosuppression (11, 12). Initiation of the processing of TAAs to sub-
sequently present to T cells via their MHC depends on the ability 
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4-1BB ligand, and OX40 ligand (25, 26). Secretion of lymphocyte- 
chemoattractant factors such as CXCL10, CCL2, CCL3, CXCL1, 
and CXCL2 further amplifies the potential of neutrophils to impact 
T cell immunity (27, 28). Both macrophages and neutrophils are 
highly susceptible to the immunosuppressive microenvironment of 
gliomas. For instance, gliomas recruit macrophages and monocytes 
(29) and rapidly convert them into glioma-supportive cells. This 
process involves the generation of specific metabolic niches, such as 
hypoxia (30, 31), or the production of metabolites with immunosup-
pressive capabilities, such as polyamines (21). Also, mutated IDH1 
gliomas secrete immunomodulatory factors such as G-CSF that can 
inhibit the positive immune response of neutrophils (32). Because 
of the immunosuppressive and tumorigenic effect of glioma- 
associated macrophages and neutrophils, their inhibition or deple-
tion are attractive therapeutic approaches (22, 32).

Microglia. Microglia are resident myeloid cells of the cen-
tral nervous system (CNS) with a known capacity to present Ags 
and activate cytotoxic T cells (33, 34). However, the immuno-
suppressive microenvironment of gliomas downregulates MHC 
expression, which limits their APC ability (35–39). Glioma cells 
also stimulate the secretion of IL-10 and inhibit the production 
of TNF-α by microglia, further promoting the suppression of the 
immune response (40).

DCs. DCs are typically not found in normal brain parenchy-
ma but are present in the choroid plexus and meninges; this is 
suggestive of potential migratory pathways of peripheral DCs into 
the CNS (41–43). During chronic inflammatory diseases, acute 
infections, neurodegeneration, and cancer, DCs can migrate to 
the brain and spinal cord through either afferent lymphatics or 
high endothelial venules (44). The specific role of DCs in gliomas 
remains to be fully elucidated. Still, current studies suggest a com-
plex interplay between DCs, microglia and macrophages, T cells, 

of macrophages and monocytes to engulf tumor cells. The interac-
tions between tumor cells and macrophages/monocytes that reg-
ulate this engulfment are driven by “eat me” ligands, such as cal-
reticulin, SLAMF7, opsonizing antibodies, or phosphatidylserine, 
and “don’t eat me” ligands, such as CD47, PD-L1, or MHC I (13). 
Tumor cells use this “don’t eat me” network to prevent phagocy-
tosis, ensure their survival, and avoid antitumor T cell response. In 
addition, preclinical models of GBM have shown a limited impact of 
Ag presentation and Ag-specific T cell expansion by macrophages 
and monocytes (14). In GBM, myeloid cells are best known for their 
immunosuppressive function driven by a multifactorial network 
able to shut down the antitumor adaptive immune system. This net-
work includes immunomodulatory factors (IL-10, TGF-β, IDO-1)  
(15–20), metabolic remodeling of the tumor microenvironment 
via the arginine pathway (21), and expression of suppressive mole-
cules such as PD-L1 (22). Seminal work led by M. Suvà and I. Tirosh 
(23, 24), which explored intratumoral GBM diversity, unveiled the 
association of tumor-infiltrating macrophages with the mesenchy-
mal-like (MES-like) state, one of the four malignant cellular states 
that define GBM heterogeneity. Further analysis of this association 
revealed a reciprocal interaction and underlined how macrophages 
induce the MES-like state via the secretion of oncostatin M. This 
work highlights the direct gliomagenesis effect of tumor-associat-
ed macrophages, which suggests that macrophages are plastic and 
multifunctional, and their role in supporting tumor growth goes 
beyond the well-documented immunosuppression.

