

90

60

Time(Min)

120

180

45

60-

40-

20

0

WT RR

8-

6-

4-

2-0

..

WT RR

100-

0

15

30

Type IIb

b-i

j

Figure S10

а

d

а

58/483 genes

GO term	P-Value
Lipid metabolic process	5.3E-7
Fatty acid metabolic process	9.6E-7
Glucose metabolic process	1.6E-5
lipid storage	2.1E-5
Fatty acid beta-oxidation	5.0E-4
Response to fatty acid	1.4E-3
Fatty acid transport	4.4E-3

b

Relative gene expresion (fold chage) Control 1.4-Ob/Ob 1.2-NS •1• ••• :T• .0-* 0.8 AT. ۸ -** ** T ** ** 0.6 Ŧ ** ** Ĵ. Ĵ. ۸ Т 0.4 *** + 0.2 0.0 Mcad-Uqcrc2-Myod-Myhc-Mef2c-Ucp3-Cpt1a-Ndufs2-Tfam-E2F3-Cdk4-Rb-Ppargc1a-Fatty acid Muscle specific genes Energy specific E2F3-pRb-E2F3 Mitochondrial Oxidation genes genes Pathway genes genes

Supplementary Figure Legends

Supplemental Figure 1. Metabolic phenotype of *Cdk*4^{RR} mice.

(A-H) Body length (A), body weight (B), fasting and fed glucose levels (C and D), serum insulin level (E), food intake (F), areas under the curve (AUC) during glucose tolerance and insulin tolerance tests (G and H) in $Cdk4^{RR}$ (RR) mice compared to wild-type (WT) littermates (n=5 mice per genotype). (I-K) Serum triglyceride (I), free fatty acid (J) and adiponectin levels (K) in RR mice as compared to WT mice (n=6 mice per genotype). Values plotted here are mean and standard error of means. P values are defined as * = <0.05, ** = <0.01, *** = <0.001. NS: Not significant.

Supplemental Figure 2. Improved metabolism in high-fat diet fed *Cdk*4^{RR} mice.

(A-G) Food intake (A), ambulatory activity (B), serum insulin levels (C), areas under curve during the GTT and ITT (**D** and **E**) in RR mice fed with HFD in comparison to that seen in similarly fed-WT mice (n=6-9 mice per genotype). (F) Triglyceride content in liver, muscles, pancreas, WAT and BAT in HFD-fed RR mice in comparison to that seen in HFD-fed WT mice (n=6 mice per genotype). (G) mRNA expression of lipogenic genes, fatty acid oxidation genes and mitochondrial genes in skeletal muscles (quadriceps) of HFD-fed RR mice as compared to that seen in similarly fed-WT mice (n=6 mice per genotype). Values plotted here are mean and standard error of means. p values, * = <0.05, ** = <0.01, *** = <0.001.

Supplemental Figure 3: Improved serum lipid and cytokine profile in *Cdk*4^{RR} mice.

(A-I) Levels of serum triglyceride (A), free fatty acids (B), resistin (C), IL-6 (D), adiponectin (E), leptin
(F), TNF-α (G), PAI-1 (H) and MCP-1 (I) in HFD-fed WT and RR mice. (J-K) Levels of glucose uptake

in (J) white adipose tissue (WAT) and (K) brown adipose tissue (BAT) during hyperinsulinemiceuglycemic clamp assay in chow-fed RR and WT mice. (L) Triglyceride accumulation in skeletal muscles (quadriceps) of RR mice, compared to that seen in WT mice. (n=5-6 mice per genotype) Values plotted here are mean and standard error of means. p values, * = <0.05, ** = <0.01, *** = <0.001. NS: Not significant.

Supplemental Figure 4: Improved muscle metabolic function in *Cdk*4^{RR} mice.

(A-F) VO₂ levels (A), body weight (B), lean mass (C), fat mass (D), total activity (E), food intake (F) in RR mice compared to WT mice (n=10 mice per genotype). (G and H) *In vivo* whole-body fatty acid oxidation (G), and grip strength (H) in RR mice compared to WT mice (n=5-6 mice per genotype). Spontaneous physical activity of WT and RR mice measured as beam breaks every 15 minutes in indirect calorimetry cages on four successive days (n=10 mice per genotype). All data are expressed as mean ±SEM. Values plotted here are mean and standard error of means. P values are defined as * = <0.05, ** = <0.01. NS: Not significant.

