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SARS-CoV-2 immunity and memory recall upon 
exposure to variant viruses
The emergence of severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) resulted in the pandemic of coronavirus disease 
2019 (COVID-19) (1). Symptoms are generally mild and generic 
for respiratory infections, including fever, cough, and myalgia (2). 
However, some COVID-19 patients develop more severe disease, 
such as acute respiratory distress syndrome, that is associated 
with a high mortality rate (3–5). Currently licensed vaccines offer 
potent protection from severe COVID-19 in naive immunocom-
petent individuals infected with the original SARS-CoV-2 strains 
(6). The vast majority of COVID-19 vaccines are based on raising 
immunity against a glycoprotein spike (S) that is highly similar to 
the surface attachment protein of the original virus strain isolat-
ed in Wuhan, China, in 2019 (1). From December 2020 onward, 
mass vaccination campaigns were initiated, and currently over 11 
billion doses have been administered. The majority of COVID-19 
vaccines induce adaptive immune responses targeting epitopes 
distributed over the Wuhan-Hu-1 strain S protein, with moderate 
differences between platforms (6, 7). Some of the S-specific anti-
bodies can neutralize the virus particle, particularly those target-
ing the receptor-binding domain (RBD) or the N-terminal domain 
(NTD) (8, 9). These neutralizing antibodies are considered a hall-
mark of immune protection against SARS-CoV-2 infection and 
severe COVID-19 (10). CD4+ and CD8+ T cells are also thought to 
be essential in prevention of severe disease (11).

A footprint of adaptive immune responses to pathogens and 
vaccinations, including those against SARS-CoV-2 and COVID-19 
vaccines, remains in the form of memory B and T cells. Re-expo-
sure to pathogens or antigens that were encountered earlier in life 
will induce memory recall, where these memory immune cells 
tend to be boosted faster and to a greater magnitude than inexpe-
rienced naive immune cells, increasing the chance of protection 
from infection (12, 13). Upon exposure to variations of previous-
ly encountered pathogens or antigens, the memory B and T cell 
responses that target cross-reactive or shared epitopes to previous 
exposures will be boosted, while a response to neoepitopes is initi-
ated. An advantage of this tendency toward cross-reactive epitopes 
is the natural selection of B and T cell clones that generally offer 
broad protection against previously encountered and upcoming 
related infections. However, in some cases there is a downside to 
this phenomenon, as was initially described for influenza A virus 
in 1953 (14). Here, exposure to a new influenza A virus variant of 
a previously encountered infection or vaccination boosted cross- 
reactive memory B and T cell clones that contributed little to pro-
tection, while the development of immune cell clones that target 
neoepitopes specific for the new variant was only modest. Thom-
as Francis termed this phenomenon original antigenic sin (OAS) 
in 1960 (15). The negative clinical impact of this phenomenon for 
influenza virus infection has been robustly shown in humans and 
various experimental animal immunization and infection studies 
(16, 17). OAS with a variable degree of clinical impact is found for 
other virus families, including dengue virus, HIV, CMV, and respi-
ratory syncytial virus, as well as for bacterial infections (18–23).

The concept and clinical impact of OAS have been debated, 
and currently different interpretations of the notion of OAS still 
exist (23, 24). In general, what sets OAS apart from the positive 
effects of memory recall and cross-reactive immunity — and what 
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The ongoing evolution of SARS-CoV-2 is shown by the sub-
stantial sequence variation of virus variants that are circulating in 
the human population (41). Strains that rapidly became dominant 
in specific areas and show changes in clinical presentation, viru-
lence, and/or transmissibility are designated as variants of concern 
(VOCs) by the World Health Organization, as these may impact the 
effectiveness of public health and social measures or available diag-
nostics, vaccines, or therapeutics. VOCs that emerged but are cur-
rently virtually extinct include the Alpha (B1.1.7, first detected in the 
United Kingdom), Beta (B1.351, first detected in South Africa), and 
Gamma variants (P.1, first detected in Brazil), of which the Alpha 
variant became dominant in Asia, Europe, and North America in 
the beginning of 2021. The Delta variant (B.1.617.2, first detected 
in India) emerged in mid-2021 and globally replaced Alpha and the 
majority of other VOCs before the end of 2021. At the end of 2021, 
the Omicron variants emerged (BA.1, first detected in Botswana and 
South Africa, and BA.2, first detected in South Africa) and estab-
lished dominance globally. New Omicron (sub)lineages, like BA.4 
and BA.5, have recently emerged and are replacing BA.1 and BA.2.

