
 
Supplementary Figures and Tables 

 

 

Supplemental Figure 1: Visualisation of noise that was added to sinusoidal oscillations to 

estimate sensitivity: Different noise levels were added to the synthetic data based on the % 

amplitude of the original wave. Noise was added simultaneously to the amplitude, period, and 

phase of the wave each time a point was sampled. To visualise this, 3 noisy oscillations were 

simulated with data points being shown. - =Lines from exemplar signals. 

 

  



 

Supplemental Figure 2: The effect of artificial noise on ClinCirc accuracy assessment of PER2::luc 

bioluminescence data: Bioluminescence from cultured lung tissue in PER2::luc mice was analysed 

using ClinCirc at a 4-hour sampling frequency and then compared to the original data sampled at a 1-

minute frequency. Different noise levels (0-40%) were then added to the data. (A) Period (B) 

Acrophase and (C) Amplitude was then calculated using ClinCirc (n=250; Box=median ± interquartile 

range; whiskers denote maximum and minimum). (D) The cumulative relative error combining the 

errors for period, acrophase and amplitude using two different mathematical tests (ClinCirc and 

Cosinor) after the addition of six different levels of noise (0-50%, n=250 simulations). A linear 

regression line is shown. 

  



 

 

Supplemental Figure 3: The correlation of inflammatory mediator with the number of 

rhythmic clock genes identified by ClinCirc: The expression of 37 inflammatory plasma 

mediators were compared to the number of genes in the molecular oscillator that had a circadian 

rhythm defined by ClinCirc. Significant correlations are shown for each of the nineteen 

inflammatory mediators where this was observed. 
  



 

Supplemental Figure 4: Effect of Different thresholds to determine circadian 

rhythmicity The effect of different thresholds on circadian rhythmicity was explored for the 

association with CRP in ICU patients (A) Reduced was defined as the presence of 4 or less 

clock genes in an ICU patient which had a circadian oscillation (B) Reduced was defined as 

the presence of 2 or less clock genes in an ICU patient which had a circadian oscillation 

(**=p<0.01; ANOVA post-hoc Tukey)  

 

  



 

 
Supplemental Figure 5: The effect of changing the constraints for Cosinor analysis in a 

cohort of kidney transplant recipients: After pre-processing the effect of adding three 

different constraints to the period fit in the final cosinor fit was investigated. The period was 

constrained to be between 22-26h, 20-28h or18-30h. The effect of this on (A) acrophase and 

(B) amplitude measurement is shown compared to an unconstrained cosinor fit. Mean±95% 

confidence intervals are shown (●= single waveform) 

  



 

 

 

Supplemental Figure 6: Phase plots of the molecular clock following kidney 

transplantation. Phase plot of the molecular oscillator genes NR1D1, NR1D2, PER1, PER2 

in kidney transplant patients 0-24 hours (n=23, 24 hours) and 48-72 hours (n=7, 72 hours) after 

transplantation (●= individual patients,=median±IQR (colour band)). Patients are only shown 

if they had a detectable circadian oscillation for that gene. 
  



 

 

Supplemental Figure 7: Circadian rhythms are shifted according to allograft reperfusion 

time following kidney transplantation: Molecular oscillator genes were measured in the 

blood of kidney transplant recipients over the first 24 hours after transplantation. For patients 

where the clock gene had a circadian oscillation, the acrophase was plotted against time of 

allograft reperfusion (●= individual patients with a circadian oscillation, a linear regression 

line is shown r2=0.51-0.83). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 8: Oscillation in delayed graft function and allograft rejection 

following kidney transplantation with allografts from circulatory dead donors: (A) 

Probability density of delayed graft function against time of allograft reperfusion utilising 

kidneys from circulatory dead donors (- =mean probability density ±95%CI, Gaussian 

smoothing with bootstrap) (B) Probability density of delayed graft function against time of 

organ harvest utilising kidneys from circulatory dead donors (- =mean probability density 

±95%CI, Gaussian smoothing with bootstrap).  
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Supplemental Figure 9: Normalised leverage and Adjusted R2 values for ClinCirc, 

Cosinor and Gaussian process regression (Matérn): Circadian oscillations for the molecular 

oscillator genes in the ICU patient cohort were analysed using three mathematical methods. 

