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Exercise response in DM1

The beneficial effect of exercise in the
general population and in many disease
states is widely accepted. However, cau-
tion must be used in recommending exer-
cise to patients with muscular dystrophies,
where muscle fibers may show increased
susceptibility to activity-induced injury.
For example, muscle injury in Duchenne
muscular dystrophy is aggravated even by
normal daily activities (1), and the muscle
fibers specialized for rapid contraction are
particularly vulnerable (2). Defining which
type and intensity of exercise is appro-
priate in muscular dystrophy has been an
active area of investigation (3, 4).

In the context of muscle disease where
the benefits and harms of exercise need
to be carefully weighed, Myotonic dystro-
phy type 1 (DM1) may be a distinct outlier.
The causal mutation is an expanded CTG
repeat in the 3" UTR of the DM1 protein
kinase (DMPK) gene. This mutation does
not, as its primary effect, eliminate a pro-

Myotonic dystrophy type 1(DM1) is a multisystem trinucleotide repeat
expansion disorder characterized by the misregulated alternative splicing of
critical mMRNAs. Previous work in a transgenic mouse model indicated that
aerobic exercise effectively improves splicing regulation and function in
skeletal muscle. In this issue of the JCI, Mikhail et al. describe the safety and
benefits of applying this approach in individuals affected by DM1. A 12-week
aerobic exercise program improved aerobic capacity and mobility, but not by
the mechanism observed in transgenic mice. Here, we consider the possible
reasons for this disparity and review other salient findings of the study in
the context of evolving DM1 research.

tein product required for maintenance of
skeletal muscle. Instead, the trinucleotide
repeat gives rise to deleterious RNAs that
carry long tracts of CUG repeats. The pro-
pensity of this repetitive RNA to self-as-
sociate, together with its high affinity for
splicing factors in the muscleblind-like
(MBNL) family, drives the formation of
RNA-protein condensates, called foci, in
the nucleus (5, 6). When MBNL proteins
become sequestered in the foci, many
changes of the transcriptome ensue (7). For
example, certain transcripts revert to fetal
or nonmuscle patterns of alternative splic-
ing, which compromises muscle function
through misexpression of protein isoforms.
Similar problems occur in other tissues
expressing the expanded CUG repeats:
smooth muscle, brain, and the heart (8, 9).

Although current theories about RNA
toxicity offer no indication as to whether
DM1 muscles may have increased sen-
sitivity to activity-induced damage or
heightened responsivity to exercise, four
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separate studies indicate that exercise is
safe and highly beneficial in a transgenic
DM1 mouse model, acting to reduce RNA
toxicity and partially restore the transcrip-
tome (10-13). Reporting in this issue of
the JCI, Mikhail and colleagues test the
translation of this finding in patients with
DM1, and show that exercise is indeed
beneficial, but not in ways predicted by
studies in transgenic mice (Figure 1 and
ref. 14). The authors examined the effects
of supervised aerobic exercise on a cycle
ergometer in 11 participants with DM1.
Although the intensity of the training was
considered moderate (30 minutes, 3 times
weekly for 12 weeks at 65%-75% maximal
capacity), the subjects showed impressive
gains. For example, maximum oxygen
consumption, which at baseline was only
52% that of healthy controls, improved by
32%. Functional mobility measures, such
as six-minute walk distance, showed par-
allel improvements, and lean body mass
increased 1.6 kg on average. However, in
contrast to what occurred in transgenic
mice, the physiological improvements in
DM1 patients were not accompanied by
decreased RNA toxicity, as determined by
analysis of RNA foci, MBNL proteins, and
splicing regulation in pre- and postexercise
biopsy samples of quadriceps muscle.

Difference of molecular
response in mice and humans
What accounts for the disparity between
mice and humans? One possibility lies
in the intensity of the exercise stimulus,
which was more frequent and of longer
duration in mice than in patients. Anoth-
er reason may relate to differences in
the size of expanded repeats. The CTG
repeat in the transgenic mouse model
(designated HSAM) is unstable, often
hovering around 220 repeats, which is
near the theoretical threshold for robust
nuclear retention and formation of foci.
If exercise promotes the nuclear export
of CUG-repeat transcripts that are loose-
ly held in foci, this effect may be more
pronounced in mice than in patients,
who typically carry several thousand
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Figure 1. Aerobic exercise produces functional gains in HSA'® transgenic mice and humans with DM1. While mice exhibit reductions of RNA foci and
improvements in the regulation of alternative splicing, similar effects were not seen in humans with DM1. Increased mitochondrial function and quality
control may explain the benefits of exercise in DM1-affected individuals. ACTA7, actin a-1.