The recent VOCs are spreading in populations that are increas-
ingly preimmune to SARS-CoV-2 as a result of vaccination or 
infection with preceding strains. Most slight differences between 
variants have had a limited impact on the effectiveness of the preex-
isting immunity in the population. The Omicron lineages, however, 
carry an unexpected high mutation load compared with the previ-
ously dominant variants Alpha and Delta, and largely escape from 
preexisting immunity (42, 43). The Omicron variant may have ini-
tially evolved in populations that were not covered by SARS-CoV-2 
surveillance programs or in persistently infected immunocompro-
mised individuals. In principle, variants may also originate from 
reintroduction to humans from an animal host, a recombination 
event with heterologous virus strains, or a combination of these fac-
tors, but the origins of circulating VOCs are not identified (44–46).

Besides mutations that alter intrinsic characteristics of the 
virus, detailed insights into the genetic changes that result in signif-
icant immune escape are imperative in order to understand which 
variants may become established next. This underscores the need 
for continuous monitoring of SARS-CoV-2 antigenic evolution and 
testing of vaccine efficacy for SARS-CoV-2 (41, 45).

Molecular determinants of coronavirus  
antigenic evolution
Immune escape mutations are those that lead to modifications in 
the antigenic properties of pathogens to avoid preexisting immu-
nity. The continuous adaptation of viruses in their antigenic prop-
erties is known as antigenic evolution. To date, the antigenic evo-
lution of SARS-CoV-2 is primarily described for S, since this is the 
main target of COVID-19 vaccines and an immunodominant target 
during SARS-CoV-2 infection.

Although they are antigenically distinct, there are striking par-
allels between the antigenic evolution of S of human coronaviruses 
(HCoVs) and hemagglutinin (HA) of influenza viruses. Both S and 
HA are required for binding and fusion with the target cell and are 
dominant targets for neutralizing antibodies (47–50). S protrudes 
from the viral membrane in trimeric form and consists of the mem-
brane-proximal domain S2, containing the fusion apparatus, and 
the outer domain S1, containing the RBD. Homology between S 

inspired the use of the word “sin,” for that matter — is that OAS 
leads to a less potent immune response in comparison with homol-
ogous challenge or primary exposure and that this results in a com-
petitive advantage for the variant virus.

There are other terms in the literature to describe features of 
a boosted memory response upon heterologous challenge that 
emphasize different aspects of the underlying mechanism and 
have a more neutral or more positive connotation than OAS (24). 
Whereas OAS refers to the immunological impact of the primary 
exposure (original antigen), the imprinting effect, or “immune 
imprinting,” refers to the preferential boost of cross-reactive 
immune cells from memory induced by prior related exposures 
collectively, which results in a progressively narrowed immune 
response toward a new strain. The extent of immune imprinting 
varies based on the order and the type of exposure, i.e., vaccination 
or mild or severe infection, and the antigenic dissimilarity between 
the different strains (25–29). A more neutral term to describe the 
boosted memory response toward strains encountered earlier in 
life is “antigenic seniority” (30, 31). In contrast to OAS and imprint-
ing, antigenic seniority refers to both the positive (i.e., broad pro-
tection) and the negative contribution of past exposures to the 
immune response toward new exposures (imprinting). A term that 
focuses on the positive attributes of memory recall and its mainte-
nance of broad immunity toward preceding strains is “back-boost,” 
which has been suggested to offer the prospect of preemptive vac-
cines for upcoming influenza strains (24, 32, 33).

OAS, imprinting effects, and antigenic seniority have been 
shown to modulate protection against influenza viruses in numer-
ous independent human cohorts, including their impact to limit vac-
cine efficacy for prevention of infection (34–36). Despite the associ-
ation of OAS and imprinting effects with a range of virus infections, 
birth cohorts and information from exhaustive surveillance data on 
co-circulation of different strains over time to determine imprint-
ing effects of individual strains have rarely been available (34, 37). 
Therefore, for virus families other than influenza, imprinting effects 
of exposures that are assumed to have occurred earlier in life are 
often referred to as OAS. In the case of SARS-CoV-2, numerous vari-
ants have emerged that induce memory recall of preexisting immu-
nity. In this Review, we focus on the mechanisms that lead to the 
appearance of viral variants and their relation to OAS, the molecular 
mechanisms behind OAS and related immune events, and the evi-
dence of OAS in the context of SARS-CoV-2 and COVID-19.