(A) Is a Venn diagram depicting the overlap for the three detection methods. The numbers 

represent how many gene oscillations belong in that section. (B) Displays the adjusted R2 

values for the oscillations detected by ClinCirc or GPR Matérn analysis which the other method 

did not detect.  (C) Leverage distances were calculated for the oscillations detected by ClinCirc 

or GPR Matérn which the other method did not detect (D) Shows the adjusted R2 values for 

the oscillations detected by ClinCirc or Cosinor analysis which the other method did not detect. 

(E) Leverage distances were calculated for the oscillations detected by ClinCirc or Cosinor 

analysis which the other method did not detect  



 
Mathematical Method 

Sensitivity for a 24-hour 
sampling period (%) 

Sensitivity for a 48-hour 
sampling period (%) 

0% 
Noise 

 

20% 
Noise 

40% 
Noise 

0% 
Noise 

20% 
Noise 

40% 
Noise 

ClinCirc 100 98.65 88.28 100 98.92 76.92 

LS-P Frequency 100 98.78 89.76 100 98.92 76.92 

LS-P (p-value) 100 83.22 41.42 100 97.12 55.54 

Cosinor 100 88.7 66.30 100 98.02 78.94 

Gaussian (Periodic) 0 45.6 34.6 0 79.8 38.80 

Gaussian (Matérn) 100 88.4 84.00 99.8 92.4 69.60 

MetaCycle 100 30.52 0.06 100 95.38 42.74 

LS-P MetaCycle 0 0.0 0 100 0.0 0 

JTK MetaCycle 100 0.0 0 100 80.9 0.6 

ARS MetaCycle 45.62 1.72 0.04 100 95.92 43.02 

 

Supplemental Table 1: Sensitivity of ten mathematical methods in detecting circadian 

oscillations. A cosinor wave with a period of 24 hours was sampled every 4 hours over 24 or 

48 hours. Noise was added to the amplitude, period, and phase of the wave at every data point 

sampled (n=5,000). 

  



 ICU  

Age (years) 60.85 (±13.39) 

Sex (% male) 62% (n=8) 

 
Admission 
Diagnosis 

Pneumonia 4 

Trauma 3 

Acute Abdomen 5 

Other* 1 

 
 
 
 

Ventilation 

FiO2 (%) 35.50 (±7.17) 

SpO2 (%) 96.12 (±1.93) 

Peak Inspiratory Pressure (PIP) 
(cmH2O) 

19.86 (±5.6) 

Peak End Expiratory Pressure 
(PEEP)  (cmH2O) 

7.10 (±2.16) 

Tidal Volume (mls) 424.33 (±121.37) 

Minute Ventilation (L) 9.30 (±3.03) 

 
Blood Gas 

pH 7.42 (±0.04) 

pCO2 (kPa) 5.71 (±1.24) 

pO2 (kPa) 11.62 (±2.73) 

 
Cardiovascular 

Heart Rate (beats/min) 88.57 (±22.81) 

Mean Arterial Pressure (mmHg) 78.65 (±10.92) 

Noradrenaline (mg/Hr) 0.20 (±0.33) 

Temperature (°C) 36.68 (±0.79) 

GCS 9.62 (±5.16) 

 
Haematology 

White Blood Cell count (109/L) 13.78 (±8.35) 

Neutrophil count (109/L) 10.70 (±6.66) 

Monocyte count (109/L) 0.91 (±0.51) 

Lymphocyte count (109/L) 1.34 (±0.57) 

 
Biochemistry 

Sodium (mmol/L) 139.70 (±4.10) 

Potassium (mmol/L) 4.22 (±0.55) 

Creatinine (µmol/L) 113.00 (±85.01) 

