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latent tuberculosis infection (LTBI). The aim of this study is to assess 3HP-mediated clearance of M. tuberculosis bacteria
in macaques with asymptomatic LTBI. Twelve Indian-origin rhesus macaques were infected with a low dose (~10 CFU) of
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imaged via PET/CT at frequent intervals. Upon treatment completion, all animals except 1 were coinfected with SIV to
assess reactivation of LTBI to active tuberculosis (ATB). Four of 6 treated macaques showed no evidence of persistent
bacilli or extrapulmonary spread until the study end point. PET/CT demonstrated the presence of significantly more
granulomas in untreated animals relative to the treated group. The untreated animals harbored persistent bacilli and
demonstrated tuberculosis (TB) reactivation following SIV coinfection, while none of the treated animals reactivated to
ATB. 3HP treatment effectively reduced persistent infection with M. tuberculosis and prevented reactivation of TB in
latently infected macaques.
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Introduction
Most people infected with Mycobacterium tuberculosis do not prog-
ress to active tuberculosis (ATB) but instead contain the bacteria
and develop asymptomatic, latent tuberculosis (TB) infection
(LTBI) (1). However, these individuals remain at risk for develop-
ing ATB disease, for example, when coinfected with HIV (2). The
commercial tests available to detect LTBI — the tuberculin skin
test (TST) (2) and ELISA-based Interferon Gamma Release Assays
(IGRAs) (3) — fail to determine whether an individual has cleared
infection or harbors persistent bacilli. The CDC recommends the
use of a once-weekly regimen of isoniazid and rifapentine for 3
months (3HP) for treatment of LTBI in humans (4). 3HP is effective
at reducing the risk of developing ATB (5), suggesting that it medi-
ates clearance of M. tuberculosis in LTBI. However, the sterilizing
efficacy of the regimen on M. tuberculosis has not been demonstrat-
ed. Thus, a better understanding of treatment-mediated clearance
of M. tuberculosis infection is needed in order to improve monitor-
ing and evaluation of treatment regimens for LTBI.

The nonhuman primate (NHP) model is attractive for study-
ing human M. tuberculosis infection and for performing preclinical
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A once-weekly oral dose of isoniazid and rifapentine for 3 months (3HP) is recommended by the CDC for treatment of

latent tuberculosis infection (LTBI). The aim of this study is to assess 3HP-mediated clearance of M. tuberculosis bacteria

in macaques with asymptomatic LTBI. Twelve Indian-origin rhesus macaques were infected with a low dose (~10 CFU) of M.
tuberculosis CDC1551 via aerosol. Six animals were treated with 3HP and 6 were left untreated. The animals were imaged via
PET/CT at frequent intervals. Upon treatment completion, all animals except 1 were coinfected with SIV to assess reactivation
of LTBI to active tuberculosis (ATB). Four of 6 treated macaques showed no evidence of persistent bacilli or extrapulmonary
spread until the study end point. PET/CT demonstrated the presence of significantly more granulomas in untreated

animals relative to the treated group. The untreated animals harbored persistent bacilli and demonstrated tuberculosis

(TB) reactivation following SIV coinfection, while none of the treated animals reactivated to ATB. 3HP treatment effectively
reduced persistent infection with M. tuberculosis and prevented reactivation of TB in latently infected macaques.

studies on treatment regimens, as it recapitulates key aspects of
human M. tuberculosisinfection states and TB (6). Amajority of rhe-
sus macaques infected with low-dose M. tuberculosis CDC1551 via
aerosolization develop asymptomatic LTBI (7, 8). Moreover, coin-
fecting latently M. tuberculosis-infected macaques with SIV results
in reproducible reactivation (9). Thus, the NHP model allows us
to gain longitudinal and mechanistic insights into the efficacy of
treatment regimens for M. tuberculosis, including in lung compart-
ments, which is difficult to investigate in humans. Between 2014
and 2017, we conducted studies of LTBI and SIV-induced reac-
tivation of tuberculosis (TB) in rhesus macaques to evaluate the
efficacy of the 3HP regimen (10). We discovered irregularities in
the timing and frequency of treatment in a subset of the animals
reported in that study, which led us to subsequently retract the
published work (10). Here, we repeated the study to investigate
the persistence of M. tuberculosis in the lungs of asymptomatic rhe-
sus macaques with long-term M. tuberculosis-infection and to eval-
uate the efficacy of 3HP in eradicating persistent M. tuberculosis in
amacaque model of 3HP treatment. To assess the effectiveness of
3HP in clearing M. tuberculosis infection, we coinfected both treat-
ed and untreated animals with SIV. Our results clearly suggest that
the 3HP treatment is efficacious, leading to substantial reduction
in clinical signs of TB, bacterial burden, granuloma numbers, vol-
ume of inflammation, and degree of disease.

