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Targeting TCF-1 to reprogram 
dysfunctional CD8+ T cells
Harnessing HIV-specific CD8+ T cell 
responses is explored as a strategy to induce 
HIV remission, since these cells play a criti-
cal role in limiting viral replication and elim-
inating HIV-infected cells in acute infec-
tion (1, 2). Functional HIV-specific CD8+ 
T cell responses have also been associated 
with viral control in natural controllers (3). 
However, in most people, dysfunction of 
HIV-specific CD8+ T cells begins after peak 
viremia in acute infection (4) and persists in 
the absence of treatment (5). Initiation of 
antiretroviral therapy (ART) only partially 
restores CD8+ T cell functions, therefore, 
it is critical for HIV remission strategies to 
reinvigorate HIV-specific CD8+ T cells in 
people living with HIV.

During an acute infection in the mouse 
model, primed CD8+ T cells differentiate 
into a large subset of short-lived effector 

cells and a small subset of memory pre-
cursor cells that give rise to long-lived 
memory cells (6). Transcription factor T 
cell factor 1 (TCF-1) is downstream of the 
Wnt/β-catenin pathway and involved in 
thymocyte maturation and T cell devel-
opment (7). TCF-1 also participates in the 
transcriptional program for memory CD8+ 
T cell differentiation, longevity, and sec-
ondary expansion (8). Naive CD8+ T cells 
express high levels of TCF-1, which con-
trasts with effector CD8+ T cells, in which 
TCF-1 is downregulated. High TCF-1 levels 
in a small fraction of antigen-experienced 
CD8+ T cells allows these memory precur-
sor cells to acquire a stem cell–like phe-
notype and to persist long term. In 2009, 
Gattinoni et al. demonstrated that promot-
ing the Wnt/β-catenin pathway drives the 
generation of stem cell–like memory cells 
(9). Later, Youngblood et al. showed that 
effector CD8+ T cells can change their epi-

genetic landscape and dedifferentiate into 
long-lived memory cells (10), suggesting 
that researchers can generate long-lived 
memory cells with stem cell properties. 
Studies in the lymphocytic choriomenin-
gitis virus (LCMV) model have shown that 
TCF-1 not only plays a crucial role during 
CD8+ T cell memory formation and main-
tenance, but also in the regulation of CD8+ 
T cell exhaustion in chronic infection. 
Indeed, TCF-1+ CD8+ T cells in chronic 
infection have the ability to self-renew and 
retain their proliferative potential, even 
though they express checkpoint proteins 
such as programmed cell death 1 (PD-1). 
These stem cell–like exhausted cells in 
chronic infection give rise to and constant-
ly replenish the pool of low TCF-1–express-
ing, short-lived, exhausted CD8+ T cells, 
hence the term “precursor exhausted” 
cells (11–13). Notably, ectopic expression of 
TCF-1 in exhausted effector CD8+ T cells 
reprograms them into precursor exhaust-
ed cells (14). These data suggest that tar-
geting the TCF-1 pathway can reprogram 
exhausted effector CD8+ T cells into CD8+ 
T cells with stem cell–like properties. In 
this issue of the JCI, Perdomo-Celis et al. 
used a pan–glycogen synthase kinase 3 
(GSK-3) inhibitor, targeting the TCF-1/
Wnt/β-catenin pathway to induce TCF-1  
and its transcriptional activity, which 
reprogrammed dysfunctional CD8+ T cells 
in HIV infection (15).

Reprogramming differentiation 
toward stem cell–like memory 
CD8+ T cells
Although TCF-1 has been extensively stud-
ied in the mouse model, only a few human 
studies have identified TCF-1 as a key tran-
scription factor expressed in self-renewing 
memory CD8+ T cells during viral infec-
tions (16, 17). In people with hepatitis C 
virus (HCV) infection, TCF-1–expressing, 
HCV-specific CD8+ T cells persist after 
viral clearance (18). HIV-specific CD8+ 
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target of rapamycin complex 1 (mTORC1) 
and aerobic glycolysis to sustain the energy 
and biomass increase needed for their pro-
liferation and function. HIV-specific CD8+ 
T cells in uncontrolled viremia exclusively 
depend on glycolysis and are maintained 
by continuous proliferation (21). In con-
trast, HIV-specific CD8+ T cells found in 
HIV natural controllers have more meta-
bolic plasticity and rely on both glycolysis 
and mitochondrial respiration to survive 
and exert their function. The spontaneous 
loss of viral control in natural controllers is 
preceded by a decrease in the functional-
ity of HIV-specific CD8+ T cells associated 
with an increase in plasma markers of aer-
obic glycolysis, dysregulated mitochondri-
al activity, and oxidative stress (22). A pre-
vious report showed that GSK-3 regulates 
mTORC1 activity by phosphorylating the 
mTOR-associated scaffold protein Raptor 
(23). Perdomo-Celis et al. demonstrate 
that GSK-3 inhibition reprogrammed total 
CD8+ T cells into metabolically more qui-
escent CD8+ T cells by reducing glucose 
and lipid uptake, mitochondrial mass, and 
the level of ROS. They confirmed that the 
metabolic plasticity was also increased in 
HIV-specific CD8+ T cells, as these cells 
decreased mTORC1-driven anabolic 
metabolism, similar to long-lived memory 
CD8+ T cells or HIV-specific CD8+ T cells 
in natural controllers (Figure 1 and ref. 15).