Neutrophils. Like macrophages and monocytes, neutrophils 
are tumor-infiltrating myeloid cells that can act as APCs upon 
maturation. In lung adenocarcinomas and squamous cell carci-
nomas, these APC-like neutrophils stimulate the proliferation 
of both CD4+ and CD8+ T cells in an MHC-dependent manner, 
and stimulate expression of the costimulatory molecules CD86, 

Figure 1. MHC-dependent antigen presentation. CD8+ (left) and CD4+ (right) T cell receptors are activated via antigens presented by MHC I and MHC II, 
respectively (first signal). Together with the costimulatory signal through CD28 engagement (second signal) and cytokines (third signal), this machinery 
can activate different T cells into different functional subsets (bottom rows of figure). For more details on naive CD4+ and CD8+ T cell differentiation and 
effector functions, see reviews (6, 141). AhR, aryl hydrocarbon receptor; BCL-6, B cell lymphoma 6; Eomes, eomesodermin; Foxp3, forkhead box P3; GATA3, 
GATA-binding protein 3; IRF4, interferon-regulatory factor 4; ROR, retinoic acid receptor–related orphan receptor; Tc, cytotoxic T cells; TCR, T cell receptor; 
Tfh, T follicular helper.
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exhibited oligoclonal repertoires of the immunoglobulin (Ig) 
genes compared with nonresponding patients’ polyclonal B cell 
repertoires. Moreover, B cells and TLS densities increased during 
treatment only in responding patients (70). A TLS gene signature 
synergized with a T cell effector signature to predict responses to 
immune checkpoint inhibition (ICI) with PD-1 and CTLA-4 block-
ade (63). Antitumoral functions of B cells upon ICI therapy have 
been attributed to their differentiation into plasmablasts (71), the 
subsequent production of tumor-reactive antibodies (72–74), and 
T cell activation via Ag presentation (75, 76) or Ab-dependent com-
plement activation (77). However, B cell–mediated APC immune 
function and T cell activation in primary brain tumors remain 
unclear owing to their rarity, as they represent less than 0.5% to 
1% of the immune milieu (78–80). In addition to the low numbers 
in the tumor microenvironment, gliomas promote the conversion 
of B cells into immunosuppressive B cells that sustain tumorige-
nicity (81). More recently, work published by our groups suggested 
a more immunosuppressive function of glioma-infiltrating B cells, 
characterized by the suppression of CD8+ T cell activation in both 
GBM patients and glioma-bearing mice (79).

APCs as cellular immunotherapy
DC vaccines. The primary goal of APC vaccination is to harness 
T cell antitumor immunity by the presentation of TAAs. DC vac-
cines were the first cell-based immunotherapy developed to treat 
cancers (82, 83). DCs in cancer immunotherapies can be explored 
by different approaches: (a) bulk tumor protein- and/or nucleic 
acid–based vaccines; (b) peptides targeting endogenous DCs; (c) 
ex vivo–generated DCs matured and loaded with tumor Ags; and 
(d) biomaterial-based platforms for the in situ recruitment and 
reprogramming of endogenous DCs (84, 85). Among the regis-
tered clinical trials performed with DC vaccines, the most com-
mon approach relies on the use of ex vivo–differentiated DCs from 
leukapheresis-isolated CD14+ monocytes (MoDCs) cultured in the 
presence of granulocyte-macrophage colony-stimulating factor 
(GM-CSF) and IL-4 (86). Previous studies have highlighted the 
effectiveness of DC vaccination for gliomas in preclinical models 
and early-stage clinical trials (87–89). Preclinical work in rodents 
has shown that DCs pulsed with tumor-derived Ags elicited strong 
tumor-reactive T cell immunity and could prolong glioma-bearing 
animal survival (87, 90). These experimental proof-of-principle 
approaches paved the way for the development of several autol-
ogous DC vaccines pulsed with tumor lysates as a therapeutic for 
treating primary brain tumors (91–94). Pioneered by Liau et al., the 
first DC vaccines were tested in GBM patients using acid-eluted 
tumor Ags (95). These initial investigations by Liau and colleagues 
led to a phase II clinical trial (ClinicalTrials.gov NCT00045968). 
This randomized trial reported that DCVax-L, in combination with 
standard of care, could significantly extend the survival of patients 
with either newly diagnosed or recurrent GBM compared with his-
torical controls. This randomized trial reported that DCVax-L in 
combination with standard of care could significantly extend the 
survival of patients with either newly diagnosed or recurrent GBM 
(96). Liau’s seminal work paved the way for further development 
of the field of DC vaccination in GBM.

