

Repeated exposure to heterologous hepatitis C viruses associates with enhanced neutralizing antibody breadth and potency

Nicole Frumento, Alexis Figueroa, Tingchang Wang, Muhammad Nauman Zahid, Shuyi Wang, Guido Massaccesi, Georgia Stavrakis, James E. Crowe, Jr., Andrew I. Flyak, Hongkai Ji, Stuart C. Ray, George Shaw, Andrea L Cox, Justin R. Bailey

J Clin Invest. 2022. <https://doi.org/10.1172/JCI160058>.

Research In-Press Preview Immunology Virology

Graphical abstract

□

Find the latest version:

<https://jci.me/160058/pdf>

1

2 **Title: Repeated exposure to heterologous hepatitis C viruses associates with**
3 **enhanced neutralizing antibody breadth and potency**

4

5 **Authors:** Nicole Frumento¹, Alexis Figueroa¹, Tingchang Wang², Muhammad N. Zahid³,
6 Shuyi Wang^{4,5}, Guido Massaccesi¹, Georgia Stavrakis¹, James E. Crowe, Jr. ^{6,7,8}, Andrew
7 I. Flyak⁹, Hongkai Ji², Stuart C. Ray¹, George M. Shaw^{4,5}, Andrea L. Cox¹, Justin R.
8 Bailey^{1,10,*}

9

10 **Affiliations:**

11 ¹Department of Medicine, Johns Hopkins University School of Medicine, Baltimore,
12 Maryland, USA

13 ²Department of Biostatistics, Johns Hopkins University Bloomberg School of Public
14 Health, Baltimore, Maryland, USA

15 ³University of Bahrain, Department of Biology, College of Science, Sakhir Campus,
16 Bahrain

17 ⁴Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA

18 ⁵Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA

19 ⁶Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical
20 Center, Nashville, TN, USA

21 ⁷Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA

22 ⁸Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA

23 ⁹Division of Biology and Biological Engineering, California Institute of Technology,
24 Pasadena, CA, USA

25 ¹⁰Lead Contact

26 *Correspondence: 855 N. Wolfe Street, Suite 520, Baltimore, MD 21231 +14106146087

27 jbailey7@jhmi.edu

28

29 **Conflict of interest**

30 A.I.F., J.E.C., and J.R.B. are inventors of patents submitted pertaining to some of the
31 antibodies presented in this paper. J.E.C. has served as a consultant for Luna Innovations,
32 Merck, and GlaxoSmithKline, is a member of the Scientific Advisory Board of Meissa
33 Vaccines and is Founder of IDBiologics. The Crowe laboratory at Vanderbilt University
34 Medical Center has received sponsored research agreements from Takeda
35 Pharmaceuticals, IDBiologics and AstraZeneca. The other authors declare no competing
36 interests.