Results

Clinical correlates of LTBI, 3HP treatment, and TB reactivation in
rhesus macaques. Twelve animals were exposed to a low dose of
M. tuberculosis CDC1551 (Figure 1A). Infection was confirmed by
a positive TST (2) at weeks 3 and 5 after M. tuberculosis infection.
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All animals in the study developed LTBI infection, characterized
by the absence of culturable bacilli in bronchoalveolar lavage
(BAL), serum C-reactive protein (CRP) less than or equal to 10 pg/
mL (Figure 1B), and no significant changes in body temperature
(Figure 1C) and body weight (Figure 1D) for up to 12 weeks after
M. tuberculosis infection. One group (n = 6) remained untreated,
whereas the second group (1 = 6) was treated with the once-week-
ly 3HP regimen for 12 weeks. One month after treatment comple-
tion (i.e., 7 months after M. tuberculosis infection), coinfection with
SIV led to TB reactivation in the majority of untreated animals,
as demonstrated by increased CRP levels (Figure 1B). One of the
animals in this group (31438) progressed to active TB by week 18
(evident from increased CRP levels in this animal, Figure 1B, and
greater than 20% weight loss, Figure 1D). Therefore, this animal
was not coinfected with SIV and was instead euthanized 32 weeks
after TB infection (its data were included in the data analysis). Due
to the clinical signs and symptoms of TB reactivation, which were
CRP levels greater than or equal to 10 pg/mL, greater than 20%
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weight loss, loss of appetite, and increased lesions as seen via PET/
CT, the control animals were humanely euthanized (Figure 1E).
While 3 animals demonstrated more weight loss compared with
the others during the treatment period, the weight loss was not sig-
nificantly greater nor consistent for more than 2 weeks in the same
animal. There was no significant difference between CRP values
of untreated and 3HP-treated animals at week 3 (P = 0.91), week 9
(P =0.61), or week 23 (0.08) after M. tuberculosis infection. How-
ever, there were significant differences in the CRP levels after SIV
coinfection at necropsy between the 2 groups (P=0.01). Important-
ly, none of the 3HP-treated animals exhibited elevated CRP levels
(Figure 1B), pyrexia (Figure 1C), or wasting (Figure 1D) after SIV
coinfection and did not need to be euthanized due to disease pro-
gression (Figure 1E). These animals were subsequently euthanized
for necropsy and tissue collection at week 34 after TB infection. No
significant differences were observed in blood biochemistry (Fig-
ure 1F) between the 2 groups following 3HP treatment completion,
confirming absence of drug-induced cytotoxicity. These results
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Figure 2. CT imaging of treated
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versus control macaques. CT scans
of (A) control and (B) 3HP-treated
rhesus macaques at weeks 8-10,
22, and 26 after TB infection and at
study end point. Animal 31438 was
an active progressor and was not
administered SIV. In the longitudi-
nal CT scans performed, macaques

Week 22

Week 26

Necropsy

3HP treated

in the 3HP treatment group report-
ed resolving lung lesions as early

as 2-4 weeks after 3HP treatment
initiation (black arrows), while
there were no new lung lesions, and
preexisting lung lesions resolved
further at 10 weeks after 3HP initia-
tion (black arrows).
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Week 8-10

34021

Week 22

Week 26

Necropsy

indicate that a majority of macaques in this study were infected
with M. tuberculosis for >28 weeks and remained asymptomatic
until substantial immune perturbation occurs via SIV coinfection.
However, it is possible that a percentage of macaques could have
reactivated had they been left untreated.