Bicarbonate (mmol/L) 25.00 (±5.12) 

SOFA Score 7.08 (±4.97) 

 

Supplemental Table 2: Patient demographics for ICU patients: Variables are expressed 

as mean (±SD) or as percentages. SOFA score= Sequential Organ Failure Assessment 

score(1) , FiO2= Fraction of Inspired Oxygen *Other was suspected PE with reversible renal 

failure 

  



Age 55.7 ± 13.2 years 

Male 15 (52%) 

Cold Ischaemic Time 13.7 ± 5.9 (hours) 

Warm Ischaemic Time 27 ± 18.5 Minutes 

Donor Type 14 Brain Death 

15 Cardiac Death 

Pre-op Creatinine 533±214.8 µmol/L 

CRP during circadian 
measurement 

14.9 ± 19 mg/L 

 

Supplemental Table 3: Patient demographics for Kidney transplant recipients: Clinical 

variables are expressed as mean (±SD) or as numbers/ percentages.  

  



 
 Normal detection 

(n=7) 
Reduced 

Detection (n=6) 
P Value 

Age (years) 62.57 (±13.87) 58.83 (±13.79) 0.637 

Sex (% male) 71% (n=5) 50% (n=3) 0.592 

 
Admission 
Diagnosis 

Pneumonia 3 1  
 
 

n/a 

Trauma 2 1 

Acute Abdomen 2 3 

Other* 0 1 

 
 
 
 

Ventilation 

FiO2 (%) 36.84 (±8.81) 33.93 (±4.97) 0.490 

SpO2 (%) 95.64 (±2.03) 96.68 (±1.82) 0.357 

Peak Inspiratory Pressure (PIP) 
(cmH2O) 

18.22 (±5.81) 21.50 (±5.37) 0.334 

Peak End Expiratory Pressure 
(PEEP)  (cmH2O) 

6.20 (±1.53) 8 (±2.45) 0.159 

Tidal Volume (mls) 377.69 (±160.86) 470.98 (±36.2) 0.196 

Minute Ventilation (L) 7.86 (±3.25) 10.73 (±2.17) 0.102 

 
Blood Gas 

pH 7.40 (±0.04) 7.43 (±0.04) 0.241 

pCO2 (kPa) 5.87 (±1.63) 5.51 (±0.66) 0.617 

pO2 (kPa) 10.49 (±1.93) 12.94 (±3.09) 0.110 

 
Cardiovascular 

Heart Rate (beats/min) 82.34 (±19.62) 95.83 (±25.85) 0.308 

Mean Arterial Pressure (mmHg) 81.18 (±12.4) 75.69 (±9.09) 0.390 

Noradrenaline (mg/Hr) 0.95 (±1.84) 4.09 (±5.45) 0.178 

Temperature (°C) 36.5 (±0.90) 36.96 (±0.68) 0.464 

GCS 10.73 (±5.06) 8.34 (±5.44) 0.429 

 
Haematology 

White Blood Cell count (109/L) 11.20 (±5.27) 16.78 (±10.68) 0.246 

Neutrophil count (109/L) 8.66 (±4.6) 13.08 (±8.27) 0.248 

Monocyte count (109/L) 0.87 (±0.41) 0.96 (±0.64) 0.775 

Lymphocyte count (109/L) 1.41 (±0.48) 1.27 (±0.71) 0.676 

 
Biochemistry 

Sodium (mmol/L) 139.57 (±3.74) 139.83 (±4.83) 0.914 

Potassium (mmol/L) 4.17 (±0.45) 4.28 (±0.69) 0.733 

Creatinine (µmol/L) 108.43 (±96.04) 118.33 (±78.83) 0.844 

Bicarbonate (mmol/L) 26.57 (±5.46) 23.37 (±4.66) 0.300 

SOFA Score 5.00 (±3.56) 9.50 (±5.58) 0.106 

 

Supplemental Table 4: Patient demographics for ICU patients categorised by detected 

circadian rhythmicity: Variables are expressed as mean (±SD) or as percentages (numbers). 