Supplemental Figure 5. Expression of metabolic genes in skeletal muscles of Cdk4 mutant mice.

(A-G) mRNA levels of (A) PGC-1 α , (B) Ampk1 α , (C) Ampk1 β , (D) Ndufs2, (E) Uqcrc2, (F) Tfam, and (G) Atp5a1 in quadricep muscles, BAT, WAT and liver tissues from WT, RR and KO mice (n=6 mice per genotype). Values plotted here are mean and standard error of means. P values are defined as * = <0.05, ** = <0.01, *** = <0.001.

Supplemental Figure 6. RNA-seq analyses of quadriceps (QA) and soleus (SOL) muscles.

(A) Heatmap of muscle fiber-type transcripts in quadricep (QA) and soleus (SOL) muscles (n=6, wild-type mice). Color intensities indicate Z-score. (B) Heatmap of SOL muscle transcripts representing

fiber type IIa (n=3 mice per genotype). (C) Log2-fold change values determined RNAseq for Type IIb fiber markers between WT vs RR mice (n=3 mice per genotype). Values plotted here are mean and standard error of means.

Supplemental Figure 7. Myogenic differentiation capacity of primary myoblasts.

(A) Myogenic differentiation ability of primary myoblasts from RR and WT mice based on staining with antibody (green) against MyHC, a myogenic differentiation marker. Scale bar, 500 μ m. (**B-D**) Quantification of MyHC, PGC1 α and Uqcrc2 protein levels during muscle differentiation of primary myoblasts from RR and WT mice. Values plotted here are mean and standard error of means. P values are defined as * = <0.05, ** = <0.01. NS: Not significant.

Supplemental Figure 8. Effects of pharmacological inhibition of Cdk4 on muscle differentiation of C2C12 cells.

(A, B) Effects of CDK4i treatment on expression levels of (A) PGC1a and (B) Tfam transcripts during C2C12 differentiation (n=3 each group). (C, D) Gene expression of slow/oxidative muscle fiber-specific myosin heavy chain isoform transcripts i.e. (MyhcI and MyhcIIa) and fast/glycolytic fiber transcripts (MyhcIIx and MyhcIIb) in Cdk4i-treated differentiating C2C12 myotubes after (C) 2 days and (D) 5 days of differentiation induction compared to expression levels in control vehicle-treated cells (n=3 treatments per group). Values plotted here are mean and standard error of means. P values are defined as * = <0.05 and ** = <0.01

Supplemental Figure 9: Cdk4 promotes muscle regeneration in response to CTX-induced injury.(A) Cdk4 (red staining) expression in mature myotubes from undamaged muscle and regenerating

myotubes 7-days after Cardiotoxin (CTX) administration. DAPI stain (blue) shows nuclei. Scale bar in Zoomed image, 50µm. (B) Representative bright field image of H&E staining of newly formed fibers with central nuclei, 7 days post-CTX-induced muscle injury. Scale bar, 50µm. (C-E) Confocal (40x) images showing Cdk4 staining (red) in central nuclei (blue) of newly formed fibers. Cdk4 is localized either in the perinuclear area of central nuclei (white arrows) or inside the central nuclei (yellow arrows). Cdk4-negative central nuclei are also detected. Scale bar, 50µm. (F-I) Dashed square (in F) represents magnified images in panels (G-I) which are 80X confocal images showing perinuclear (white arrow) and intranuclear (yellow arrow) staining of Cdk4 in newly regenerated fibers. Dashed shapes indicate the perimeter of different fibers. Scale bar, 10µm. (J) Number of central nuclei with different types of Cdk4 localizations. Total number of fibers counted: 161. Data presented as mean \pm SEM. (K) Proliferation activity in muscles after CTX-injury. Cdk4 (red) and IdU (green) antibodies with DAPI (blue) 7 days post-CTX injection. Scale bar, 50µm. (L) H&E staining of regenerated TA muscle from WT and RR mice 7 and 14 days post-CTX injection. Scale bar, 200µm. (M) Fiber area frequency distribution in cross-sectional area of TA muscle 14 days after CTX injection (n=3 per genotype). n=5-6 mice per genotype in all data shown in this figure.