PET/CT imaging analysis of TB reactivation. Coinfection with
SIV led to TB reactivation in untreated animals, as demonstrated

J Clin Invest. 2022;132(18):e161564 https://doi.org/10.1172/JCI161564

by the presence of numerous granulomatous lesions detected by
CT scans (Figure 2A). While a solitary macaque (33997) exhibited
spontaneous reactivation prior to SIV coinfection and exhibited
many lesions, the other 5 untreated, SIV coinfected animals had
clear evidence of granulomatous lesions as well. Animal 36462
had comparatively less evidence of progression. Furthermore,
the 3HP-treated animals did not demonstrate the presence of
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Figure 3. PET scans of treated and control rhesus macaques. (A) PET scans of 6 untreated control animals demonstrating gradual progression in TB
pathology from week 26 after TB infection up to necropsy with multiple new lung lesions, and increased size of previously reported nodular lung lesions.
(B) PET scans of 6 animals treated with 3HP demonstrating no new lung lesions, (C) granuloma counts, (D) lung lesion volume, (E) lung lesion activity, (F)
lung SUVmax, and (G) total lung activity at weeks 26 and necropsy in treated and control animals. Data are represented as mean + SEM. Significance was
determined using 2-way ANOVA or multiple 2-tailed t tests using Holm-Sidak method, *P < 0.05; **P <0.01; ***P < 0.001.

increased lesion numbers after SIV coinfection (Figure 2B, marked
with black arrow). The lung lesions in all macaques remained
stable, i.e., no or minimal progression in size and architecture at
weeks 8-10 after infection, confirming LTBI (Figure 2, A and B,
marked with black arrow). Five of 6 macaques in the control group
showed gradual progression in TB pathology after SIV coinfection,
with multiple new lunglesions and increased size of already estab-
lished nodular lung lesions (Figure 2A, marked with black arrow).

TB pathogenesis and the efficacy of the 3HP prophylaxis reg-
imen were examined using PET/CT scans (11) (Figure 3). All of
the macaques in the study had focal nodular lung opacities, while
9 of the 12 displayed mild-to-moderate lymph node enlargement
by 5-6 weeks after aerosol M. tuberculosis infection. The 18F-flu-
orodeoxyglucose (18F-FDG) scans were performed 3 weeks after
completion of 3HP regimen, i.e., week 26, in all animals (Fig-

ure 3, A and B). These scans clearly revealed both the presence
of persistent foci of increased FDG uptake in the controls (Fig-
ure 3A), and the effectiveness of the 3HP regimen (Figure 3B)
at the completion of the treatment. After SIV infection, scans in
the treated group reported few to no new lung lesions, while the
already established lung lesions did not increase in size, and no
increase in FDG uptake (Figure 3B) was observed in the majority
of the animals in this cohort. In contrast, 5 of6 control (untreated)
animals showed an increase in size of lung lesions and increased
FDG standard uptake values (SUV) (Figure 3A), signifying reac-
tivation and further progression of lung TB pathology. All 6
untreated control animals showed involvement of multiple lung
lobes, with some examples of consolidation, lobar collapse, cav-
itary lesions, and massive mediastinal lymph node enlargement,
after SIV coinfection. The number (P = 0.0181) (Figure 3C) and
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volume of lung lesions (P = 0.0335) (Figure 3D), lung lesion activ-
ity (P = 0.0002) (Figure 3E), SUVmax (P = 0.0036) (Figure 3F),
and total lung activity (P = 0.0335) (Figure 3G) of control animals
were each significantly higher compared with the 3HP treatment
group after treatment completion. Our results, therefore, suggest
effective resolution of lung TB lesions after prophylactic treat-
ment with the 3HP regimen.