SOFA score= Sequential Organ Failure Assessment score (1), FiO2= Fraction of Inspired 

Oxygen. One “normal detection” patient received oxygen without ventilation and therefore 

we were not able to obtain data regarding PIP, PEEP, tidal volume or minute ventilation from 

this patient. *Other was suspected PE with reversible renal failure 
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Supplementary Methods

1 Assessing circadian rhythmicity – computational
methods

In the following sections, we describe three core methods used in the paper. These
are: (i) (Fast) Fourier–Transform based methods, which can determine whether a 24
hour signal is dominant, provided that the sample interval divides 24 hours; (ii) non-
linear, least-squares fitting to a sinusoidal waveform, so-called cosinor analysis; and (iii)
maximum likelihood, Gaussian process regression (GPR), using a sum of linear and
periodic kernels in the covariance function.

2 Fast Fourier Transform (FFT) and Lomb–Scargle
Periodogram

Fourier methods are based on a statistic known as the periodogram, I(f), a function of
the frequency f which indicates the contribution of that frequency to the overall signal:
e.g. for a pure sinusoidal signal of frequency F , the periodogram is only non-zero when
f = F . For uniformly sampled data

I(f) =
1

N

∣∣∣∣∣
N∑

n=1

xne
−2πiftn

∣∣∣∣∣
2

, (1)

where N is the total number of data points and (tn, xn) are the time points and sample
values, the periodogram can be efficiently calculated at the harmonic frequencies fn =
2πn/N via the Fast Fourier Transform. If the data are not uniformly sampled then
the alternative Lomb–Scargle periodogram is used, which corresponds to finding the
periodogram that arises from finding the best–fit sinusoids at each frequency in a least-
squares sense (1). We define a signal to be circadian if the maximum value of the
periodogram occurs at a frequency corresponding to a period of 24 hours. Fisher’s g–
statistic is the normalised value of the maximum value of the periodogram, i.e. the
maximum value divided by the sum of all values at the harmonic frequencies. This
statistic has the value 1 if the signal is a pure sinusoid and decreases with increasing
components at other frequencies (noise).

When these methods are applied to pure Gaussian noise, peaks will still occur in
the periodogram. In order to differentiate between spurious peaks cause by noise and
genuine peaks caused by a signal in the data, a false alarm probability (FAP) is employed
to quantify significance. For data consisting of pure Gaussian noise, the values of the
periodogram follow a χ2 distribution with 2 degrees of freedom (2). However, this is the
distribution of one particular (arbitrarily chosen) frequency rather than the distribution
of the largest peak in the periodogram. The distribution of the largest peak is not
easy to calculate since the value at each frequency is correlated with the values at
other frequencies and so approximations must be applied. To this end, we turn to
computational methods and leverage the bootstrap approximation. To bootstrap the
periodogram, the temporal coordinates, tn, remain fixed but the observational values xn

are resampled with replacement. This generates a bootstrap sample (t1, x
∗
1), . . . , (tn, x

∗
N )

where each x∗
i is chosen uniformly at random from the original times series sample
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values {x1, . . . , xN}. The maximum value of the periodogram applied to this resample
is computed and then this procedure of resampling and calculation is repeated. For
enough resamples, the empirical distribution of such maxima will approximate the same
marginal distribution as the original time series (3). The bootstrap approach was used
since it produces a robust estimate by making few assumptions about the form of the
periodogram distribution.

3 Least-squares fitting (cosinor analysis)

We perform a least-square fit to the function

x(t) = m+A cos

(
2πλ

24
t+ ϕ

)
,

by first assuming a period of 24 hours (λ = 1), in which case the model is linear in the
parameters m, A cos(ϕ) and A sin(ϕ) (4). The linear system is solved to find m, which
is then subtracted from the signal. We next perform a non-linear least-squares fit to the
case when m = 0, treating the frequency as an unknown, but using the results from the
linear analysis as an initial guess.