CTG repeats in muscle tissue and whose
nuclear foci appear far more condensed
than those observed in HSA'® mice.

The simplest explanation, however,
may relate to the impact of exercise on the
accumulation of toxic RNA from the gene
harboring the repeats. In the transgenic
mouse model, a genomic fragment contain-
ing the entire human skeletal actin gene,
with an expanded CTG repeat in the 3’
UTR, was integrated in the mouse genome
to drive high expression of CUG repeats in
skeletal muscle (15). Sharp and colleagues
showed that treadmill exercise can reduce
the level of mRNA from this transgene.
Since expression of the endogenous mouse
skeletal actin gene was not affected, they
postulated that exercise increased the deg-
radation of transgene mRNA (10).

In fact, these explanations may coin-
cide. In a previous study of the same mouse
model, an oligonucleotide drug was used to
disperse foci and increase the nuclear export
of CUG-repeat RNA. Unexpectedly, this

:

intervention also caused substantial down-
regulation of the transgene mRNA via accel-
erated turnover (16). It is noteworthy, how-
ever, that Mikhail and colleagues observed
no downregulation of DMPK mRNA follow-
ing exercise, which may reflect differences
of DMPK regulation or the difficulty of forc-
ing nuclear export when the repeat tract is
extremely long (14).

Mitochondrial function and
snoRNAs in DM1

If the benefits of exercise in DM1 patients
do not involve reduction of RNA toxicity,
then what is the mechanism? Mikhail et al.
present evidence that RNA toxicity, though
not improved by exercise, does not block
normal adaptations of muscle to aerobic
training (14). In line with previous work (17,
18), Mikhail and colleagues found that mito-
chondrial function was impaired at base-
line in DM1 muscle. The authors then went
on to demonstrate several of the expected
improvements from endurance training. For

example, proteins in complexes I, III, and
IV of the respiratory chain were reduced at
baseline and restored after exercise.

RNA-Seq of DM1 muscle also showed a
huge upregulation of small nucleolar RNAs
(snoRNAs), which are noncoding RNAs
involved in ribosome biogenesis and other
aspects of RNA metabolism (19, 20). This
programmatic shift of an entire class of
small RNAs was unexpected, and the func-
tional importance is unclear. If confirmed,
snoRNAs may provide useful biomarkers of
the disease process. However, further work
isneeded to determine how this alterationis
linked to the RNA gain-of-function mecha-
nism and whether it is a direct consequence
contributing to molecular pathology or part
of a compensatory response.

Clinical implications and future
directions

Although large well-controlled studies are
lacking, the report by Mikhail et al. (14)
adds to the existing evidence that limb
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muscles in DM1 can respond favorably to
resistance and endurance exercise (21).
Certainly, it is premature to conclude that
exercise in DM1 is uniformly safe, espe-
cially considering the heterogeneity of
the disease. However, the authors tested
for signs of aggravated muscle damage,
assessing muscle histology and serum
creatine kinase, and found none (14).
An unresolved question is whether the
pre-exercise reduction of mitochondrial
function and aerobic capacity represents
a primary effect of the disease process
or whether these changes result mainly
from severe deconditioning in a disease in
which fatigue, limited mobility, daytime
hypersomnolence, muscle pain, and other
factors often conspire to produce a seden-
tary lifestyle. The finding that moderate
aerobic exercise in humans did not fun-
damentally modify either the level of tox-
ic RNA or extent of MBNL sequestration
may not necessarily apply to resistance
training, and it remains possible that the
short-term benefits of aerobic exercise
may still translate to long-term myopro-
tective effects, if adherence to a regimen
can be sustained (14). Going forward, it
will be important to find the optimal reg-
imens of aerobic and resistance exercise
that safely deliver benefits and develop
strategies to maximize adherence in this
population (22).
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