3HP treatment-mediated clearance of persistent M. tuberculosis
infection in macaques. To assess M. tuberculosis bacterial burdens
in pulmonary and extrapulmonary compartments of 3HP-treated
and untreated animals following SIV coinfection, lungs and other
organs were assayed for M. tuberculosis by culture at necropsy (Fig-
ure 4). The lung bacterial CFU loads in the untreated group (mean
of 3.56 log, ) were significantly higher than in the 3HP-treated
group (mean of 1.0 log,; P = 0.0085) (Figure 4A). All 6 of the
untreated animals harbored bacilli in their lungs, while 4 of the
6 3HP-treated animals were completely devoid of any replicative
bacilli, despite 50% of the lung tissue being used for CFU analy-
ses. In addition to assessing the bacterial burden in random sec-
tions, we also identified and isolated individual granulomas from
the 2 groups of animals. We observed significantly higher bacteri-
al burdens in the granulomas of untreated animals (P < 0.0001)
compared with 3HP-treated animals (Figure 4B). In the treated
group, only 3 of 34 individual granulomas (8%) harbored cultur-
able bacilli compared with the untreated group, where 32 of 34
granulomas (94%) harbored replicative bacilli (Figure 4B). Statis-
tically significantly higher bacterial burdens were also observed in
extrapulmonary organs: bronchial lymph nodes (P = 0.02) (Figure
4C), spleen (P = 0.01) (Figure 4D), kidney (P = 0.01) (Figure 4E),
and liver (P=0.01) (Figure 4F). Only 1 of6 treated animals exhibit-
ed culturable M. tuberculosis in bronchial lymph nodes and spleen,
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Figure 4. Bacterial persistence and burden. (A)
Lung bacterial burden in animals that were left
untreated for 7 months compared with animals
treated with 3HP, which mirrored results found
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2+ % available online with this article; https://doi.
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o T org/10.1172/]JCI161564DS1). The pathologi-
cal findings were correlated with the clinical
0

and microbiological findings. All 6 untreated
control animals demonstrated granulomas in
lung tissue at necropsy (Figure 5A), whereas 4
of the 6 3HP-treated macaques demonstrated no granulomas (Fig-
ure 5B) in the lung tissue. Detailed histopathological analysis of
stereologically collected samples from all animals demonstrated
robust granulomatous inflammation in the untreated group, sug-
gestive of SIV-induced reactivation. Untreated animals demon-
strated well-formed granulomas with caseous central areas (Figure
5C) and multifocal histiocytic to mixed inflammation (immature
granulomas) (Figure 5D). Digital quantification of lung pathology
showed significantly higher (P = 0.02) lung involvement (mean of
18%; range, 7%-39%) in the untreated control group compared
with the 3HP-treated group (mean of 1%; range, 0.28%-2.15%)
(Figure 5E). Disseminated granulomatous inflammation — in the
bronchial lymph nodes, spleen, and liver — was observed in 4 of6
animals in the untreated group and in 1 of6 animals in the treated
group (data not shown).

Immunologic and virologic effects of SIV infection in LTBI
macaques. SIV plasma viral loads were measured in each animal to
rule out the possibility that the differences in the clinical outcomes
between treated and untreated groups were due to differential
viral replication (Figure 6A). No statistically significant differ-
ences were observed in the viral loads at both the acute set point
and end stage of SIV infection between the 2 groups (Figure 6A).
Flow cytometric analysis of BAL and lung cells from 3HP-treated
and untreated animals that were obtained at necropsy following
SIV coinfection showed that the frequencies of CD4* T cells in
the lungs of both groups of animals were comparable (7%-9%;
no statistical difference) (Figure 6, B and C). Lung CD8" T cells
were equally elevated in both groups (>75%) and were statistically
indistinguishable (Figure 6, B and C). Similarly, in BAL, there was
a comparable depletion of CD4" T cells in both groups, while the
frequencies of CD8* T cells were elevated (Figure 6, D and E).
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Figure 5. Pulmonary pathology.
Lung tissue at the time of necropsy
was stereoscopically distributed
for analysis by H&E staining. (A
and B) Histologic analysis of lung
tissues at study end point after SIV
coinfection in (A) untreated ani-
mals and (B) treated animals. Scale
bars: 1mm. (C and D) A represen-
tative image demonstrates severe
pathology and bacterial burden in
multiple areas such as (C) bron-
chial lumen and (D) lymphangitic
lesions, with indicated scale bars
for each image. Arrowheads denote
acid-fast bacilli present after
Ziehl-Nielsen staining. Scale bars:
100 pm (left), 50 um (right). (E)
Analysis of animals treated with
3HP demonstrated significantly