Evolution of SARS-CoV-2 variants
Theoretically, positive and negative side effects of memory recall 
can occur side by side in any new variant emerging from circu-
lating pathogens. Nevertheless, memory recall side effects are 
important for specific viral pathogens from which new variants can 
emerge and spread globally, which leads to a large immune popu-
lation. Mutations that confer intrinsic transmission advantages to 
the emerging variants, including mutations that allow variants to 
escape herd immunity by changing their antigenic properties, are 
selected and may allow the spread of the variant. In this context, 
OAS has mostly been reported for influenza viruses, which are 
present globally and must escape population immunity by mutat-
ing epitopes that are most vulnerable to neutralizing antibodies, 
resulting in the generation of immune escape variants (32, 38–40).
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antibodies. However, some neu-
tralizing antibodies have also been 
described targeting the conserved 
S2 or HA stalk (51–53) (Figure 1B). 
The similarities in antigenic evo-
lution between influenza virus 
HA and coronavirus S suggest that 
for both virus families, in contrast  
to reinfection with the same strain, 
an infection with a heterologous 
strain or antigenic drift variant 
may preferentially boost non-neu-
tralizing antibody clones, which 
makes the infected individual’s 
immune system at risk for OAS 
(Figure 1, C and D).

While the significance of indi-
vidual SARS-CoV-2 VOC muta-
tions in the antigenic evolution of 
S largely remains to be determined 
(40), key amino acid substitutions 
driving immune escape have been 
identified for one related virus, the 
alphacoronavirus HCoV-229E, 
and for influenza viruses. Signa-
ture mutations defined for drift 
variants of these viruses are gen-
erally located in or near the S-RBD 
and HA-RBS, respectively (39, 
54, 55). Neutralizing antibodies 
against these sites are most effec-
tive by directly blocking critical 
receptor interactions. However, 
specific mutations can apparent-
ly occur around these sites with-
out detrimental effects on virus 
fitness (39, 54, 56). The evident 
accumulation of mutations in the 
RBD and NTD in VOCs suggests 
that for SARS-CoV-2, antigenic 
evolution of S may be similarly 
driven by escape from antibody 
neutralization (40, 54). However, 
additional VOC signature muta-
tions are located elsewhere in S in 
the viral genome and may reflect 
adaptations beyond immune 
escape, such as improved viral 
fitness or altered affinity for the 

ACE2 receptor (57). Some may reflect compensatory mutations that 
are indirectly linked to immune escape (40). Additional mutations 
at sites targeted by antibodies with Fc-mediated functions, like 
complement-dependent cytotoxicity, have also been characterized. 
However, these mutations are generally not selected at a popula-
tion level and are therefore considered less influential on antigenic 
evolution (58, 59). A fraction of Wuhan-Hu-1–specific T cells has 
reduced reactivity toward Omicron, due to mutated epitopes in S1 

of SARS-CoV-2 variants is higher in S2 compared with S1, which is 
most variable in the RBD and the NTD (40). Influenza HA is also 
a trimeric surface glycoprotein and has a stalk domain that is high-
ly conserved compared with the more variable head domain that 
contains the receptor-binding site (HA-RBS) (Figure 1A). Both S and 
HA are highly immunogenic, and antibody epitopes are defined 
covering their entire structure. A minority of antibodies bind S-RBD 
or HA-RBS, which contain the targets for most potent neutralizing 

Figure 1. Antigenic changes of spike and hemagglutinin result in boost of non-neutralizing antibodies. (A) The 
SARS-CoV-2 spike trimer (S) consists of the S2 and S1 subdomains. S1 contains the N-terminal domain (NTD) and 
receptor-binding domain (RBD). Influenza hemagglutinin (HA) consists of a stalk domain and a head domain, 
which contains the receptor-binding site (RBS). (B) The S2 and HA stalk are highly conserved between virus 
variants, while the S1 and HA head are more variable. Antibodies that target S1 or HA head domains, especially 
NTD, RBD, and RBS, have the highest neutralization potential, while antibodies targeting S2 or HA stalk have 
lower neutralization potential. (C) Neutralizing (green color family; c and d) and non-neutralizing antibodies 
(orange color family; a and b) are induced after primary exposure. After exposure with the same virus variant 
(homologous re-exposure), both antibody classes are boosted from immune memory and undergo similar affini-
ty maturation, from moderate (±) to high affinity (+). The kinetics of these responses is shown as a stacked plot 
in the right panel. (D) Infection with a heterologous virus strain that carries immune escape mutations in the S1 
domain (light green and yellow) boosts cross-reactive antibodies. Those targeting shared epitopes will mature 
into high-affinity antibodies (+), and those that target mutated epitopes will bind with low affinity (–). Because 
of higher similarity in epitopes of non-neutralizing antibodies (orange; a), they are preferentially boosted over 
neutralizing antibodies (green; c). Neoepitopes are targeted with moderate affinity, and these antibodies repre-
sent a minor fraction of the total response (±; e and f). The kinetics of the response is shown in the right panel. 
Owing to original antigenic sin, the breadth and magnitude of the neoepitope-specific response (non-neutraliz-
ing: yellow, e; neutralizing: light green, f) are lower than those of the initial response.
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For various influenza viruses, detailed and robust 
antigenic maps were generated using serum hem-
agglutinin inhibition (HI) titers as a surrogate for 
virus neutralization assays (70). For coronavi-
ruses, plaque reduction neutralization tests have 
been used to determine the antigenic relatedness 
of different variants (68, 69).