After the non-linear fit, if the amplitude A > 2σdata, then the non-linear least-
squares fit is recalculated, but using a constrained fit to ensure that A ≤ 2σdata. Once
the amplitude has been tested, we next test the period to ensure that it is neither less
than 4 hours, nor greater than twice the data sample window. These thresholds were
chosen because it would not be possible to infer such periods from the input data.

The results of the fit are estimates for m,A, λ and ϕ. The physical interpretations
of all these parameters, respectively, are: the mean, the amplitude of the wave, the
frequency (which can easily be converted to period, using period = 24/λ) and the time
of day at which the wave attains its maximum value, a quantity known as the acrophase.

Note that there are 2 cases to consider when choosing the correct acrophase:

1. The wave has a period < 24 hours. This means there are multiple maximums in
every 24h window

2. The wave has a period > 24 hours. This means that a maximum is not necessarily
attained in every 24h window

To deal with option 1, we define the acrophase to be the time associated with the first
peak during the sample window. For option 2, if there is a peak during our sample
window then the associated time is defined as the acrophase. If there is no peak within
our sample window, then we choose the peak that is associated with the acrophase
closest to our sample window (so this can be before or after the sample window).

4 ClinCirc

In the combined approach, the Lomb–Scargle periodogram and the non–constrained
cosinor estimate of period are used as a pre-processing filter to remove non-circadian
signals before a constrained cosinor analysis is used to ascertain the characteristics of any
detected circadian oscillation. Note that if the data are complete and uniformly spaced,
the Lomb–Scargle periodogram is equivalent to the periodogram calculated using the
Fast Fourier Transform. In ClinCirc, only if the maximum value of the periodogram
occurs at 24 h is an unconstrained cosinor analysis performed. Next, only if the period
estimate falls between 4h and > 2 × sample window length is the signal deemed to be
circadian. Then, and only then, is a constrained cosinor analysis (period constrained be-
tween 18h–30h) performed to determine estimates for the amplitude, phase, and period.
The period constraint is required because the Lomb–Scargle periodogram does not rule
out signals with components in the higher harmonics (e.g., 12-hour period), provided
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that the amplitudes of these components are less than those of the 24-hour component.
Given the sparsity of the sampled data, these signals may be biologically significant, but
will lead to periods that differ from 24 hours when fitting a single sinusoid. The lower
limit is chosen as the mean of the fundamental (24 hours) and first harmonic (12 hours)
and the upper limit is chosen so that the window is symmetric about 24 hours.

5 Gaussian process regression (GPR)

5.1 Using Gaussian processes to fit time series data

In this approach, we assume that our target time series x(t) can be written as

x(t) = f(t) + ϵ(t), (2)

comprising a signal term f(t) together with a noise term ϵ(t). Given N observations

of the input (time) variable X = (t1, . . . , tN )
T

and the output (e.g. gene expression)

variable y = (x(t1), . . . , x(tN ))
T
, the regression task is to learn a model from this training

data that can predict the output y∗ from a new input X∗ = (t∗1, . . . , t
∗
M )

T
.

Gaussian process regression (GPR) uses a Gaussian process as a prior for the function
f in (2) – that is, we assume f(t) ∼ GP (m(t), k(t, t′)). A Gaussian process is a collection
of random variables such that any finite collection of the random variables follows a
multivariate normal distribution. It is characterised by a mean function m(t) = E(f(t))
and a covariance function k(t, t′) = E ((f(t)−m(t))(f(t′)−m(t′))). Thus, if we write

f = (f(t1), . . . , f(tN ))
T
, then under this assumption, f is normally distributed with

mean vector m(X) and covariance matrix K(X,X), where K(X,X)ij = k(ti, tj) – that
is, f ∼ N (m(X),K(X,X)). If is further assumed that the noise term ϵ(t) in (2) is
independent of f(t) and normally distributed with zero mean and standard deviation
σn, that is ϵ(t) ∼ N (0, σ2

n), it follows that the output variable y is distributed according
to y ∼ N

(
m(X),K(X,X) + σ2

nI
)
.