— lower to no detectable granuloma

lesions or severe consolidation
prominent in coinfected animals,
as shown by histologic analysis.
*P < 0.05 using Student’s 2-tailed
t test. % Pathology, percentage of
lung involvement in each group.
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Discussion
Our study demonstrates that viable M. tuberculosis can persist
within the lungs of rhesus macaques for up to 7 months during the
asymptomatic LTBI state. Furthermore, we were able to assess
the effectiveness of 3HP treatment for clearing M. tuberculosis in a
model of LTBI and SIV-mediated reactivation. Our data show that
the 3HP regimen was able to clear M. tuberculosis in 4 of6 treated
macaque lungs and prevent reactivation of LTBI in all 6 treated ani-
mals following SIV coinfection. In comparison, all 6 untreated ani-
mals demonstrated clear signs of TB reactivation upon SIV coinfec-
tion. The CDC recommends 3HP as an effective treatment for LTBI
in humans, and our study shows low levels of culturable bacteria in
the lungs of 3HP-treated NHPs. Our study does not establish com-
plete sterilization of M. tuberculosis bacilli by 3HP, as treated ani-
mals may harbor low numbers of bacteria that are unable to cause
disease within the study period. Overall, our study establishes what
we believe to be a new animal model for evaluating the efficacy of
drug regimens such as 3HP, which can be extended to study addi-
tional treatment regimens for LTBL. Moreover, this model allows
for detailed immunologic and microbiological investigations in
local and peripheral compartments during persistent M. tuberculo-
sisinfection, treatment, and reactivation to TB disease.

M. tuberculosis is able to reside within the lung tissue in a slow
or nonreplicating state due to its resistance to host immunity and

1
Control Treated

ability to withstand hypoxia and oxidative stress (12). Although
LTBI is associated with low-level persistence of M. tuberculosis
without progression to disease, current diagnostics cannot detect
M. tuberculosis in asymptomatic IGRA-positive individuals. As a
result, we are unable to identify the subset of IGRA-positive and/
or TST-positive individuals harboring viable bacilli in their lungs
versus those who may have cleared infection. Furthermore, study-
ing lung-specific host immune responses associated with LTBI in
humans remains challenging (13). Our model allows for longitudi-
nal sampling over long periods of time to monitor clinical, radiolog-
ic, pathologic, microbiologic, and immunologic parameters subse-
quent to precise delivery of M. tuberculosis via aerosol. Thus, this
model provides a platform for further, more detailed investigation
into immune correlates of persistence or clearance of M. tubercu-
losis infection. Analogous to IGRA-positive patients who do not
develop TB disease, we found that a majority of macaques in our
study remained devoid of clinical signs of TB following a low-dose
infection with M. tuberculosis CDC1551 (7). Moreover, a substantial
reactivation to TB following SIV coinfection confirmed the pres-
ence of viable M. tuberculosis bacilli in these animals. The early pro-
gression to ATB before SIV coinfection in a minority of macaques
represents a caveat of our model. This is likely due to the fact that,
while we exposed animals to low doses of M. tuberculosis, exposures
of 10-20 CFU are still probably significantly higher than the phys-

6 J Clin Invest. 2022;132(18):e161564 https://doi.org/10.1172/JCI161564
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Figure 6. Immune measurements. (A) Plasma viral loads (Plasma VL) after SIV infection demonstrate parallel viral infection and burden in both groups.
(B-E) Analysis of CD4* and CD8" T cells as a percentage of CD3* lymphocytes by flow cytometric analysis of single-cell suspensions in (B and C) lung cells
and in (D and E) BAL at the time of necropsy. No significance was found using (A) 2-way ANOVA with Sidak’s correction or (B-E) Student’s 2-tailed t test.

iological exposure of most humans. Early progression to TB in our
model may be analogous to individuals who progress to primary TB
relatively early after infection. We believe that while the limitations
of our model do not diminish the overall significance of our find-
ings, it is nevertheless important to recognize these issues when
applying this model to future studies. Characterization of LTBI in
cynomolgus macaques by a heterogeneous mixture of sterile and
nonsterile granulomas has also been reported (11). It is believed
that local physiology, oxygenation status, and local lung immune
responses play a critical role in the balance between control of per-
sistent bacilli during LTBI and active replication of M. tuberculosis
during progression to TB (14). Thus, our animal model provides
the advantage of studying lung immune responses longitudinally,
which is difficult to study in humans (15, 16).