Influenza A/H3N2 and HCoV-229E were 
shown to evolve along paths where new variants 
repeatedly replaced the predecessors (54, 70). 
The influenza B virus lineage has split into two 
distinct evolutionary branches originally based on 
B/Victoria-like and B/Yamagata-like strains (71). 
For the influenza viruses, new variants emerge 
approximately every 3 to 5 years (38, 70).

Currently, there are multiple SARS-CoV-2 
variants that co-circulate, and it is unclear which 
will go extinct, continue to coexist, or evolve 
into new variants. Antigenic maps of SARS-
CoV-2 VOCs showed that there is substantial 
antigenic distance between VOCs (68, 69, 72). 
Variants that preceded the current VOCs (Delta, 
Omicron BA.1 and BA.2) are antigenically more 
similar to the original Wuhan-Hu-1 strain, with 
the exception of the Zeta variant (69). Omicron 
variants are currently the most distant lineage 
from Wuhan-Hu-1 (55, 69). Strikingly, the Del-
ta variants are antigenically positioned opposite 

to the Omicron variants from the original strain, which may com-
plicate vaccine development. For influenza virus antigenic maps, 
specific drops in HI titers on the antibody landscape are correlated 
with vaccine failure or inefficacy (73). Finding such correlation for 
SARS-CoV-2 VOCs would be of importance in the development of 
second-generation SARS-CoV-2 vaccines. Notably, as we do not 
have a full understanding of what confers immune protection and 
what are the evolutionary restraints of S, there may be vulnerable 
antigenic sites that can be targeted by universal vaccines (74, 75).

Cross-neutralization potential — which can be inferred from 
antigenic cartography — has a strong impact on an individual’s level  
of immune protection and development of an immune response 
upon successive infections and vaccinations with antigenically 
related virus strains. The signature antibody repertoire induced by 
an individual’s infection and vaccination history has been termed 
the antibody landscape (32) (Figure 2B). Antibody landscapes are 
influenced by the order and type of exposures, e.g., vaccination or 
infection, and severity of disease, and are subject to change upon 
vaccination or infection with a new antigenically related strain (32, 
76). Thereby, the antibody landscape of an individual at the time 
of exposure has a profound impact on the level of immune protec-
tion and the type of immune response evoked upon infection with a 
new variant virus. This includes potential effects on OAS, imprint-
ing, antigenic seniority, and back-boost (Figure 2B).

Immunological mechanisms of original  
antigenic sin
Upon secondary infection with a heterologous strain, the lev-
el of antigenic relatedness in the amino acid sequence, antigen 

(60). However, these differences are not observed when T cell reac-
tivity targeting the entire S is analyzed (61–63).

Together, this evidence supports that the antigenic evolution 
of SARS-CoV-2 S is strongly driven by antibody neutralization and 
resembles that of HCoV-229E S and influenza HA. However, a key 
difference is that SARS-CoV-2 and HCoV-229E bind the protein 
receptors ACE2 and human aminopeptidase N, respectively, while 
influenza virus binds glycan receptors (64, 65). This may differen-
tially impact the evolutionary freedom and speed of both virus fam-
ilies (54, 66, 67). The types of changes that may be incorporated in 
SARS-CoV-2 variants near the RBD and NTD have been studied, 
but the rate at which they may occur and be able to spread in the 
human population remains unknown (66).

Antigenic cartography to visualize viral antigenic 
evolution of SARS-CoV-2
Because of the dominant effect of neutralizing antibodies on the anti-
genic evolution of coronaviruses and influenza viruses, the level of 
serum antibody cross-neutralization has been used to define antigen-
ic drift variants (68–70). Such cross-neutralization titers can be used 
to calculate the “antigenic distance” between different virus variants 
and antisera raised against them, which are visualized in “antigenic 
maps” (70) (Figure 2A). When supported with viral genome sequence 
data, antigenic maps have yielded important new insights into the 
molecular determinants of antigenic change. Although antigenic 
data are preferably generated with human sera, the use of sera from 
controlled animal infections has offered a powerful tool to monitor 
the evolutionary changes of several viruses in antigenic maps. More-
over, various antibody assays can be employed for this cartography. 