Supplemental Figure 10: Improved mitochondrial phenotype in *Cdk*4^{RR} skeletal muscle.

(A) Heatmap of muscle type I fiber transcripts in $Cdk4^{WT}$ and $Cdk4^{KO}$ mice. Color intensities indicate Z-score (n=3 mice per genotype). (B-E) Mitochondrial numbers (B, C) and mitochondrial area (D, E) in quadriceps (B, D) and EDL (C, E) skeletal muscles from RR and KO mice, compared to WT mice (n = 5 mice per genotype). Values plotted are mean and standard error of means. (F) Oxygen consumption in Cdk4-inhibitor IDCX treated C2C12 cells differentiated towards muscle compared to C2C12 cells treated with control vehicle (n=3 treatments per condition). (G, H) Run distance (G) and

run time (H) on treadmill in KO mice, compared to WT mice (n = 6-7 mice per genotype). P values are defined as * = <0.05, ** = <0.01, *** = <0.001 WT vs RR, and # = <0.05, ## = <0.01 WT vs KO.

Supplemental Figure 11. Gene expression of selected markers in response to exercise.

Gene expression analyses of muscle, energy-specific, fatty acid oxidation, mitochondrial and cell cycle genes in quadriceps muscles of normal wild-type mice subjected to treadmill exercise (n=5 mice per group). Values plotted here are mean and standard error of means. p values, * = <0.05, ** = <0.01. NS: Not significant.

Supplementary Figure 12. Levels of p16^{Ink4a} and RB protein in primary myoblasts.

(A) Protein expression of $p16^{Ink4a}$, Ser780-phosphorylated RB (pRb), total RB and (B) quantification of pRb/Rb and p16 protein levels in primary myoblasts from TA muscles of RR mice as compared to WT mice. β -Actin is shown as loading control.

Supplemental Figure 13. Regulation of PGC-1 α transcription by E2F3.

(A) mRNA expression of Cdk4, Rb, and E2F1, E2F2, and E2F3 and (B) protein expression of E2F3, PGC-1 α , MyHC, and α -Tubulin in differentiating C2C12 myoblasts (n = 3 per condition). (C) Representative agarose gel images of ChIP-assay for E2F3 binding on the PGC-1 α promoter during the 4-day muscle differentiation program in C2C12 cells. (D and E) Real-time qPCR detected binding of E2F3 to the PGC-1 α promoter during muscle differentiation of C2C12 cells with or without the presence of a Cdk4 inhibitor (Inh). GM = Growth medium, DM3 and DM6 = 3 and 6 days in differentiation medium (DM), IgG = control immunoglobulin antibody precipitated sample. E2F3 =

E2F3 antibody precipitated sample. (F) Representative western blot of PGC-1 α expression in differentiating C2C12 myoblasts after treatment with Cdk4 inhibitor (Cdk4i) in comparison to mock vehicle treatment (n=3 samples per condition). P values are defined as * = <0.05.

Supplemental Figure 14. Effects of skeletal muscle specific deletion of E2F3 on metabolism.

Body weight (**A**) and lean mass (**B**) of E2F3WT and E2F3mKO mice (n=5 mice per genotype). (**C**) Heatmap of muscle fiber type I transcripts in E2F3WT and E2F3mKO mice. Color intensities indicate Z-score (n=3 mice per genotype). (**D**) mRNA expression levels of muscle specific genes (Myf5, Mef2c, MyoD1, Myh1), mitochondrial specific genes (citrate synthase (Cs), ATP synthase (Aat5b), Tfam and Uqcrc2), and PGC-1 α in QA muscle of WT and E2F3mKO mice (n = 5 per genotype). Running time (**E**) and running distance (**F**) after treadmill exercise by E2F3mKO and E2F3WT mice (n=6 per genotype). (**G**) Expression of lipogenesis-specific gene transcripts (Lpl, Hsl, Acc1, Adipoqr1(Adiponectin receptors) and Ppar- γ) in QA skeletal muscles of E2F3mKO mice, compared to wild type counterparts (n=5 per genotype). (**H**) Total body fat mass in E2F3mKO mice on regular diet (RD) and on high fat diet (HFD). Area under the curve during the GTT (**I**) and ITT (**J**) in E2F3mKO mice, compared to E2F3WT mice (n=5 per genotype). Values plotted here are mean and standard error of means. P values are defined as * = <0.05, **= <0.01, *** = <0.001.