It can then be shown (see e.g. (5)) that conditioned on the training data {X,y},
the function f evaluated at a new input X∗, which we write as f∗, has the posterior
distribution f∗|{X,y, X∗} ∼ N

(
f̄∗, cov(f∗)

)
, in which

f̄∗ = K(X∗, X)
(
K(X,X) + σ2

nI
)−1

y

and
cov(f∗) = K(X∗, X∗)−K(X∗, X)

(
K(X,X) + σ2

nI
)−1

K(X,X∗),

where K(X∗, X)ij = k(t∗i , tj), K(X,X∗)ij = k(ti, t
∗
j ) and K(X∗, X∗)ij = k(t∗i , t

∗
j ).

The corresponding output variable y∗ has the posterior distribution y∗|{X,y, X∗} ∼
N

(
f̄∗, cov(f∗) + σ2

nI
)
.

The covariance function k(t, t′) models the dependence between the function values
at different time points t and t′, and is referred to as the kernel of the Gaussian process.
The choice of an appropriate kernel for a particular regression task is guided by domain-
specific knowledge, such as the temporal patterns that are likely to be observed in the
data (5). A commonly-used kernel is the radial basis function (RBF), which encodes
the assumption that the correlation between two time points decays exponentially with
the distance between them:

k(t, t′) = σ2
f exp

(
− (t− t′)2

2λ2

)
.

The kernel contains two hyperparameters: the signal variance σ2
f and the length scale λ.

Together with the hyperparameter σ2
n of the noise process ϵ(t) in (2), these can be varied

to improve the fit to a target timeseries. Given a chosen kernel k and hyperparameters

3



θθθ, a common method (and the method used here) for inferring the values of θθθ is to
maximise the log marginal likelihood of the training data

log p(y|X,θθθ) = −1

2
yTK−1

y y − 1

2
log |Ky| −

N

2
log 2π, (3)

where Ky = K(X,X) + σ2
nI (5).

5.2 GPR fits to circadian time series

In applying GPR to the circadian data (synthetic and experimental), we assumed a zero
prior mean m and a covariance function k comprising the sum of a linear kernel (to
model baseline drift), and a periodic kernel (a variant of the RBF kernel that can model
rhythmic oscillations):

k(t, t′) = σ2
b + σ2

v(t− c)(t′ − c) + σ2
f exp

(
−2 sin2 (π|t− t′|/τ)

λ2

)
. (4)

The hyperparameters in this case are θθθ = (σb, σv, c, σf , λ, τ, σn), where σ2
b , σ

2
v and σ2

f

are signal variances, c is an offset, λ is the length scale, τ is the period and σ2
n is the

noise variance. Hyperparameters were fitted to z-score normalised training data by
maximising the log marginal likelihood (3) using the Nelder-Mead simplex algorithm
(6), as implemented by the MATLAB function fminsearch. To ensure that the global
maximum was located in each case, the optimisation algorithm was initiated from 100
Latin hypercube samples generated within the following bounds:

σb = σv = c = 0, 0.001 ≤ σf , λ ≤ 10, 12 ≤ τ ≤ 36, 0.001 ≤ σn ≤ 2 (simulated data)

0.001 ≤ σb, σv, c, σf , λ ≤ 10, 18 ≤ τ ≤ 30, 0.001 ≤ σn ≤ 2 (experimental data)

For the fits to synthetic data, the parameters σb, σv, and c were restricted to 0 as this pre-
vented the optimisation procedure from trying to fit a linear trend to the data, focusing
instead on calibrating the periodic kernel hyperparameters. Preliminary optimisation
runs demonstrated that if σb, σv, and c were allowed to vary, then correctly locating
the global maximum became extremely difficult, and typically resulted in several of the
hyperparameters taking extreme values. This is because the hyperparameter space be-
comes populated with ‘neutral zones’ in which the optimiser can take large steps without
improving the quality of the fit.

