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Legends to supplementary figures:

Figure S1. The de novo sphingolipid synthesis pathway.

(A) Sphingolipid synthesis starts with the formation of aliphatic amino alcohols or long chain bases (LCB), the
identifying structural units of all SLs. This reaction is carried out by the serine-palmitoyltransferase (SPT) using
palmitoyl-CoA and L-serine. Therefore, majority of SL in mammals are composed of canonical C18 LCBs,
sphingosine (d18:1) and sphinganine (d18:0). Dihydroceramide synthases CerS1-6 conjugate LCB with activated
fatty acids (acyl-CoA’s) of variable chain lengths (C16t0 Cy6) to form dihydroceramide (dhCer, d18:0) species.
Desaturases, DEGS1 and FADS3 introduce double bonds at C4-C5 and C14-C15 positions in LCB of dhCer to
form mono- (d18:1) and di-unsaturated (d18:2) ceramides, respectively. Ceramides are converted to complex
sphingolipids, such as sphingomyelin and glycosphingolipids with addition of specific head group structures. In
a catabolic pathway, ceramides are degraded back to release LCB sphingosine (SO) and fatty acid by ceramidases.
Phosphorylation of the primary hydroxyl group by sphingosine kinases SK1/2 lead to formation of a sphingosine-
1-phosphate (S1P) which is degraded terminally by S1P lyase SGPL1.

(B) Schematic representation of SPTLC1-ALS and -HSANL1 variants relative to the ER luminal and cytosolic
side.

Figure S2. ORMDLs associate with SPT-complex.

(A) SPTLC1, SPTLC2 and ORMDL protein levels in blue native PAGE samples from Figure 2B. Solubilized
membrane fractions from Figure 2B were analyzed on a denaturing SDS-PAGE and immunoblotted with anti-
SPTLC1, anti-SPTLC2 and anti-ORMDL antibodies. TOMM40 was used as a loading control. * = carryover
signal from SPTLC2 antibody.

(B-C) ORMDL-protein levels in SPTLC1-KO and SPTLC2-KO cells. Whole cell lysates from Flp-In T-REx 293
control, SPTLC1-KO and SPTLC2-KO cells were analyzed by SDS-PAGE and immunoblotting (B), and
ORMDL levels were quantified (C). ORMDL signals were normalized to ACTIN signal. Mean + SD, n=4
independent replicates, unpaired two-sided Welch’s t-test, *** p<0.001

(D) SPTLC1, SPTLC2 and ORMDL protein levels in blue native PAGE samples from Figure 2C. Samples from
Fig 2C were analyzed on denaturing SDS-PAGE and immunoblotted with anti-SPTLC1, anti-SPTLC2 and anti-
ORMDL antibodies. TOMMA40 was used as a loading control.

(E-F) Analysis of SPT complex in patient fibroblasts by blue native PAGE. Membrane fractions from
immortalized control fibroblasts (3 different control cells) and patient fibroblasts derived from S331Y and L39del
patients were analyzed by blue native PAGE and immunoblotted with anti-SPTLC1, anti-SPTLC2 and anti-
ORMDL antibodies (E). Protein levels in these samples were analyzed on a denaturing SDS-PAGE (F) where
TOMMA40 and HSPAS were used as loading controls. * = carryover signal from SPTLC2 antibody.

Figure S3. Plasma sphingolipid levels in ALS and HSAN1 patients

(A-D) Circulating sphingolipid levels in ALS patients, carrying SPTLC1p.Y23F, L39del and F40S4ldel
mutations. Total ceramides (A), total sphingomyelins (B), total monohexosylceramides (C) and 1-
deoxysphingolipids (D). n=4 (independent replicates), Data are represented as mean + SD, two-way ANOVA

with Dunnett’s adjustment for multiple comparisons. * p< 0.05, *** p<0.001, **** p<0.0001.



Figure S4. Sphingolipid species levels in ALS and HSANL1 variant expressing cells.

(A-B) Levels of indicated de novo formed dihydroceramides (dhCer, A) and ceramides (Cer, B) with conjugated
intermediate chain length fatty acids. HEK293 control and variant expressing SPTLC1-KO cells were grown in
the presence of D3, ®N-L-serine and D4-L-alanine to label SLs. Absolute levels of each SL species were quantified
relative to internal lipid standard by high resolution mass spectrometry. (C) Pie charts displaying relative
abundance of de novo synthesized sphingolipid subclasses and ceramides species in SPTLC1-KO cells expressing
the WT-SPTLC1 or the ex2del variant, represented as average of three independent experiments.

Data are represented as mean = SD, n=3 independent replicates, one-way ANOVA followed by Bonferroni

adjustment for multiple comparison, * p< 0.05, ** p<0.01, *** p<0.001, **** p<0.0001.

Figure S5. Sphingolipid species profiles in patient derived primary fibroblasts carrying SPTLC1-ALS
disease variants.

(A and B) Dihydroceramide (A) and ceramide (B) profiles based on conjugated fatty acids (FA) in control and
patient derived primary fibroblasts carrying SPTLC1p.L39del and F40S41del mutations. Cells were grown in
presence of D3, 1°N-L-serine and D4-L-alanine for 16 hours.

(C) Ceramide species profiles based on conjugated fatty acids (FA) in patient derived fibroblasts after transfection
with scramble and mutant specific sSiRNA and in comparison to scramble transfected control cells. Isotope
labelling was performed 72 hours post SIRNA (10 nM) transfection.

Data are represented as mean + SD, n=3 and one-way or two-way ANOVA followed, respectively, by Bonferroni

or Dunnet’s adjustment for multiple comparison, * p< 0.05, ** p<0.01, *** p<0.001, **** p<0.0001.

Figure S6. Plasma ceramide species profiles from patients carrying SPTLC1-ALS disease variants.

(A and B) Dihydroceramide (A) and ceramide (B) profiles based on conjugated fatty acids (FA) in plasma of
healthy controls, ALS patients carrying SPTLC1p.Y23F, L39del and F40S41del mutations and HSAN1 C133W
patients. n=4 (independent replicates). Data are represented as mean + SD, two-way ANOVA with Dunnett’s

adjustment for multiple comparisons. * p< 0.05, *** p<0.001, **** p<0.0001.

Figure S7. Plasma L-serine and L-alanine levels in Leu39del family.

(A and B) Levels of L-serine (A) and L-alanine (B) in plasma of SPTLC1p.Leu39del family members. Amino
acids were extracted from plasma and quantified relative to isotope labelled internal standards. Data are
represented as mean + SD, n=3 (independent replicates), one-way ANOVA followed by Bonferroni correction
for multiple comparison, * p< 0.05, *** p<0.001, **** p<0.0001.
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Full unedited blots for Figure 1C
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Full unedited blots for Figure 2A
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Full unedited blots for Figure 2B
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Full unedited blots for Figure S2E
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