Supplemental Figure 15. Correlation of lipid-profile gene expression with Cdk4 and E2F3 status.

(A) GO analysis values of 58 genes from 483 differentially expressed genes (DEGs, p <0.05) common in Cdk4KO and E2F3mKO muscle compared to their respective wild-type controls. (B) Heatmap of the 58 genes showing relative expression levels based on Cdk4 and E2F3 status. Left heatmap panel shows genes that are either co-upregulated or co-downregulated based on Cdk4 and E2F3 status. Right heatmap shows genes that are oppositely upregulated or downregulated based on Cdk4 and E2F3 status. The black line in both panels distinguishes the co-upregulation vs co-downregulation (left heatmap panel) and the opposite upregulation vs downregulation. The color intensities indicate Log2 fold change (n=3 mice per genotype).

Supplemental Figure 16. Muscle and mitochondrial genes expression in deafferented primary myoblasts.

(**A and B**) Efficacy of p16ink4a knockdown in primary myoblasts shown via (**A**) western blot analyses and (**B**) its quantification (n=3 each group). β -Actin is shown as loading control. (**C-E**) Relative expression levels of transcripts representing muscle and mitochondrial genes in differentiated primary myoblasts from (**C**) p16 knock-downed cells, (**D**) *Cdk4*^{WT}, *Cdk4*^{RR}, and *Cdk4*^{KO} cells, and (**E**) *E2F3*^{WT}, *E2F3*^{mKO} cells (n=3-4 each group). Values plotted here are mean and standard error of means. p values, * = <0.05, ** = <0.01, *** =<0.001.

Supplemental Figure 17. Gene expression levels of select markers in muscle from Lep^{Ob/Ob} mice. Expression of transcripts representing muscle and energy specific, fatty acid oxidation, mitochondrial and cell cycle genes in QA muscles from Lep^{Ob/Ob} (Ob/Ob) mice compared with age and sex-matched wild-type control mice (n= 5 mice per genotype). Values plotted here are mean and standard error of means. p values, * = <0.05, ** = <0.01, *** = <0.001. NS: Not significant.

Supplemental Figure 18. Correlation of mRNA expression levels in human muscle biopsies.

Scatter plots correlating mRNA expression levels of markers representing 5 mitochondria genes, 6 oxidative fibers genes and 5 glycolytic fibers genes in skeletal muscle biopsies from human subjects

(n=221) with levels of expression of *CDKN2A*, *CDK4* and *PPARGC1A*. Smaller circles in scatter plots denote genes expression level of all human subjects. The best fit line in scatter plots was calculated via linear regression analysis and is shown along with goodness of fit (R² statistic).

Supplementary Tables

Table S1: human subject characteristics (n=49)			
Age, years	41.1	±	12.1
Sex, % female		51%	
Body Composition			
BMI, kg/m ²	32.4	±	8.8
% body fat			
Females	42.3	±	9.4
Males	32.2	±	10.5
Insulin sensitivity			
Fasting glucose, mg/dL	91.1	±	11.1
Fasting insulin, mcU/mL	9.3	±	7.5
Hemoglobin A1C, %	5.5	±	0.5
HOMA-IR	2.2	±	1.9
Lipids			
Total cholesterol, mg/dL	174	±	34
LDL, mg/dL	106	±	29
HDL, mg/dL	47	±	12
Triglycerides, mg/dL	122	±	74
Free fatty acids, mcEq/L	579	±	189
Creatine kinase, ng/mL	128	±	90

Data presented as mean ± standard deviation

mixi vi expression and meta	bone pai	ameters	5 (II + <i>)</i>	
Parameter	E2F3		PGC-1a	
	r	р	r	р
Body composition				
BMI	-0.444	0.001	-0.601	< 0.001
% body fat	-0.282	0.049	-0.556	< 0.001
Total body fat mass	-0.408	0.004	-0.656	< 0.001
L. vastus lipid content	-0.729	0.001	-0.707	0.003
L. vastus IMCL*	-0.675	0.004	-0.755	0.001
Insulin sensitivity**	0.302	0.044	0.512	< 0.001
VO ₂ -max	0.256	0.106	0.465	0.003

Table S2: Association between muscle E2F3 and PGC-1α mRNA expression and metabolic parameters (n=49)