The CDC currently recommends the 3HP regimen as pre-
ventive treatment for LTBI in the United States and notes that a
shorter 3HP regimen leads to substantially higher completion
rates,compared with a 9-month regimen of isoniazid alone (17).
However, the metrics for evaluating the success or failure of any
treatment regimen center on epidemiologic rates of TB relapse
or recurrence (18). Using our rhesus macaque model of LTBI, we
were able to directly assess 3HP-mediated clearance of persistent
M. tuberculosis bacilli. We show that 3HP treatment markedly
reduced (persistent M. tuberculosis burdens, as shown by PET/
CT scans, microbiological culture, and lack of LTBI reactivation
upon SIV coinfection. 3HP-mediated M. tuberculosis clearance was
also independent of differences in SIV viral loads or depletion of
CD4' T cells in BAL and lung, which were comparable in treat-
ed and untreated animals. These results suggest that the extent
of pathology observed in these untreated animals resulted from
recent reactivation of TB infection following SIV coinfection rath-
er than progression of disease from the M. tuberculosis infection
8-9 months earlier. Drug hepatotoxicity, leading to lower rates of
patient adherence is often seen during LTBI treatment. Scale up of
LTBI treatment globally would be significantly affected by reduc-
tions in the treatment duration (19). In addition to being cost-
effective and causing less hepatotoxicity, the shortened duration
and frequency of 3HP dosing has resulted in much higher rates of
treatment completion (20, 21). Similar to humans, we observed no
hepatotoxicity in the study animals after completion of 3HP treat-
ment. The comparative clinical trials between once-weekly 3HP
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and daily isoniazid alone for 9 months examined the percentage of
patients that developed TB after treatment as the main end point
(4, 5). Additionally, a I-month regimen of daily isoniazid-rifapen-
tine (IHP) in patients with HIV infections living in areas of high
tuberculosis prevalence was noninferior to 9 months of isoniazid
alone in preventing tuberculosis in this cohort (22). Our macaque
model demonstrates effective clearance of M. tuberculosis infec-
tion by the 3HP regimen and provides evidence that 3HP reduces
persistent M. tuberculosis infection.

One of the limitations of our study is the inability to precise-
ly model latently infected people who remain asymptomatic for
extended periods of time after their initial exposure to M. tuber-
culosis. Rather, our model of LTBI and its treatment more closely
models recently infected contacts of TB-source cases with posi-
tive IGRA and TST, but who fail to progress to ATB within the first
year after exposure. Given that the highest risk of developing TB is
in the first 2 years after exposure, recent contacts are considered
to be a priority for preventive treatment (23). Another limitation
is the use of a single agent, SIV, to induce LTBI reactivation in our
model. Future studies can test additional agents such as tumor
necrosis factor blockade or steroid-mediated immunosuppression
to induce LTBI reactivation. We were also limited by the inabili-
ty to assess the effect of 3HP on nonculturable bacilli. While 3HP
effectively clears culturable M. tuberculosis, we are unable to cur-
rently determine its effect on nonculturable bacilli.

Conclusions. Through our NHP model of TB, we have demon-
strated that M. tuberculosis can persist in the lungs of latently
infected macaques for months after infection, effectively model-
ing IGRA-positive contacts of TB cases in humans with LTBI. Fur-
thermore, we provide experimental evidence of the 3HP regimen
as preventive treatment for LTBI by showing that treatment with
3HP reduced the risk of developing TB in our macaque-LTBI mod-
el. Together, these results confirm clinical studies on 3HP and we
believe that they establish a robust preclinical NHP platform for
immunologic investigations of LTBI and evaluation of novel drug
candidates and regimens for treating contacts of drug-sensitive
and drug-resistant TB cases.

Methods

Animal infection and 3HP treatment. 12 naive, Indian-origin rhesus
macaques were infected via aerosol with a low dose (~10 CFU) of
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M. tuberculosis CDC1551 (Supplemental Table 1; refs 7, 8, 16). Infection
was confirmed by TSTs at weeks 3 and 5 after infection. Animals were
monitored for CRP, body weight, and body temperature weekly. All ani-
mals were TST positive, but remained devoid of ATB for up to 12 weeks,
and thus were considered to have developed LTBI. They were random-
ly assigned to either treatment or control groups (6 animals each). The
treatment group received a weekly oral dose of 15mg/kg isoniazid and
15 mg/kg rifapentine for 12 weeks, which began at week 12 after aero-
sol infection and lasted to week 23 after TB infection. Oral intake was
monitored by veterinary staff to ensure consumption. To confirm clear-
ance of M. tuberculosis bacilli by 3HP treatment, 11 of12 animals were
coinfected with a 300 median-tissue culture infectious dose of SIV,__ .
intravenously at week 27 after M. tuberculosis infection (7, 9). Animals
were euthanized upon signs of ATB — such as a strong PET/CT signal,
presence of culturable M. tuberculosis in BAL, continuous weight loss,
and high serum CRP levels and anorexia — or as time-matched controls.