As an alternative to using whole-tumor lysates, synthetic pep-
tides can also be used to pulse DC vaccines. ICT-107 is a patient- 

and tumor cells in the tumor microenvironment. One suggested 
role for DCs in this context is in recognizing and presenting tumor 
Ags in the brain or the tumor-draining deep cervical lymph nodes 
to elicit coordinated T cell–mediated responses (44). Through sig-
nal 1 and 2 costimulatory interactions, these DCs mobilize and 
stimulate the development of various effector T cells associated 
with immune defense, such as cytotoxic T cells and CD4+ T helper 
cells (45, 46). Indeed, the immunosuppressive milieu of gliomas is 
harsh on DCs. Recent explorations into the role of DCs in glioma 
progression have focused on homeostatic regulators of DC func-
tion, including Nrf, a redox-sensitive transcription factor that is 
involved in counteracting the effects of reactive oxygen species. 
The tumor microenvironment of GBM is thought to induce over-
expression of Nrf in DCs, resulting in the suppression of DC mat-
uration and the consequent decrease in effector T cell activation. 
The inhibition of Nrf2 pathways rescues the maturation of CD80+ 
and CD86+ DCs in a glioma-conditioned medium and partially 
restores the secretion of bioactive cytokines such as IL-12p70 (47).

Extracranial tumor Ag presentation occurs in peripheral 
lymph nodes. Activated T cells have been found in the deep cer-
vical lymph nodes of rat GBM models (48). This activation is con-
trolled by DCs that migrate from the CNS to the lymph nodes via 
the lymphatics (49). Alternatively, CNS- and tumor-associated 
Ags can move out of the CNS through perivascular spaces and be 
collected by resident DCs in cervical lymph nodes (50, 51).

B cells. Mature B cells recognize Ags (soluble or cell-bound 
Ags) using their B cell receptor (BCR) and are activated to become 
antibody-producing cells. As part of the differentiation to plas-
macytes, B cells use the MHC class II Ag presentation pathway 
to process BCR-bound and internalized protein Ags and present 
selected peptides in complex with MHC II to CD4+ T cells (52). 
Under pathological and inflammatory conditions, B cells can also 
cross-present exogenous Ags to CD8+ T cells via their MHC I (53, 
54). The antitumor effect of B cells in cancers came from studies 
showing that their intratumoral density is associated with a good 
prognosis in breast cancer (55), colorectal cancer (56, 57), non–
small cell lung cancer (58), head and neck cancer (59), ovarian 
cancer (60), biliary tract cancer (61), primary cutaneous melano-
ma (62), metastatic melanoma (63), and hepatocellular carcinoma 
(64). The analysis of 54 cohorts of 25 cancer types revealed that 
although the prognostic impact of tumor-infiltrating B cells was 
positive in 50% of the studies, it was deleterious in 9% and neu-
tral in 41% (65). A few studies addressed the question of the role 
of regulatory B cells (Bregs), which have an immunosuppressive 
phenotype, in human cancers. The frequency of IL-10–produc-
ing Bregs correlated with shorter overall survival in bladder can-
cer patients (66) and in breast cancer (67), and the coexistence 
of Bregs with regulatory T cells correlated with shorter metasta-
sis-free survival in breast cancer (68). These findings suggest that 
protumoral and antitumoral B cells might coexist. In neoadjuvant 
pembrolizumab (PD-1 blockade) treatment of soft-tissue sarco-
ma patients, the B cell signature was the best predictor of overall 
survival, even when combined with CD8, PD-1, or CTLA-4 signa-
tures (69). In advanced metastatic melanoma, tertiary lymphoid 
structure (TLS) and B cell signatures, but not T cell signatures, 
predicted therapeutic responses to pembrolizumab and ipilimum-
ab (CTLA-4 blockade). B cells in tumors of responding patients 
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lymphocytes. A follow-up clinical trial (NCT03615404) will test 
this DC vaccine approach in combination with GM-CSF as an 
adjuvant. Table 1 lists past and current clinical trials that use DCs 
as therapeutics in newly diagnosed GBM.