Associations assessed by linear regression. *IMCL = intramyocellular lipid content **Insulin sensitivity determined by frequently-sampled intravenous glucose tolerance test (FSIVGTT)

No.	Antibody name	Company
1	pIRS1	Cell Signaling
2	IRS1	Cell Signaling
3	pAkt	Cell Signaling
4	Akt	Cell Signaling
5	α-Tubulin	Sigma
6	MyhcI	Developmental Studies Hybridoma Bank(DSHB), The
		University of Iowa
7	MyhcIIa	Developmental Studies Hybridoma Bank(DSHB), The
		University of Iowa
8	MyhcIIb	Developmental Studies Hybridoma Bank(DSHB), The
		University of Iowa
9	Myosin (Fast)	Sigma
10	Myosin (Slow)	Sigma
11	Laminin	Sigma
12	Myogenin	Cell Signaling
13	Myf5	Cell Signaling
14	MyoD	Cell Signaling
15	МуНС	Santacruz Biotechnology
16	CDK4	Santacruz Biotechnology, Cell signaling
17	Cytochrome Oxidase	Molecular probe
18	PGC1a	Santacruz Biotechnology
19	E2F1	Santacruz Biotechnology
20	E2F2	Santacruz Biotechnology
21	E2F3	Santacruz Biotechnology
22	pRb	Millipore, Cell signaling
23	Total Rb	Cell Signaling
24	Cyclin D1	Cell Signaling
25	Cyclin D2	Cell Signaling
26	Cyclin D3	Cell Signaling
27	p16	Santacruz Biotechnology
28	UQCRC2	Santacruz Biotechnology
29	mtTFA	Santacruz Biotechnology
30	GAPDH	Santacruz Biotechnology
31	β-Actin	Santacruz Biotechnology

Table S3: Antibodies used in this study

Table S4: Primers used in this study

Gene name	Gene	Primer Sequence		
	Symbol	Forward $(5' \rightarrow 3')$	Reverse $(5' \rightarrow 3')$	
Myosin Heavy Chain, Type I	Myh7	CCAGGGGGCAAACA	CTTCCACTGGGCC	
		GGCATTCACT	ACTTCACTGTT	
Myosin Heavy Chain, Type	Myh2	ATGAGCTCCGACG	TCTGTTAGCATGA	
IIa	-	CCGAG	ACTGGTAGGCG	
Myosin Heavy Chain, Type	Myh4	GTGATTTCTCCTGT	GGAGGACCGCAAG	
IIb		CACCTCTC	AACGTGCTGA	
Myosin Heavy Chain, Type	Myh1	TGAAGGGCGGCAA	GCGGAATTTGGCC	
IIx		GAAGCAGAT	AGGTTGACA	
Mitochondrial NADH-	ND1	CTCTTATCCACGCT	GATGGTGGTACTC	
ubiquinone oxidoreductase		TCCGTTACG	CCGCTGTA	
chain 1				
Mitochondrial Cytochrome b	Cytb	GTGAACGATTGCT	CGATTCTTCGCTTT	
		AGGGCC	CCACTTCAT	
Mitochondrial H19	H19	GTACCCACCTGTC	GTCCACGAGACCA	
		GTCC	ATGACTG	
NADH dehydrogenase	Ndufs2	CAGCCAGATATTG	TGTTGGTCACCGC	
(ubiquinone) Fe-S protein 2		AATGGGCA	TTTTTCCT	
Ubiquinol cytochrome c	Uqcrc2	AAAGTTGCCCCGA	GAGCATAGTTTTC	
reductase core protein 2		AGGTTAAA	CAGAGAAGCA	
ATP synthase, H+	Atp5a1	TCTCCATGCCTCTA	CCAGGTCAACAGA	
transporting, mitochondrial		ACACTCG	CGTGTCAG	
FI complex, alpha subunit 1				
Transcription factor A,	Ttam	ATTCCGAAGIGIT	TCTGAAAGTTTTG	
mitochondrial	NO DI	TTTCCAGCA	CATCIGGGI	
Myogenic differentiation 1	MyoDI	CCACICCGGGACA	AAAAGCGCAGGTC	
		TAGACITG	IGGIGAG	
Myocyte enhancer	Met2c	AICCCGAIGC	AACAGCACACAAI	
Tactor 2C		AGACGATICA	CITICUL	
Muagania factor 5	Marf5		TGACCTTCTTCAC	
Wryogenic factor 5	IVI y I J		GCGTCTAC	
Parovisoma proliferator	Pparacla	TATGGAGTGACAT		
activated recentor gamma	(Paalar)	AGAGTGTGTGCT	CCCAGAAAG	
coactivator 1 alpha (Mouse)	(rgeiu)		CCCAUAAAU	
Peroxisome proliferator-	PPARGC1a	TGAAGACGGATTG	GCTGGTGCCAGTA	
activated recentor gamma	$(PGC1\alpha)$	CCCTCATT	AGAGCTT	
coactivator 1 alpha (Human)	(I UCIU)			
Uncoupling protein 3	Ucp3	CTGCACCGCCAGA	ATCATGGCTTGAA	
		TGAGTTT	ATCGGACC	
Acyl-Coenzyme A	Mcad	AGGGTTTAGTTTT	CCCCGCTTTTGTCA	
dehydrogenase, medium		GAGTTGACGG	TATTCCG	
chain				