37

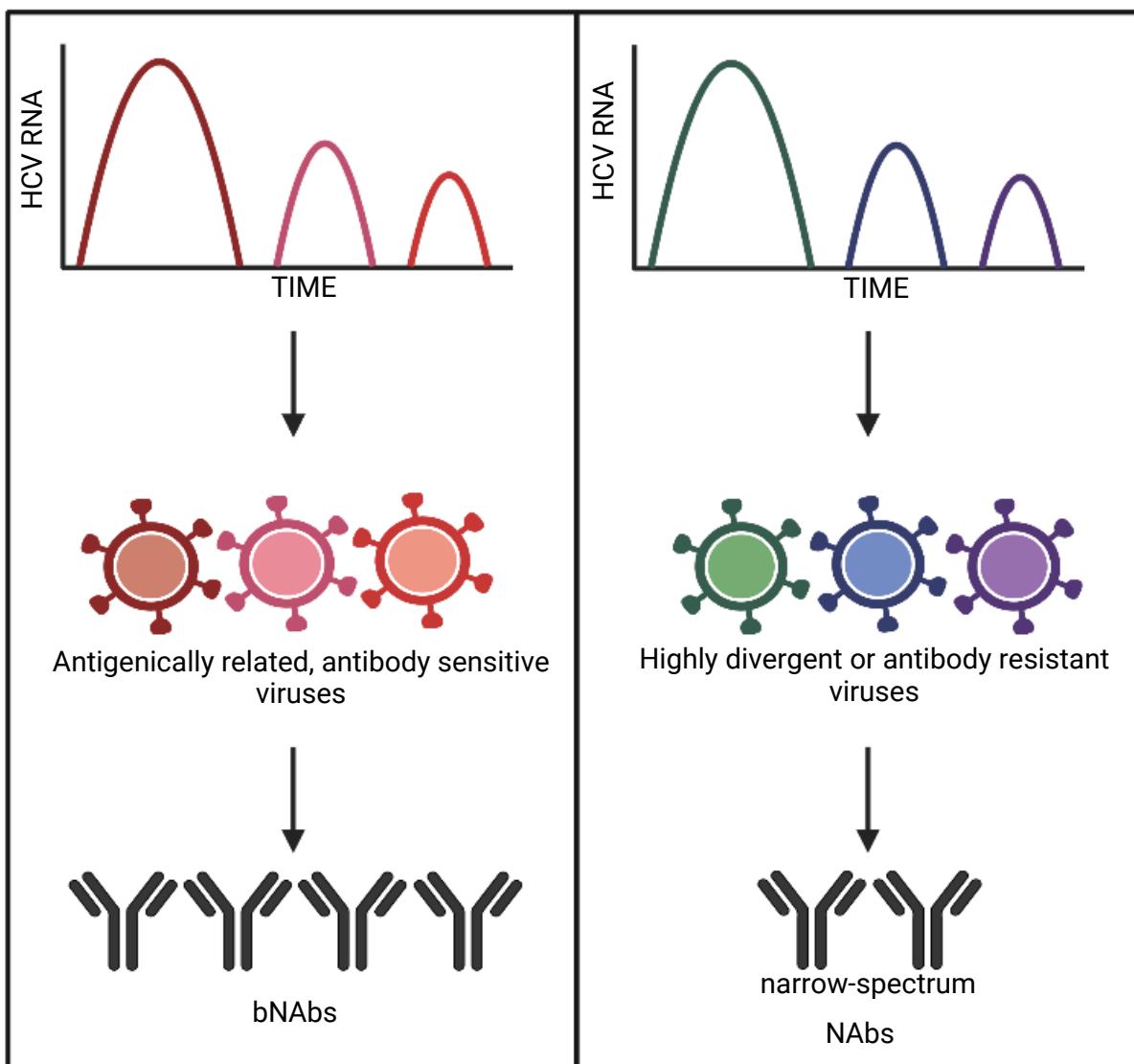
38 **Abstract**

39

40 A prophylactic hepatitis C virus (HCV) vaccine that elicits neutralizing antibodies
41 could be key to HCV eradication. However, the genetic and antigenic properties of HCV
42 envelope (E1E2) proteins capable of inducing anti-HCV broadly neutralizing antibodies
43 (bNAbs) in humans have not been defined. Here, we investigated the development of
44 bNAbs in longitudinal plasma of HCV-infected persons with persistent infection or
45 spontaneous clearance of multiple reinfections. By measuring plasma antibody
46 neutralization of a heterologous virus panel, we found that the breadth and potency of the
47 antibody response increased upon exposure to multiple genetically distinct infections and
48 with longer duration of viremia. Greater genetic divergence between infecting strains was
49 not associated with enhanced neutralizing breadth. Rather, repeated exposure to
50 antigenically-related, antibody sensitive E1E2s was associated with potent bNAb
51 induction. These data reveal that a prime-boost vaccine strategy with genetically distinct,
52 antibody sensitive viruses is a promising approach to induce potent bNAbs in humans.

53

54 **Keywords**


55

56 Broadly neutralizing antibodies, HCV, E1E2, antigen, vaccine

57

58

HETEROLOGOUS HCV REINFECTIONS

59 **Introduction**

60

61 An estimated 71 million people are infected with hepatitis C virus (HCV) worldwide
62 [1]. Given the largely asymptomatic nature of this disease, only a fraction of the HCV-
63 infected population is aware that they are infected [2]. Of the individuals who are
64 diagnosed, only a small percentage are effectively treated with direct-acting antiviral
65 (DAA) therapy. Although treatment is effective and safe, it remains unavailable to many,
66 especially in resource-limited settings, and curative treatment does not prevent reinfection
67 [3]. Persons with chronic HCV infection are at risk for complications such as cirrhosis, end-
68 stage liver disease, and hepatocellular carcinoma, and cirrhosis-related risks persist even
69 after HCV cure [4, 5]. Therefore, an HCV vaccine is needed to achieve disease eradication
70 [6, 7].

71 One of the major challenges to the development of a successful HCV vaccine is
72 the extraordinary genetic diversity of the virus [8-10]. Fortunately, multiple broadly
73 neutralizing antibodies (bNAbs) have been identified that block infection by diverse HCV
74 strains in vitro, and infusion of bNAbs is protective against HCV infection in animal models
75 [11-17]. In humans, along with potent antiviral T cell responses, early development of
76 plasma bNAbs has been associated with spontaneous clearance of primary HCV infection,
77 which occurs in about 25% of infected individuals [18-20]. Notably these immune
78 responses do not provide sterilizing immunity since individuals can be reinfected after
79 HCV clearance. However, about 80% of those who clear their first infection clear
80 subsequent reinfections [21]. Reinfections are associated with a rapid rise in neutralizing
81 antibody (NAb) titers, shorter duration of infection, and lower peak viremia, which indicate
82 protection by adaptive immunity [21-23]. Thus, individuals who clear multiple reinfections
83 can serve as a model for a desired vaccine response.