Figure 2. Antigenic cartography of a model virus and antibody landscape induced by heterolo-
gous exposures. (A) Antigenic cartography of a model virus shows the evolutionary path driven 
by positive selection of immune escape mutations that resulted in viral variants i–vii. The anti-
genic distance between variants is calculated using the virus cross-neutralization potential of 
sera. Each square represents a 2-fold change in virus neutralization titer. (B) The exposure his-
tory by infection or vaccination (variants i, iii, v, and vi) defines the existing antibody landscape 
(rainbow colors). OAS refers to the immunodominant response (a) of the primary exposure (i) 
and the negative impact this has on the breadth and magnitude of each successive exposure 
(i.e., iii, v, and vi). Antibody imprinting refers to the progressively narrowed immune response 
to each successive antigenically related exposure (i–iii, iii–v, and v–vi) due to the preferential 
boost of cross-reactive clones. Antigenic seniority refers to the dominant impact of older expo-
sures on the development of a new response (i > iii > v > vi). Upon exposure to variant vii, the 
original antigen will be preferentially boosted (b). The boost of each successive response will be 
progressively less strong according to antigenic seniority (b > c > d > e). The positive effect of 
infection with variant vii on protection against previous strains (i–vi) is termed back-boost. The 
horizontal line depicts the threshold of immune protection.
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severe COVID-19 patients (91). Consequentially, the GC reaction is 
impaired, which prevents affinity maturation of both preexisting and 
new B cell clones toward SARS-CoV-2. Instead, severe COVID-19 
patients mount an elevated memory B cell response and strong 
extrafollicular B cell response that consists of clones with close to 
germline B cell receptors, indicating little affinity maturation (92).

Original antigenic sin in SARS-CoV-2 immunity 
and COVID-19 vaccination
The effect of original SARS-CoV-2 strain immunity induced by vac-
cination or infection on the protection against new VOCs is under 
debate. Although the earlier VOCs (Beta, Gamma, and Delta) carried 
signature mutations associated with immune escape from neutral-
izing antibodies, convalescent and post-vaccination sera with high 
titers still neutralized the variants (68, 93). However, although many 
vaccines offer a broader S-specific response toward variants than 
infection with original SARS-CoV-2, these vaccines induce limited 
cross-neutralization against the most antigenically distant VOCs, 
such as the Omicron variants (55, 62). Individuals who received three 
vaccine doses have 10- to 20-fold higher neutralizing titers against 
distant Omicron variants than individuals who received two dos-
es (55, 94). Moreover, a third mRNA vaccine boost induced higher 
breadth and neutralization potency of the B cell memory response, 
with increased numbers of clones targeting highly conserved epi-
topes of RBD in comparison with two-dose recipients (95). Neverthe-
less, many vaccinated individuals are still susceptible to infection and 
to developing COVID-19 after Omicron infection (96) (Figure 3A).

The longevity of protection against VOCs by solely homolo-
gous boosting may be limited because of the potentially continu-
ous antigenic evolution of SARS-CoV-2 and waning immunity. As 
a result, antibody titers sufficient to cross-neutralize future VOCs 
may only be reached for a short period after vaccination or boost 
with original S antigens. Another concern is that homologous 
boosting of original S-specific responses by repeated vaccination 
or Wuhan-Hu-1 infection may induce imprinting of the original 
strain and therefore result in an OAS type of response when chal-
lenged with VOCs (Figure 3, B and C). Indeed, vaccinated indi-
viduals infected with the Alpha or Delta variant have a relatively 
decreased response to variant-specific epitopes compared with 
unvaccinated individuals, which is indicative of OAS (97). How-
ever, hybrid immunity induced by combination of vaccination and 
infection increases the overall titers with capacity to bind to and 
neutralize VOCs, including Omicron, as compared with two-dose 
and three-dose immunizations (98–103). Thus, potentially, break-
through infections, which are generally mild, may offer sufficient 
protection against current and upcoming variants (102–104). 
However, relying on this protection will come at the risk of long 
COVID-19 symptoms and will pose risks for vulnerable groups 
like elderly or immunocompromised people and people with 
underlying disease. In addition, more traits of immune imprinting 
have recently been identified in hybrid-immune individuals who 
were infected with Wuhan-1 strain before vaccination, in whom 
enhancement of VOC cross-reactive antibody titers and T cells 
by Omicron infection was nullified, a phenomenon termed hybrid 
immune damping (60). These studies confirm that combinations 
of exposures to VOCs may not always result in the exact same anti-
body landscapes and protection potential.

confirmation, and glycan composition defines the magnitude, 
functionality, and breadth of the recalled memory response and, 
potentially, OAS. For both T cells and B cells, OAS is affected by (a) 
the kinetics, i.e., the speed and magnitude of the memory versus 
naive B and T cell responses; (b) the affinity and functionality of 
the immune response; and (c) the immunological breadth of the 
response at the time of exposure.