Palmitoyltransferase 1a	Cpt1a	CTCCGCCTGAGCC	CACCAGTGATGAT
	1	ATGAAG	GCCATTCT
E2F transcription factor 1	E2f1	CTCGACTCCTCGC	GATCCAGCCTCCG
-		AGATCG	TTTCACC
E2F transcription factor 2	E2f2	ACGGCGCAACCTA	GTCTGCGTGTAAA
_		CAAAGAG	GCGAAGT
E2F transcription factor 3	E2f3	AAACGCGGTATGA	CCATCAGGAGACT
(Mouse)		TACGTCCC	GGCTCAG
E2F transcription factor 3	E2F3	AAAGCCCCTCCAG	CCTTGGGTACTTG
(Human)		AAACAAGA	CCAAATGT
Fatty acid binding protein 3	Fabp3	ACCTGGAAGCTAG	TGATGGTAGTAGG
	-	TGGACAG	CTTGGTCAT
Fatty acid synthase	Fasn	GGAGGTGGTGATA	TGGGTAATCCATA
		GCCGGTAT	GAGCCCAG
Protein kinase, AMP-	Ampk1a	GTCAAAGCCGACC	CGTACACGCAAAT
activated, alpha 1 catalytic	1	CAATGATA	AATAGGGGTT
subunit			
Protein kinase, AMP-	Ampk1β	AGGCCCAAGATCC	GGGGGCTTTATCA
activated, beta 1 non-		TCATGGA	TTCGCTTC
catalytic subunit			
Cyclin-dependent kinase 4	Cdk4	ATGGCTGCCACTC	TCCTCCATTAGGA
• •		GATATGAA	ACTCTCACAC
Retinoblastoma protein	Rb	TGCATCTTTATCGC	GTTCACACGTCCG
-		AGCAGTT	TTCTAATTTG
Troponin I1 (Human)	TNNI1	GCGATACGACATT	TTCCCACGGAGGT
		GAGGCCAA	CCATCA
Myosin Light Chain 3	MYL3	TCACACCTGAGCA	GCTGGAGCATAGG
(Human)		GATTGAAGA	CAGGAAAG
Troponin C1 (Human)	TNNC1	TGGTTCGGTGCAT	GTCGATGTAGCCA
		GAAGGAC	TCAGCATT
Myozenin 2 (Human)	MYOZ2	CCAGGCTATTTAA	CCTTCCAAGTTAC
		GATGCGTCA	TTCCATCCAC
PDZ and LIM domain 1	PDLIM1	GCTGGCCTCTACT	GCTGAGCATGGTC
(Human)		CTTCTGAA	TAAGGGT
Myosin light chain 1	MYL1	GTTGAGGGTCTGC	ACCCAGGGTGGCT
(Human)		GTGTCTTT	AGAACA
Myosin light chain kinase	MYLK4	GCCCGTCAAAAGC	CTTGGCTGTCACA
family member 4 (Human)		AAAAGGAC	ATACGATGA
Succinate dehydrogenase	SDHB	ACCTTCCGAAGAT	GTGCAAGCTAGAG
complex iron sulfur subunit		CATGCAGA	TGTTGCCT
B (Human)			
Creatine kinase,	CKMT2	CCAAGCGCAGACT	GGTGTCACCTTGT
mitochondrial 2 (Human)		ACCCAG	TGCGAAG
Sirtuin 5 (Human)	SIRT5	TGGAGGAGGTTGA	CTGCTGGGTACAC
		CAGAGAGC	CACAGA