84 However, questions remain about how anti-HCV bNAbs are induced in humans.
85 Central to vaccine design, it remains unclear whether multivalent and/or prime-boost
86 immunizations are needed to induce anti-HCV bNAbs, and what genetic or antigenic
87 criteria should be used to select vaccine antigens. There is evidence that sequential
88 exposure to dengue, influenza, or HIV antigens can lead to broader immune responses
89 [24-26]. For chronically HCV-infected individuals, longer duration of infection leads to
90 greater neutralizing breadth [19, 27-29]. While reinfection after HCV clearance can lead
91 to broadening of the neutralizing antibody response [27], not all reinfected individuals
92 develop bNAbs, and the genetic or antigenic features of primary and reinfecting viruses
93 associated with acquisition of bNAbs have not been defined. For example, it is unclear
94 whether exposure to multiple highly diverse variants or reinfection with antigenically similar
95 viruses is required to induce a potent bNAb response. Characterization of these genetic
96 and antigenic features can inform development of a prophylactic HCV vaccine.

97 In this study, we aimed to define the antigenic stimuli that drive the development
98 of potent anti-HCV bNAbs in humans. We assessed development of bNAbs in a
99 prospective, longitudinal cohort of persons who inject drugs (PWIDs) who acquired HCV
100 infection during follow-up, including study participants with (1) spontaneous clearance of
101 primary infection and multiple reinfections, (2) clearance of primary infection followed by
102 persistent reinfection, (3) persistent, sequential infections with genetically distinct viruses,
103 or (4) persistent, chronic infection with a single viral strain (Figure 1). We measured
104 neutralizing breadth and potency of plasma antibodies at multiple timepoints in each study
105 subject and identified the mAb-types responsible for the neutralizing activity of each
106 plasma sample. We evaluated the relationship between development of bNAbs and (1)
107 exposure to multiple genetically distinct infections, (2) duration of viremia, (3) genetic
108 distance between primary infection and reinfection viruses, and (4) antigenic similarity
109 between primary infection and reinfection viruses. We used these data to develop a

110 rigorous model identifying key features of stimuli capable of inducing potent bNAbs in
111 humans.

112

113

114 **Results**

115

116 **Selection of study participants**

117

118 Study participants were PWIDs enrolled in the Baltimore Before and After Acute
119 Study of Hepatitis (BBAASH) cohort who were identified before or very early during acute
120 HCV infection (prior to HCV antibody seroconversion) and subsequently followed in a
121 study designed for monthly follow up through spontaneous clearance of primary HCV
122 infections and reinfections or over years of chronic infection. Study participants were
123 divided into four groups based on different patterns of infection (Figure 1). Reinfection
124 clearance subjects (n=6) were defined as individuals who were infected with and
125 subsequently cleared without treatment multiple infections with genetically distinct HCV
126 strains (divergence between strains ≥ 0.03), with an interval of at least 60 days of aviremia
127 between infections (Figure 1A). Reinfection persistence subjects (n=2) were defined as
128 HCV-infected persons who cleared their first infection without treatment and, after an
129 interval of at least 60 days of aviremia, were subsequently reinfected with another
130 genetically distinct virus which was not cleared (Figure 1B). Persistence strain switch
131 subjects (n=3) were infected sequentially with more than one genetically distinct viral strain
132 without a detected interval of aviremia between the first and second infections (Figure 1C).
133 For these subjects, we considered the first infection prior to the viral strain switch the
134 primary infection and subsequent infection after the viral strain switch as a reinfection.
135 Finally, as controls for this study, we selected participants who remained HCV infected
136 with a single HCV strain (divergence between longitudinal viruses < 0.03) over many years
137 of follow-up (designated “persistence 1 strain” subjects, n=17, Figure 1D). Overall, the
138 subject age at the time of seroconversion, sex, race, and HCV infection genotype were
139 not significantly different between the groups (Table 1).