For CD8+ T cells, memory recall and a delayed de novo response 
may occur because human memory CD8+ T cells have higher 
immunological synapse propensity than naive CD8+ populations 
(13). This gives memory CD8+ T cells a competitive advantage over 
naive CD8+ T cells. Notably, this difference between memory and 
naive phenotypes is observed neither in human CD4+ T cells nor 
in murine T cells. However, in experimental HIV and CMV immu-
nization and infection studies in mice, activation of CD8+ T cells 
with a variant epitope impairs their function, resulting in reduced 
activation, proliferation, and cytokine production and delayed viral 
clearance (19, 77). In humans, repeated dengue virus infections 
with a heterologous strain may lead to activation of CD8+ T cells 
with lower affinity for the current versus prior infecting strains and 
to a clonally less diverse response (78, 79). This effect is correlated 
with specific HLA class I alleles, which may in part explain a genet-
ic predisposition for severe dengue disease and OAS (79).

In the case of CD4+ T cells, no evidence supports direct func-
tional implications of imprinting. Nevertheless, the magnitude of 
newly induced CD4+ T cell responses declines after repeated het-
erologous challenge (80–82). This might be explained by a selec-
tive recruitment of memory CD4+ T cells, which results in reduced 
immunological CD4+ T cell breadth (81, 82). This reduced CD4+ 
T cell repertoire may subsequently fuel the extent of antibody 
imprinting by limiting T helper functions to B cells in germinal cen-
ters (GCs). Currently there is limited evidence of CD4+ or CD8+ T 
cell epitope escape for SARS-CoV-2 variants (61–63). However, it 
remains to be determined whether CD4+ and CD8+ T cell immu-
nity specific to HCoVs and highly pathogenic CoVs, such as the 
betacoronaviruses SARS-CoV and Middle East respiratory syn-
drome coronavirus (MERS-CoV), induces imprinting effects on 
SARS-CoV-2 immunity or vice versa.

Memory B cells also possess an intrinsic proliferative advan-
tage over their naive B cell counterparts (12). As a result, prolif-
erating plasmablasts generated upon a heterologous flavivirus 
immunization preferentially target preceding flavivirus infections 
in animal models and in natural flavivirus infections in humans 
(83–85). Heterosubtypic infections may also boost antibodies that 
inefficiently bind the boosting antigen through multiple low-affin-
ity interactions with the surface B cell receptor that is expressed at 
high density on memory B cells. Consequently, the soluble anti-
body that is produced may not significantly bind the target antigen 
(86, 87). Alternatively, preexisting antibodies that bind conserved 
epitopes mask neoepitopes and thereby prevent the formation of a 
de novo B cell response (88, 89).

In contrast to T cells, memory B cells can mold their specifici-
ty by secondary GC reactions for further affinity maturation with 
the help of follicular helper T cells (Tfh cells). When the antigenic 
distance between the priming and the boosting variant is limited, 
memory B cells can be affinity trained to also target the new strain 
(29, 90). However, Tfh cell numbers are markedly decreased in 
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Heterologous vaccination strategies using VOC-specific vac-
cines are tested in small cohort studies and animal models for their 
efficacy and safety. Individuals who were vaccinated twice with 
mRNA-1273 (original S) were boosted with homologous vaccines 
or the Beta variant mRNA vaccine mRNA-1273.351 or a mixture 
thereof. Although preliminary results suggest that the vaccines 
were safe and the overall neutralizing titers were increased for  
all study participants, neutralization of the Beta variant was not 
significantly better upon administration of the variant boost (105). 
Also, in a macaque model, vaccination with Ad26.COV2.S (origi-
nal S) followed by a heterologous boost with Ad26.COV2.S.351 
(Beta variant) did not result in significantly elevated neutralization 
titers for Beta and Omicron variants, compared with a homologous 
boost. Moreover, non-neutralizing S-binding titers were preferen-
tially boosted over neutralizing and RBD-binding antibody titers 
(106). Potentially, a second heterologous boost would improve 
titers toward the variants, as the titers after primary vaccination 
are generally modest. Nevertheless, these observations strongly 

support imprinting of non-neutralizing antibodies induced by the 
original vaccine and indicate OAS.