Monocyte vaccines. The overall encouraging preclinical and 
clinical results of DC vaccination in glioma patients motivated 
researchers to investigate complementary ways to achieve Ag pre-
sentation and subsequent antitumor T cell function successfully. 
Monocyte vaccines have been efficacious in triggering antitumor 
CD8+ T cell–mediated cytotoxic responses in preclinical glioma 
models (100). Huang et al. showed that tumor Ag–pulsed mono-
cytes elicited a robust immune response and outperformed bone 
marrow–derived DCs when administered to glioma-bearing mice 
(100). In this report, the authors demonstrated that Ag-loaded 
monocytes do not activate CD8+ T cells directly but rather trans-
fer Ag to endogenous splenic CD8+ cDCs to cross-prime naive 
CD8+ T cells. These results are consistent with previous reports 
that monocyte-derived cells do not trigger CTL responses directly 
but rather transfer Ag to lymphoid-resident CD8+ cDCs in murine 
models of viral infection (101–103), contact sensitization (104), 

specific DC-based immunotherapy for newly diagnosed GBM 
patients. ICT-107 DCs are pulsed with six synthetic TAAs (MAGE-1,  
HER-2, AIM-2, TRP-2, gp100, and IL-13Rα2) instead of a bulk 
tumor lysate approach seen in previous studies. ICT-107 was test-
ed in a double-blind, placebo-controlled phase II trial to evaluate 
its safety and efficacy when administered in conjunction with the 
Stupp protocol for newly diagnosed GBM (97). This trial highlighted 
that prolonged overall survival (OS) correlated with the expression 
of four ICT-107–targeted Ags. Despite this encouraging result, the 
OS benefit was not confirmed in the later phase II trial (98). A phase 
III clinical trial was scheduled but was halted before reaching its pri-
mary outcome owing to insufficient financial resources.

Mitchell, Sampson, and colleagues showed that precondition-
ing of the vaccination site with tetanus/diphtheria (Td) toxoid (a 
potent Ag recall signal) can significantly improve the lymph node 
homing and efficacy of tumor Ag–specific DCs (99). DCs were 
pulsed with cytomegalovirus phosphoprotein 65 (pp65) RNA. This 
study (NCT00639639) was performed on six patients with new-
ly diagnosed GBM and showed promising results with prolonged 
OS in comparison with the control group that received autologous 

Table 1. List of DC vaccine strategies in clinical trials for the treatment of newly diagnosed GBM

Name Antigen source Phase Comments PI Clinical trial
TH-1 DC Autologous tumor I Autologous DC vaccine that polarizes Th1 immune response Alan R. Turtz NCT04552886
DENDR1 Autologous tumor I Marica Eoli NCT04801147
NS Autologous tumor I Ian Parney NCT01957956
NS Autologous tumor I DC vaccine through intradermal injection into regions near the groin 

and axillary while they receive temozolomide adjuvant chemotherapy
Nan Ji NCT04968366

ATTAC-I CMV RNA pp65 I CMV RNA-pulsed DCs with tetanus/diphtheria toxoid vaccine Katherine Peters NCT00639639
REGULATe CMV RNA-pulsed DCs I Combination of CMV RNA-pulsed DCs and basiliximab (αCD25) Mustafa Khasraw NCT00626483
NS Allogeneic GBM stem-like 

cell line
I Autologous DCs pulsed with a lysate derived from an allogeneic GBM 

stem-like cell line cultured under neurosphere-forming conditions
Jethro Hu NCT02010606

PERCELLVAC Personalized TAAs I DCs transfected with 3–13 personalized TAAs in combination with low-
dose cyclophosphamide, poly I:C, imiquimod, and αPD-1 antibody

Jian Zhang NCT02709616 NCT02808364 
NCT02808416

ADCTA-G NS I / II Wen-Kuang Yang NCT02772094
I-ATTAC CMV RNA pp65 II CMV pp65-LAMP mRNA-pulsed autologous DCs containing GM-CSF Mustafa Khasraw NCT03927222
ATTAC-II CMV RNA pp65 II CMV RNA-pulsed DCs with tetanus/diphtheria toxoid vaccine Maryam Rahman NCT02465268
NS Autologous tumor II Adjuvant intranodal (cervical lymph node) autologous DC vaccination Camilo E. Fadu NCT00323115
ELEVATE CMV RNA pp65 CMV RNA-pulsed DCs with tetanus/diphtheria toxoid vaccine  

migration study
Dina Randazzo NCT02366728

ICT-107 TAAs: MAGE-1, HER-2, AIM-2, 
TRP-2, gp100, and IL-13Rα2

II Autologous DCs pulsed with six synthetic peptide epitopes targeting 
GBM tumor/stem cell–associated antigens MAGE-1, HER-2, AIM-2,  