PET/CT imaging. Longitudinal CT and PET/CT scans were per-
formed using a LFER150 PET/CT scanner (Mediso) at 3- to 6-week
intervals, starting from week 4 after TB infection with the last scan
prior to necropsy (24). Briefly, we performed 18F-FDG PET/CT scans
for each anesthetized macaque using the breath-hold technique (25).
All of the animals received an intravenous injection of 5 mCi dose of
18F-FDG (26), procured from Cardinal Health radiopharmacy. The
single field-of-view (FOV) and /or double FOV lung CT scans were per-
formed using breath-hold as described (27). PET scans were acquired
after completion of the 40-50 minute FDG-uptake period. Images
were visualized using Interview Fusion 3.03 (Mediso) and reconstruct-
ed using Nucline NanoScan LFER 1.07 (Mediso), with parameters as
described (28). The lung segmentation, volumetric, and SUV analyses
were performed using Vivoquant 4.0 (Invicro) (24).

Briefly, the region of interest (ROI) (29) was drawn using con-
nected thresholding referencing Hounsfield units for the lung, while
also drawn manually, to identify lung lesions as previously described
(30). Subsequently, image-derived mean SUVs were calculated for the
complete lung ROI and represented as total lung activity, while the
mean SUV for the lung lesion ROI are represented as lung lesion activ-
ity (31). The SUVmax of the 18F-FDG in the lungs of the TB-infected
macaques, usually seen in the lung lesions, is represented as lung SUV-
max. Granuloma count was performed by identifying and counting
heterogenous TB lesions manually (32). Animals showing greater than
100 granulomas and/or consolidation or collapse of granulomas are
represented as TNTC, or too numerous to count.

Assessment of M. tuberculosis infection and disease. Weekly physical
examinations including measurement of body weight, temperature, and
SIVviralload were determined as previously described (7, 16, 33, 34). Bac-
terial burden associated with M. tuberculosis infection was determined at
necropsy by plating homogenized tissue sections, as described previous-
ly (7,8, 16). Individual lung lobes were sectioned into 5 pm thick samples
and stereologically selected for analysis that allowed for unbiased selec-
tion of lung tissue (35). Randomly selected sections were pooled for CFU
and used for histopathology. Approximately 50% of the lung tissue was
pooled by lung lobe (1 = 5/animal), homogenized, serially diluted, and
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plated in triplicate. Approximately 30% of the lung tissue was fixed and
stained with hematoxylin and eosin using standard methods for histo-
logic analysis and scanned with Zeiss axio scan.Z1 slide scanner at x40
magnification and the digital slides were analyzed using an optimized tis-
sue classifier in HALO v3.3 software (Indica Labs). The remaining tissue
was processed as single-cell suspensions for flow cytometry as described
previously (7, 16). Bronchial lymph nodes, spleen, liver and kidney were
plated for CFUs. All infected macaques were housed in Animal Biosafe-
ty Level 3 facilities (ABSL3 facilities) at the Southwest National Primate
Research Center (SNPRC), where they were treated according the stan-
dards recommended by the Association for Assessment and Accredita-
tion for Lab Animal Care International (AAALAC International) and the
NIH guide for the Care and Use of Laboratory Animals.

Statistics. Statistical analysis was performed using GraphPad
Prism (version 8.4.1). A P value of less than 0.05 was considered sta-
tistically significant. Data are represented as mean + SEM. Specific
analysis are indicated in the figure legend of each figure and include
2-tailed Student’s t tests or 2-way ANOVA with Holm-Siddk multiple
comparison test as applicable.

Study approval. The study procedures were approved by the Ani-
mal Care and Use Committee of the Texas Biomedical Research Insti-
tute. Animals were anesthetized and intubated under the supervision
of a board-certified veterinarian as per approved Texas Biomedical
Research Institute IACUC protocols.
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