Although homologous and heterologous boosts with SARS-
CoV-2 spike vaccine and hybrid immunity resulted in increased 
neutralization titers against VOCs, it is important to monitor how 
well immunity can be shaped to target neoepitopes in VOCs. 
Owing to extensive GC reactions that induce somatic hypermu-
tation and memory B cell turnover, broadly reactive neutraliz-
ing antibodies are selected and maintained in the repertoire that 
potentially protect against VOCs (75). Notably, it has already been 
reported that pre-boost serum antibody titers against original S 
inversely correlate with post-boost VOC antibody reactivity (107). 
This indicates that high antibody titers against the original strain 
result in reduced immunogenicity of the variant protein, poten-
tially by epitope masking or antigen trapping (32, 108). This will 
increase imprinting effects due to a reduced immune response 
against emerging VOCs. Therefore, effective generation of robust 
VOC-neutralizing antibodies with the heterologous vaccines may 

Figure 3. Model to correlate antigenic distance between SARS-CoV-2 variants with vaccine failure. (A) An individual’s signature history of exposure to 
SARS-CoV-2 infection and vaccination determines the level of protection from infection. Model sera are collected early (samples 1–3) and late (samples 
4–6) after full vaccination and after breakthrough infection with Omicron BA.2 (sample 7, red circle). (B) Antigenic cartography of SARS-CoV-2 shows 
the antigenic distance between variants (map adapted with permission from ref. 69). (C) The antibody landscape shortly after first, second, and third 
vaccination defines the magnitude and breadth of immune protection against SARS-CoV-2 variants (samples 1–3 from A) based on the antigenic distance 
from the vaccine strain that is inferred from the antigenic map. (D) At a later time point, waning antibody titers (samples 4–6 from A) may result in poor 
protection from antigenically distant strains. Breakthrough infection with Omicron BA.2 (sample 7) boosts the memory vaccine response and initiates a 
new type-specific response (red). The dashed lines in B represent the immune protection threshold after vaccination or breakthrough infection based on 
the later antibody landscapes from samples 4–7 that are modeled in C and D.
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be achieved only when existing original S-specific serum antibody 
titers are waning. Most of the research assessing VOC-neutraliza-
tion potential of individuals with hybrid immunity, such as those 
infected with Omicron variant after vaccination, is performed ear-
ly after infection when GC reactions, clonal expansion of plasmab-
lasts, and antibody maturation are still ongoing. These results will 
unlikely reflect the serum or memory B cell response at immune 
convalescence, which was shown to take up to at least 6 months 
and potentially even longer (74, 75, 109). Moreover, despite obser-
vations that homologous or heterologous COVID-19 vaccine 
prime-boost regimes generally induce prolonged GC reactions and 
higher magnitude of neutralizing titers toward the same or heter-
ologous strains, the breadth of the antibody response is limited as 
compared with natural infection, which will also impact imprinting 
effects and future options for new vaccines (110). Studies with lon-
ger follow-up are required to determine long-term effects of hybrid 
immunity on protection against VOCs.

Original antigenic sin in immunity to other 
human coronaviruses
Preexisting serum antibodies and B and T cells that can recognize 
SARS-CoV-2 have been detected in naive, unvaccinated individu-
als. These responses are most likely shaped by prior infections with 
the widespread seasonal human coronaviruses (HCoVs) that cause 
common cold symptoms, including the alphacoronaviruses HCoV-
229E and HCoV-NL63 and the betacoronaviruses HCoV-OC43 and 
HCoV-HKU1 (111, 112). A very small percentage of the SARS-CoV-2–
naive population is preimmune to the highly pathogenic betacoro-
naviruses (hpCoVs) SARS-CoV, which caused an outbreak around 
2003, and MERS-CoV, which was discovered in 2012 and still causes 
zoonotic infections in the Middle East and North Africa (113, 114). 
These HCoVs and hpCoVs share various degrees of sequence and 
structural homology with SARS-CoV-2 (115) that largely correlate 
with the level of cross-reactivity in B and T cell immunity.