TRP-2, gp100, and IL-13Rα2

NS NCT01280552

GlioVax Autologous tumor II Michael Sabel NCT03395587
AV-GBM-1 Autologous TAAs II Autologous DCs loaded with TAAs from a short-term cell culture of 

autologous tumor cells; AV-GBM-1 is admixed with GM-CSF as an 
adjuvant prior to injection

Robert O. Dillman NCT03400917

DCVax-L 
vaccine

Autologous glioma cells III Two intradermal injections of DCVax-L (treatment cohort) or 
autologous PBMCs (placebo cohort) per treatment

Linda Liau NCT00045968

AV-GBM-1 Autologous tumor-initiating 
cells

III Autologous DCs loaded with autologous tumor antigens administered 
with 500 μg GM-CSF diluted in saline

Robert O. Dillman NCT05100641

ICT-107 TAAs: MAGE-1, HER-2, AIM-2, 
TRP-2, gp100, and IL-13Rα2

III Autologous DCs pulsed with six synthetic peptide epitopes targeting 
GBM tumor/stem cell–associated antigens MAGE-1, HER-2, AIM-2,  

TRP-2, gp100, and IL-13Rα2

Surasak Phuphanich NCT02546102

AIM-2, antigen isolated from immunoselected melanoma-2; CMV, cytomegalovirus; gp100, glycoprotein 100; HER-2, human epidermal growth factor 
receptor 2; IL-13Rα2, IL-13 receptor α2; MAGE-1, melanoma-associated antigen 1; NS, not specified; PI, principal investigator; TAA, tumor-associated 
antigen; Th, CD4+ T helper cell; TRP-2, tyrosinase-related protein 2.
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larly important because bevacizumab has only shown limited clin-
ical benefit in the setting of recurrent GBM (110). Thus far, clinical 
trials investigating HUVECs for recurrent GBM have shown them 
to be well tolerated and yielded encouraging early results (110, 
111). Other tumor cell vaccine delivery techniques involve forma-
lin fixation of the tumor cells before injection of the vaccine. It 
has been demonstrated that fixation with formalin allows for bet-
ter tissue preservation, which allows for the most robust immune 
response against the tumor cells (112). The safety and efficacy of 
autologous formalin-fixed tumor vaccines (AFTVs) were tested in 
two clinical trials examining their use with only fractionated radio-
therapy and chemoradiation in patients with newly diagnosed 
GBM (112, 113). Both trials demonstrated a tolerable safety profile 
and yielded a median OS greater than 19 months. These encourag-
ing results prompted a prospective placebo-controlled phase IIb/
III trial evaluating AFTV therapy in combination with standard 
chemoradiotherapy (UMIN Clinical Trials Registry UMIN10602; 
https://www.umin.ac.jp/ctr/). Although preliminary results con-
firmed the safety of AFTV therapy, this trial could not find a statis-
tically significant difference in median progression-free survival 
between the two experimental arms.

and Ag phagocytosis (105). The group from Duke University initi-
ated the DEMAND study in 2022 as the translational follow-up to 
this research study. The trial consists of a dose escalation study of 
monocyte Ag carrier cells for newly diagnosed GBM patients with 
unmethylated MGMT gene promoters. This phase I clinical trial 
(NCT04741984) uses engineered monocytes to express cytomeg-
alovirus protein (MT-201-BM monocyte vaccine). Tie2-expressing 
monocytes (TEMs) were developed following a similar approach 
to that used by the Duke group, but not directly linked to the APC 
function. In 2008, De Palma et al. (106) explored the tumor tropism 
of TEMs and their potential for use as a carrier of IFN-α to tumors. 
This approach would inhibit the angiogenesis of tumors and the 
activation of innate and adaptive immunity. In 2019, Genenta Sci-
ence initiated a phase I/II clinical trial (NCT03866109) using a 
single injection of autologous TEMs engineered to produce IFN-α 
(Temferon) in MGMT-unmethylated GBM patients.