5.3 GPR-based circadian rhythmicity criterion

Given the maximum likelihood estimate θ̂θθ =
(
σ̂b, σ̂v, ĉ, σ̂f , λ̂, τ̂ , σ̂n

)
of θθθ obtained as

described above, a time series x(t) was then classified as circadian if the kernel hyper-
parameter values satisfied the following inequalities:

σv < 0.1, σf > 0.1, λ > 0.5, 20 < τ < 28,

The bounds on σv and σf ensured that the signal term f(t) in (2) was not dominated
by baseline drift, whilst the bound on the length scale λ excluded very high frequency
variations in expression level. The bounds on τ reflected a broad definition of circadian
rhythmicity. All time series that satisfied this criterion were observed to have self-
sustained oscillations with a roughly circadian period, validating the bounds chosen.

5.4 Calculation of posterior distributions and circadian metrics

Posterior distributions {f̄∗,y∗} were computed using custom-written software in MAT-
LAB (these will be made available following publication from https://github.com/oeakman).
Acrophases and amplitudes were extracted from GPR fits by evaluating the posterior
mean f̄∗ on a finely sampled mesh X∗, and applying the MATLAB function findpeaks.
95% confidence intervals were computed as (f̄∗)i ± 1.96σi, where σ2

i = (cov(f∗))ii + σ2
n

(5).
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5.5 Application of the Matérn kernel for detecting periodicities

An alternative approach to quantifying if a signal is circadian using GPR was suggested
by (7). They focus on applying harmonic analysis in reproducing kernel Hilbert spaces
(RKHS). Specifically, they decompose an RKHS into a subspace of periodic kernels and
combine this with its orthogonal complement to produce a subspace of aperiodic sub-
kernels. It is shown that the Matérn family of kernels can be analytically decomposed
in this fashion and this decomposition allows the quantification of the periodicity of a
signal. The final kernel applied uses a Matérn 3/2 kernel plus a delta function to capture
observational noise:

k(t, t′) = σ2
pkp(t, t

′) + σ2
aka(t, t

′) + τ2δ(t, t′),

where kp is the periodic sub-kernel and ka is the aperiodic sub-kernel. Once the GPR
has been fit with this kernel, the periodic and aperiodic sub-kernels can be used to
quantify the periodicity of the time series. The criterion is based on the ratio of signal
variance explained by the sub-kernels. Explicitly, let R be a random variable defined on
the input space, and yp, ya be the periodic and aperiodic components of the signal y.
The periodicity ratio is defined as

S =
Var [yp(R)]

Var [yp(R) + ya(R)]
.

It must be noted that S can not be interpreted as the percentage of periodicity in the
signal since Var [yp(R) + ya(R)] ̸= Var [yp(R)] + Var [ya(R)]. As such, this ratio can
exceed 1.

To apply this method to detect if a signal is circadian, the hyperparameters are
constrained as λ ∈ [20, 28] (the period); σp, σa ≥ 0 (variance of the periodic and aperiodic
sub-kernels); lp, la ∈ [10, 60] (the length scales of the periodic and aperiodic sub-kernels)
and τ2 ∈

[
10−5, 0.75

]
. To try limit the impact of local minima, 50 random restarts

are performed for each optimisation. Finally, since the periodicity ratio S is a random
variable, the expectation is approximated using the mean of 1000 realisations.

The code provided by the authors of (7) in their supplementary materials was used
to implement this method. No strict threshold was given on what value of S indicates
a periodic signal, but based on testing the sensitivity and specificity of the method on
synthetic data, a cut-off of 0.7 was used.

6 Generating synthetic data

The performance of each method was analysed using synthetic data generated with a
4-hour sampling frequency over both 24-hour and 48-hour sample windows.

We considered two key metrics for evaluating the performance of each algorithms:
specificity and sensitivity. In the context of circadian analysis, the specificity indicates
the proportion of non-circadian signals that an algorithm will correctly determine are
not circadian, whilst sensitivity is the proportion of genuine circadian signals that are
correctly identified as circadian.