Despite the high seroprevalence of seasonal HCoV, there 
is high susceptibility to SARS-CoV-2 infection in unvaccinated 
individuals, indicating that seasonal HCoV immunity offers lim-
ited cross-protection (116). Nevertheless, the development of an 
immune response against SARS-CoV-2 is influenced by preexisting 
HCoV immunity and, in a very small percentage of the population, 
hpCoV immunity. Besides the development of a new type-specif-
ic response after SARS-CoV-2 infection, preexisting HCoV anti-
bodies are boosted (87, 93, 117, 118). In particular, HCoV-OC43 
S2–specific IgG titers are boosted in serum, but these antibodies 
are associated neither with protection against SARS-CoV-2 or neu-
tralization, nor with HCoV-OC43 neutralization (87, 93, 117). Acti-
vation and proliferation of preexisting HCoV-OC43 S2–specific B 
cells result in the production of antibodies with limited detectable 
cross-reactivity to SARS-CoV-2 S trimer (87). This HCoV-specific 
boost effect is also seen upon administration of COVID-19 mRNA 
vaccines, although not as prominently as for natural infection (119). 
This boost is most prominent in patients with severe COVID-19 
(87, 93, 117, 118). Moreover, studies in severe and fatal COVID-19 
cases showed indications of immune imprinting and impairment 
of the de novo SARS-CoV-2 type-specific response (93, 117). These 
negative associations of seasonal HCoV-specific immunity with 
COVID-19 severity show features of OAS.

Therefore, the magnitude and breadth of SARS-CoV-2–specific 
immune responses after a primary infection are strongly influenced 
by the prior HCoV and hpCoV infections — the course and extent of 
which vary per person — and COVID-19 vaccination status, which is 
relatively homogeneous as current coronavirus vaccines are based on 
the same S. How the antigenic distance between HCoVs and hpCoVs 
relates to SARS-CoV-2 VOCs is currently unknown, as antigenic 
maps of these viruses have not been generated. Follow-up studies on 
potential imprinting effects and the clinical impact of SARS-CoV-2 
vaccination on HCoV immunity in children may be of interest.

Concluding remarks and future directions for 
SARS-CoV-2 vaccination
Current vaccines are less potent against recently circulating SARS-
CoV-2 variants that emerged in partially immune populations and 
that are antigenically distinct from the initial SARS-CoV-2 Wuhan-
Hu-1 strain (61, 120). If vaccine potency worsens, the need may 
arise for alternative vaccination strategies, such as periodic vaccine 
updates, similar to the strategy of vaccine updates for influenza, or 
the development of more broadly effective second-generation vac-
cines. With the potential continuous emergence of antigenic drift 
variants of SARS-CoV-2 that escape from immunity elicited by vacci-
nation and infection, methods to overcome or limit potential negative 
effects of OAS should be considered in new vaccination strategies.

Research on how to overcome OAS has been performed in the 
context of influenza. First, the combined administration of updated 
heterologous vaccination with particular dendritic cell–activating 
adjuvants, such as Bordetella pertussis toxin or squalene-based oil-
in-water nanoemulsion, was shown to break OAS effects in animal 
models (121). Current mRNA and viral vector COVID-19 vaccine 
platforms remain to be compared in their potential to activate den-
dritic cells and their effect on individuals with imprinted immunity.

Second, long-interval prime-boost regimes with 6 to 12 months 
between immunizations increased vaccine efficacy in vaccine stud-
ies for H5 influenza strains and may decrease the impact of OAS (90, 
108). Antigen trapping and restrictions in GC capacity in early boost 
immunization may hamper the antibody response to new antigens 
(122). Future cohort studies for COVID-19 vaccines should evaluate 
the differences between time-spaced administrations of homolo-
gous or heterologous COVID-19 vaccines to improve the magnitude, 
breadth, and functionality of the adaptive immune response (97).

Third, simultaneous immunization with multiple variant anti-
gens may prevent OAS effects in T cells and B cells, avoiding negative 
interference between antigens (77). This supports the importance of 
continued tracking of SARS-CoV-2 evolution patterns, e.g., using 
antigenic cartography, to design vaccines that include all circulating 
variants as immunogens with adjuvants (121). Simultaneous immu-
nization of circulating strains has been proposed as a solution for 
universal protection against influenza virus when applied in child-
hood (123). SARS-CoV-2–naive populations or individuals with high-
ly waned immunity might also benefit from simultaneous immuni-
zation with antigens of SARS-CoV-2 circulating VOCs. Initial studies 
on bivalent COVID-19 mRNA vaccines (combinations of Wuhan-1 
and Omicron BA.1/BA.4/BA.5 S) have collected promising data such 
as increased breadth of neutralizing antibodies and decreased lung 
inflammation upon challenge in comparison with the administration 
of homologous mRNA-1273 boosters (124).
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absence of the S1 or S2, the Beta-neutralizing response was effectively 
boosted using Beta-RBD. After adoptive transfer in mice, Beta-RBD–
boosted immune sera provided broader protection against severe 
disease upon wild-type or Beta variant challenge infection (125).

Fifth, in contrast to a variant-targeted approach, broadly reac-
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