Human umbilical vein endothelial cells. Human umbilical vein 
endothelial cell (HUVEC) vaccines are less commonly investigat-
ed for the treatment of GBM. The presentation of the HUVEC Ag 
is believed to elicit anti-angiogenic cellular and humoral immune 
responses, thus inhibiting tumor growth (107–109). This is particu-

Table 2. Different categories of artificial APCs and examples of their use as cancer treatments in clinical or preclinical settings

Category Nature Name Characteristics Application
Cellular Allogeneic K562 human erythroleukemia 

cell line
The approach was developed for both 

nonspecific and specific ex vivo activation  
and expansion of human T cells

Expansion of MART-1–specific T cells from both healthy 
subjects and patients with metastatic melanoma  

(142, 143)

Cellular Xenogeneic NIH 3T3 fibroblasts Cells are transduced to express MHC and 
costimulatory molecules; NIH 3T3 cells 

present endogenously processed antigens 
and can therefore stimulate CD8+ T cell 

responses to both exogenously loaded and 
transfected antigen

NIH 3T3 cells that were transduced to express CD80, 
4-1BBL, and cell surface PSMA were effective in 

expanding human T cells transduced to express a PSMA-
specific chimeric antigen receptor, and the resulting 
T cells were effective in treating PSMA+ tumors in a 

humanized mouse model (144)

Acellular Nanoparticle Polystyrene beads Polystyrene beads between 5 and 6 μm in 
diameter coated with αCD3/αCD28 that 

expand ex vivo polyclonal T cells

Clinical studies of adoptive immunotherapy have used 
αCD3/αCD28 paramagnetic bead–based platform to 

expand autologous CD3+ T cells, which were then infused 
into individuals with non-Hodgkin’s lymphoma or CML 

after autologous CD34+ selected HSCT (145, 146)

Acellular Nanoparticle Polystyrene beads Bead-based platform with antigen specificity 
by coating of the bead with MHC-peptide 

single-chain construct dimers or tetramers

Human MART-1–specific CD8+ T cells expanded using this 
approach were adoptively transferred to NOD/SCID mice 

with melanoma xenografts and exhibited antitumor 
activity equivalent to that of T cells expanded using 

peptide-pulsed MoDCs (147)

Acellular Nanoparticle PLGA-based materials fused with 
azido-labeled DC membrane

Nanoscale aAPCs by metabolic DC labeling to 
efficiently mobilize antitumor immunity

This approach significantly inhibits the growth of 
prophylactic melanoma and established colorectal 

tumors in mice when combined with anti–PD-1  
blockade therapy (148)

Subcellular Lipid vesicles Immunosomes Engineered lipid microvesicles One study developed GM1 liposomes bound with cholera 
toxin B and neutravidin to anchor αCD3, αCD28, and 

LFA-1 to stimulate T cell responses in vitro (149)

Subcellular Lipid vesicles Exosomes Vesicles secreted from cellular endosomes 
that present antigen with HLA class I and II 
molecules and provide costimulatory and 

adhesion signals to T cells

Exosomes derived from DCs were used as an artificial 
acellular vaccine for murine mastocytoma and mammary 
carcinoma and induced antitumor immune responses in 
vivo, despite exhibiting relatively weak T cell stimulation 

in vitro (150, 151)

aAPC, artificial APC; CML, chronic myelogenous leukemia; HSCT, hematopoietic stem cell transplantation; MART-1, melanoma antigen recognized by T 
cells; MoDC, monocyte-derived DC; PLGA, poly (lactic-co-glycolic acid); PSMA, prostate-specific membrane antigen.
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Artificial APCs. A considerable challenge in the therapeutic 
vaccination of GBM with DCs or monocytes is that the immune 
response elicited upon treatment must overcome the extreme 
immunosuppressive microenvironment. Gliomas and their micro-
environment are highly immunosuppressive niches that lead to suc-
cessful immune evasion. DC and monocyte vaccination may require 
the combination of additional therapeutic strategies to overcome 
the adverse effects of immunosuppression and immune checkpoint 
regulation. To overcome this limitation of autologous APCs, investi-
gators have developed artificial APCs (aAPCs) as an alternative for 
both ex vivo and in vivo induction of tumor-reactive T cell immunity 

(114, 115). Artificial Ag presentation is less susceptible to the immu-
nosuppressive effect of the tumor microenvironment.

Furthermore, aAPCs are an off-the-shelf approach that over-
comes the challenges of autologous cell culture strategies (114, 
116). There are three subcategories of aAPCs: cellular (allogeneic 
and xenogeneic), acellular (liposomes, magnetic beads, polysty-
rene beads, and biodegradable beads), and subcellular (lipid vesi-
cles and exosomes). Table 2 summarizes current aAPC approach-
es in different cancer models.