NADH:ubiquinone	NDUFS8	CCATCAACTACCC	CCGCAGTAGATGC
oxidoreductase core subunit		GTTCGAGA	ACTTGG
S8 (Human)			
Solute carrier family 25	SLC25A3	TATCTCTGGCGCA	CTTAGCAGCTTCC
member 3 (Human)		CATCACTA	ATAGGAGC
ATP synthase F1 subunit	ATP5D	ACTCTTCGGTGCA	GCCTCGATTCGGA
delta (Human)		GTTGTTGG	TCTGGAT
Myosin heavy chain 4	MYH4	GCTGCTTATCTGA	GGCCTTTGGTTAC
(Human)		CAAGTCTGAA	GAACTCATT
Myosin heavy chain 1	MYH1	GGGAGACCTAAAA	TTGCAGACCGCTC
(Human)		TTGGCTCAA	ATTTCAAA
Potassium voltage-gated	KCNC4	ATATCGACCGCAA	CAGGTTCTTGACG
channel subfamily C member		CGTGACAG	AAGTCCAG
4 (Human)			
Phosphoglucomutase 2	PGM2	GAGGCAGTGAAAC	CTGTCCCAAACTC
(Human)		GACTAATAGC	CATTCGGG
Myosin binding protein C2	MYBPC2	AAGAGCGAGTACG	TTGACCTCGACCT
(Human)		AGAAAATCG	TAGCCTTT
Parvalbumin (Human)	PVALB	AAGAGTGCGGATG	GCCTTTTAGGATG
		ATGTGAAG	AATCCCAGC

Group	Gene
Oxidative (slow) Fiber	ADPRHL1, ATP2A2, CASQ2, MYH6, MYH7, MYH7B, MYL2, MYL3, MYL6B, MYOM3, MYOZ2, PDLIM1, SLN, TNNC1, TNNI1, TNNT1, TPM3
Oxidative (fast) Fiber	ATP2A1, DDIT4L, ENO3, MYH2, MYL1, MYLPF, PFKM, PKM, TNNT3, TPM1
Glycolytic Fiber	ACTN3, ALDOA, AMD1, ATP1B2, FBP2, GPD1, GPD2, GPT2, KCNC4, LDHA, MSTN, MYBPC2, MYBPH, MYH1, MYH4, MYLK4, MYOM2, MYOZ1, PFKFB3, PGM2, PVALB, SLC16A3, TMOD1, TSTD2
Mitochondria	ACAT2, AKR1B10, ALKBH7, AS3MT, ATP5A1, ATP5B, ATP5D, ATP5F1, ATP5G1, ATP5G3, ATP5O, BDH1, CARD9, CHCHD10, CIAPIN1, CKMT2, CLU, COA5, COQ10B, COX4I1, COX5A, COX7A1, CSNK1D, CYC1, DGAT2, DLAT, DMPK, DNAJA3, ETHE1, FASTK, HADH, HAGH, HINT1, HSPA9, IDH3B, IMMP2L, LDHB, LDHD, LYRM7, ME3, MGARP, MGST1, MMAA, MRPL37, MRPL55, MRPS11, MRPS36, NAA15, NDUFA10, NDUFA11. NDUFA12, NDUFA9, NDUFAB1, NDUFB10, NDUFB7, NDUFC1, NDUFS2, NDUFS3, NDUFS7, NDUFS8, NDUFV1, NDUFV3, PDHB, PDHX, PEBP1, PHYH, PIN1, PRDX2, PRDX5, RHOT2, SAMM50, SDHA, SDHB, SH3BP5, SIRT5, SLC25A3, SLC25A4, SOD2, TMEM70, TXN2, UNC50, UQCRC1
Cell Cycle	CDK1, CDK2, CDK4, CDK5, E2F1, E2F3, E2F4, E2F5, E2F6, E2F7, E2F8, LPAR6, RB1, RBL1

Table S5: Markers of oxidative and glycolytic muscle fibers, muscle mitochondria and cell cycle.