6.1 Specificity assessment

In order to determine how well each algorithm could identify non-circadian signals, data
were simulated from a straight line as has previously been suggested (8). Specifically,
data were generated using the model

Xt = mt,

where m ∈ (−0.05, 0]. This model was used to generate two datasets: one sampled
every 4 hours for 24 hours, and one sampled every 4 hours for 48 hours. Each dataset
contained 5000 synthetic waveforms.
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6.2 Sensitivity assessment

To assess the sensitivity of each algorithm, data were generated from a cosine wave
following the simultaneous addition of noise to the amplitude, period, and acrophase.
The model used to generate synthetic signals was a two-step process. Firstly, a random
amplitude and acrophase were selected for a cosine wave:

A ∼ Unif [0.1, 10],

φ ∼ Unif [0, 24],

γ ∈ {−0.05, 0.05}.

That is, the amplitude is uniformly sampled from 0.1 to 10, the acrophase is uniformly
sampled from [0, 24], and a linear trend was randomly selected to be increasing or
decreasing using gradients previously suggested (8). For each signal, once the above
parameters had been selected, each synthetic data point was generated from the model

Xt = M +A cos

(
2πt

period
− Φ

)
+ ε(t) + γt,

where

M = MESOR = 1,

period ∼ Unif [24− αper, 24 + αper],

Φ ∼ Unif [φ− αphase, φ+ αphase],

ε(t) ∼ N(0, αamp ·A).

Hence, every time a point was generated from a signal, the period, amplitude and
acrophase had added noise. There are three noise parameters, αper, αamp, αphase, that
can be tuned to increase or decrease the amount of noise added. The maximum noise
level we used, termed the 40% noise level, was parameterised by {αper, αamp, αphase} =
{4, 0.4, 1}, so that the period could vary between 20 – 28 hours, the variance of the
noise added to the amplitude was equal to 40% of the amplitude of the wave, and the
phase could vary by ±1hour. Any lower level of noise was scaled proportionally i.e.,
20% noise has the parameters {αper, αamp, αphase} = {2, 0.2, 0.5}. A selection of wave
forms generated using this procedure can be seen in (Supp. Fig. 1), ranging from 0%
noise (a perfect sinusoid) up to 40% noise in 10% increments. Data were sampled every
4 hours over both 24 hours and 48 hours to reflect the clinical data and 5000 synthetic
signals were generated for each dataset.

7 Benchmarking performance using biological data

The performance of the algorithms were also evaluated using biological data. For this
purpose bioluminescence data from lung slices obtained from PER2 ::Luc mice was anal-
ysed. Initial recordings were made every 10 minutes over 72 hours from three different
lung slices. The expression levels have an amplitude that dampens over the course of
72 hours, but it is clear they have a roughly 24 hour period To adapt these data for
benchmarking, the traces were initially split into either 24- or 48-hour sampling periods.
Next, the data were down-sampled to be measured once every 4 hours. Each algorithm
was applied to these datasets and assessed based on how many of the waveforms it
correctly identified as circadian.

The biological data was then used for a second set of benchmarks, this time focusing
on assessing the accuracy of parameter estimation. For this task, Gaussian noise was
added to the traces. That is, for every data point (Xt, Yt), a new data observation
Ŷt = Yt + ε(t), was generated. Explicitly, ε(t) has the distribution

ε(t) ∼ N(0, αÂ),
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where α was varied from 0 to 0.4 in steps of 0.1 and Â = 0.5(max(Yt) − min(Yt)), a
non-parametric approximation of the amplitude. This resulted in a new data set of
data points, (Xt, Ŷt), referred to as a “noisy” dataset. Using this method, 250 noisy
datasets were generated for each noise level (i.e., for each value of α). A ”ground truth“
for the parameter estimates was then calculated using the original waveforms, sampled
every 10 minutes. To assess the accuracy of the parameters estimates, the prediction
for amplitude, period, and phase on the noisy datasets was compared to ground truth
estimates.
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