Polystyrene bead–based aAPCs coated with MHC-peptide 
single-chain dimers or tetramers are an approach developed to 
stimulate tumor-specific T cells. In the context of gliomas, this 
APC nanoparticle was used to expand human HA-1–specific CD8+ 
T cells and to generate IL-13Rα2–specific CD8+ T cells to target gli-
oma cells (117–120). An alternative approach using a similar ratio-
nale was developed to stimulate innate mucosal-associated invari-
ant T (MAIT) cells. The aAPC design consisted of a polystyrene 
bead with a 5-OP-RU–loaded MR1 tetramer complex and anti-
CD28 antibody (121). Subsequently, these activated MAIT cells 
were efficacious at killing human glioma cell lines. A limitation of 
aAPCs is the lack of tissue migratory capabilities (e.g., tumor) and 
the inability to cross-present Ags to CD8+ T cells. Altogether these 
limitations restrict the long-term maintenance of the antitumor 
immune response.

B cells, the next-generation APC immunotherapy
The B cell–based vaccine is a promising yet under-investigated 
approach to boosting anticancer immunity (122, 123). There are 
several advantages of B cells as vaccines over conventional APC 
vaccines, including: (a) they can act as both T cell activators and 
antibody producers (124); (b) mature B cells can be readily man-
ufactured ex vivo; and (c) they have high mobility, which allows 
their homing to essential secondary lymphoid organs as well as 
tumor (125). However, not all B cells will show antitumor proper-
ties (79, 126–129), and only rare B cell subsets might be good can-
didates for cancer vaccines. In this section, we will navigate the 
possibility of using proinflammatory B cells as APC vaccines, their 
preclinical development, and their future translational potential.

Our research and the research of others indicate that specific 
B cell subpopulations hold the most potential for use in treating 
cancer. Specifically, studies on B cell–driven inflammation have 
revealed that a subset of B cells expressing the costimulatory 
marker 4-1BB ligand (4-1BBL, or CD137L) are especially effective 
in activating CD8+ T cell antitumor cytotoxicity. 4-1BBL is the 
single known ligand for 4-1BB (130), a TNF family costimulatory 
receptor that plays a fundamental role in activating Ag-experi-
enced CD8+ T cells to establish long-term immunological memo-
ry (131, 132). Expression of 4-1BBL by B cells is achieved through 
B cell–mediated Ag presentation, T cell costimulation (4-1BBL 
and CD86), and cytokine production (TNF-α) (133, 134). This 

Figure 2. B cell vaccine generation. B cell–based vaccines (BVax) are pro-
duced from 4-1BBL+ B cells isolated from secondary lymphoid organs of 
tumor-bearing mice or GBM patients’ blood. B cells are activated ex vivo 
using CD40 agonism, the B cell survival factor BAFF (yellow), and IFN-γ 
(blue). After activation, B cells are pulsed with tumor lysates.
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observation was further confirmed using 4-1BBL+ B cells from 
newly diagnosed glioma patients’ blood (135). It was observed 
that 4-1BBL+ B cells express proinflammatory cytokines and 
activation markers (TNF-α, IFN-γ, CD69, and CD86) and have 
a superior ability to activate autologous CD8+ T cells compared 
with 4-1BBL–negative B cells (135).

The B cell vaccine approach used 4-1BBL+ activated B cells 
from glioma-bearing mice (secondary lymphoid organs) or GBM 
patient–derived PBMCs as a source of B cell–based vaccine (BVax). 
To potentiate and stabilize the APC function, 4-1BBL+ B cells were 
further activated for a short time (48 hours) with CD40 and IFN-γ 
receptor (IFN-γR) activation (Figure 2) and pulsed with tumor 
protein lysates. CD40 ligation is a well-studied process that leads 
to B cell activation, proliferation, and enhancement of Ag-pre-
senting and costimulatory functions (136), and ligand-associated 
activation of IFN-γR promotes the upregulation of costimulatory 
molecules such as CD86 in B cells (137). Unlike naive B cells, BVax 
could cross-present as potently as DCs in vitro. This agrees with 
a previous study that showed that cross-presentation by B cells 
activates autoimmune CD8+ T cells in type 1 diabetes (53). Most B 
cell–based vaccines use total circulating B cells (isolated using the 
CD20 or CD19 marker) and are activated ex vivo using CD40 ago-
nism, Toll-like receptor ligands, and homeostatic cytokines such 
as IL-4 or IL-21 (138). Some studies have used CD27+ memory B 
cells (139). However, sorting Ag-experienced B cells (via 4-1BBL), 
and endowing them with potent APC function, can serve as a 
unique tool in B cell–based therapies.