Effector functions after CD8+  
T cell reprogramming
The purpose of reprogramming dysfunc-
tional CD8+ T cells in HIV remission 
strategies is to enable them to eliminate 
HIV-infected cells and/or reduce viral 
transcription. TCF-1 has been reported 
to negatively correlate and repress the 
expression of genes involved in cytolytic 
programs and inhibit the differentiation of 
effector cells (13, 19). However, Perdomo- 
Celis et al. demonstrated that BIO treat-
ment of CD8+ T cells increased TNF-α 
secretion and resulted in polyfunctional 
T cells with reduced expression of check-
point proteins (Figure 1). BIO treatment 
also enhanced viral suppression in an in 
vitro HIV replication assay without upreg-
ulation of cytolytic effector molecules (15). 
The mechanism leading to the exclusive 
increase of TNF-α production in the repro-
grammed cells, mainly responsible for 
the increase in polyfunctional cells, still 

mucin domain–containing protein 3 [TIM-
3]) T cells. Additionally, Perdomo-Celis et 
al. demonstrated that BIO treatment also 
improved the homeostatic proliferation 
of total and HIV-specific CD8+ T cells in 
response to IL-15 and IL-7, further showing 
that TCF-1 induction promoted the repro-
gramming of dysfunctional CD8+ T cells 
into cells with a higher persistence capaci-
ty (Figure 1). The authors did not show that 
BIO treatment improved TCR-mediated 
proliferation, although we would expect 
cells with a higher survival potential to 
respond better to TCR triggering (15).

Reprogramming cell 
metabolism toward quiescent 
memory CD8+ T cells
Increasing evidence supports the role of 
metabolic pathways in shaping immune 
responses and outcomes during HIV infec-
tion (20). Effector CD8+ T cells in acute 
HIV infection upregulate the mechanistic 

T cells in natural controllers that have a 
preserved proliferative capacity exhibit 
elevated TCF-1 expression compared with 
noncontrollers (17, 19). Perdomo-Celis et 
al. demonstrated that the GSK-3 inhibitor 
6-bromoindirubin-3′-oxime (BIO) was 
able to promote TCF-1 upregulation within 
a portion of total and HIV-specific CD8+ T 
cells after 12 hours of treatment, resulting 
in their dedifferentiation into stem cell 
memory T cell (TSCM) and central mem-
ory T cell (TCM) phenotypes. Upon T cell 
receptor (TCR) stimulation, BIO-treated 
CD8+ T cells had increased expression of 
BCL-6, CD127, and genes associated with 
cell survival (including BCL2), reflective 
of their long-lived memory potential. The 
cells also had decreased expression of 
PD-1, T-bet, B lymphocyte–induced matu-
ration protein 1 (BLIMP-1), and genes asso-
ciated with effector (IFNG, BATF, IFNGR1, 
and GZMK) and exhausted (CD244 and 
HAVCR2, which encodes T cell Ig and 

Figure 1. Features of HIV-specific CD8+ T cells in natural controllers and noncontrollers on ART 
with and without reprogramming through GSK-3 inhibition. CD8+ T cells from natural controllers 
consist of a high frequency of functional, long-lived memory HIV-specific cells expressing TCF-1 at 
high levels, whereas those from noncontrollers on ART consist of a low frequency of HIV-specific cells 
that express low or intermediate levels of TCF-1 and exhibit residual dysfunction. Treatment with the 
GSK-3 inhibitor BIO for 12 hours increased the expression of TCF-1 in these cells. Short-term GSK-3 
inhibition of HIV-specific CD8+ T cells in noncontrollers improves their metabolic fitness, survival 
capacity, homeostatic proliferation, and antiviral capacity, although these features might still be 
less prominent than those in natural controllers. Reprogramming HIV-specific CD8+ T cells by GSK-3 
inhibition to increase stemness may allow for more efficient immune boosting, resulting in a higher 
number of HIV-specific CD8+ T cells with enhanced survival and antiviral capacities to help control the 
virus after treatment interruption.
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ses to define reversions in the chromatin 
landscape associated with exhaustion. 
Indeed, in HCV infection, HCV-specific 
CD8+ T cells possess a largely irreversible 
epigenetic program of exhaustion, even 
after the infection resolves, suggesting 
that CD8+ T cells maintain the molecular 
signature as a chronic scar (27, 28). It will 
also be important to determine whether 
the dedifferentiation of CD8+ T cells is 
temporary or permanent. Further experi-
ments will also need to fine-tune the tim-
ing and duration of treatment with GSK-3 
inhibitors required to enhance TCF-1 
expression, while preventing the inhibition 
of HIV-specific CD8+ T cell expansion and 
effector differentiation in vivo. A deeper 
understanding of the mechanism by which 
GSK-3 inhibition via BIO treatment leads 
to the upregulation of TCF-1 would allow 
for the selection of more specific small 
molecules with potentially lower off-target 
effects than a pan–GSK-3 inhibitor. Final-
ly, further experiments should explore the 
effect of TCF-1 induction on transcription-
al regulation of the HIV provirus, as TCF-1 
could induce latent reservoir reactivation 
(29, 30). While it is premature to say that 
TCF-1 is the magic wand that can trans-
form dysfunctional CD8+ T cells into natu-
ral controller–like functional CD8+ T cells, 
targeting the Wnt/TCF-1 pathway to repro-
gram CD8+ T cells to increase stemness 
might provide a necessary component for 
HIV remission–inducing immunotherapy.
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