In the preclinical glioma model CT2-A, repeated administra-
tion of BVax and anti–PD-L1 allowed adoptively transferred CD8+ 
T cells to eradicate the tumor and prevent its regrowth upon rein-
jection in the opposite hemisphere in 50% of the treated mice 
after brain radiation and temozolomide treatment (GBM patient 
standard of care). Tumor eradication correlated with prominent 
infiltration of CD8+ T cells in the tumor cell injection sites. CD8+ T 
cells were also found in the choroid plexus, a structure that plays 
a fundamental role in CNS immunosurveillance via the cerebro-
spinal fluid–brain barrier (140). However, CD8+ T cells were also 
present in more distant sites like the cerebellum and pons, sug-
gesting organ-wide surveillance to protect the CNS. Accordingly, 
CNS-infiltrating CD8+ T cells show an activated phenotype (char-
acterized by the expression of IFN-γ and CD44) and the absence 
of inhibitory molecules such as PD-1 or TIGIT. These findings 
suggest that fully functional memory-like CD8+ T cells persist in 
the target organ. GBM patient–derived BVax is generated from the 
patient’s peripheral blood. This study used freshly resected patient 
tumors as a protein homogenate (tumor lysate) source. BVax were 
incubated with tumor lysate and tested for the ability to activate 
autologous CD8+ T cells in the absence of exogenous TCR stim-
ulation. CD8+ T cells cultured with BVax pulsed with tumor lysates 
obtained from the same patient significantly expanded granzyme 
B–expressing CD8+ T cell numbers. This observation was almost 
exclusive to BVax pulsed with autologous tumor. We tested activat-
ed and expanded CD8+ T cells’ ability to kill autologous tumor cells 
via in vitro cytotoxicity assay. The results showed that CD8+ T cells 

Figure 3. B cell vaccine immune effector functions. BVax can exert an antitumor immune response via cellular immunity (activation of CD8+ T cells) and 
humoral immunity (production of tumor-reactive antibodies). PFN, perforin.
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approaches. Treating preoperatively metastatic breast cancer and 
non–small cell lung cancer with ICI has proved that antitumoral 
immune responses can be generated if immunotherapy is admin-
istered while the tumor (and possibly draining lymph nodes) is 
present. Immunological response correlated with high rates of 
pathological response and improved long-term survival. There-
fore, one might consider that the potential immunological impact 
of maximum versus partial resection, or even neoadjuvant immu-
notherapy treatment, in newly diagnosed GBM could improve 
immune therapies’ clinical outcomes.
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activated via BVax potently kill glioma cells while sparing nontumor 
cells, in both newly diagnosed GBM and recurrent GBM biospec-
imens. These results support human BVax as promoting anti-GBM 
autologous CD8+ T cell activity.

In addition to the APC function, BVax differentiates into 
plasmablasts and produces tumor-reactive antibodies with ther-
apeutic potential. While further studies are needed to elucidate 
the exact reactivity of BVax-derived IgG and its effector immune 
functions, it is undeniable that BVax represents a unique immuno-
therapy platform that merges both cellular (CD8+ T cell activation) 
and humoral (Ab production) function. Thus, the effectiveness of 
our approach relies on both cellular (CD8+ T cell activation) and 
humoral (Ab production) antitumor immune processes. These 
effector functions are unexplored in the brain tumor field and 
underexplored in cancer research in total. Figure 3 summarizes 
therapeutic BVax effector immune functions.

Conclusions
APC therapy in GBM was initiated more than two decades ago 
with the development of DC vaccines. Even though the therapeu-
tic effect of this approach is inconclusive, a wealth of promising 
preclinical results urges us to continue developing APC therapies 
to boost the antitumor immune response, including novel cellular 
choices, such as B cells. The choice of the source and nature of the 
antigen, paired with tools to fight the glioma’s immunosuppres-
sive microenvironment, is a key factor to be considered for future 
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