140

141 **Plasma neutralization of a heterologous virus panel**

142

143 We measured neutralizing activity of antibodies in participants' plasma obtained at
144 longitudinal time points during infection using a panel of 19 genotype 1a and 1b HCV
145 pseudoparticles (HCVpp). This panel comprises HCVpp with a range of neutralization
146 sensitivity expressing 94% of the amino acid polymorphisms present at greater than 5%
147 frequency in a reference panel of 643 genotype 1 HCV isolates from GenBank [19]. The
148 neutralizing breadth of mAbs measured with this genotype 1 panel and neutralizing
149 breadth of the same mAbs measured with HCV strains from genotypes 1–6 was shown to
150 be similar in previous studies [30-32]. Furthermore, we have observed a strong correlation
151 between breadth of plasma from HCV infected individuals measured with this panel of 19
152 genotype 1 HCVpp and breadth of the same plasma measured with an antigenically
153 diverse panel discovered more recently which includes multiple genotypes (Supplemental
154 Figure 1) [19, 33]. We tested plasma samples collected at or immediately after the first
155 viremic timepoint, prior to clearance of primary infection, prior to reinfection, immediately
156 after reinfection and prior to clearance of reinfection (reinfection clearance group) or at
157 days 587-1708 of reinfection (reinfection persistence group) (Figure 1). We also tested
158 samples from persistence 1 strain and persistence strain switch subjects that were time-
159 matched with reinfection subjects based on days of viremia (DOV) (Figure 2A-B). We
160 defined plasma antibody neutralizing breadth as the number of HCVpp neutralized more
161 than 25% by a 1:100 dilution of the plasma and potency as the highest percent
162 neutralization value across the panel of 19 HCVpp by the same dilution of plasma. We
163 selected this 25% neutralization cutoff based upon mean and standard deviation of
164 neutralization by a negative control isotype mAb [33]. Close to 60% of subjects showed
165 an increase in plasma neutralizing breadth and potency over the course of primary

166 infection and reinfection, regardless of the outcome of infection, while the rest showed
167 very low or no plasma antibody neutralization of the HCVpp panel (Figure 2). Overall,
168 there was a non-significant trend toward higher median breadth and potency for clearance
169 samples compared to time-matched persistence samples (Supplemental Figure 2A-B).
170 Similarly, when the analysis was restricted to individuals with detectable plasma
171 neutralizing activity (capable of neutralizing at least 1 HCVpp), there was no significant
172 difference in frequency of individuals with detectable neutralizing activity or in median
173 breadth between the clearance and persistence groups (Supplemental Figure 2C-D). Lack
174 of statistical significance may be due to the small sample size of the groups. Persistence
175 strain switch subjects had the highest median breadth and potency of all groups. This
176 finding was true both when comparing overall breadth and potency of all time-matched
177 plasma samples or highest breadth and potency for each subject (Table 1).

178

179 **Deconvolution of NAb-types in plasma of HCV infected subjects**

180

181 We applied a plasma neutralizing antibody (NAb) deconvolution algorithm to
182 identify monoclonal antibody-types (mAb-types) responsible for the plasma neutralizing
183 breadth and potency observed for each sample (Figure 3A) [34]. We generated a
184 neutralization profile for each plasma sample with breadth equal to or greater than four
185 HCVpp by ranking its relative neutralization potency across the 19 HCVpp in the panel.
186 By comparing these plasma neutralization profiles to the neutralization profiles of a panel
187 of 11 E1E2-specific reference mAbs using code in R, we deconvoluted the combination of
188 mAb-types present in each plasma sample. The reference panel includes mAbs targeting
189 neutralizing epitopes across E1 and E2 (AR1, AR3, AR4, HVR1, Domain B, Domain C,
190 Domain D), and we improved the previously described method by expanding the panel of
191 reference mAbs to include mAbs targeting three additional distinct antigenic sites:

192 HEPC108 (a bNAb that binds the E2 central beta sheet and front layer), HEPC146 (a
193 bNAb that binds the E2 CD81 binding loop), and HEPC112 (a NAb that binds E1) [31].
194 Using deconvolution of control samples with spiked-in mAbs, we determined the true
195 positive threshold for identification of each reference mAb in monoclonal or polyclonal
196 mixtures (Supplemental Table 1). A mAb-type was called positive in test plasma samples
197 only if its deconvolution value exceeded this threshold. To validate the plasma
198 deconvolution method after the addition of the new reference mAbs, we performed
199 deconvolution analysis on plasma of human subjects C110 and C18, from whom we had
200 previously isolated E1E2-specific mAbs from peripheral blood B cells [30, 31]. As
201 expected, HEPC74-type NAbs were identified in plasma of C110, the source of HEPC74-
202 producing B cells. HEPC108-type and HEPC146-type NAbs were each identified in
203 plasma of C18, the source of HEPC108 and HEPC146-producing B cells (Supplemental
204 Figure 4).

205 Deconvolution demonstrated that plasma neutralizing breadth and potency
206 observed in the study participants could be attributed to a variety of mAb-types in plasma
207 (Figure 3A). We detected a median of two mAb-types per subject during primary infection
208 or subsequent reinfections (Figure 3B). Notably, we detected a larger variety of mAb-types
209 during primary infection, including some mAb-types with narrow neutralizing breadth.
210 However, by the second or later infection of most subjects, only HEPC146, AR4A,
211 HEPC74 and HEPC108-like responses were detected (Figure 3C). Taken together, these
212 data show that some narrow-spectrum mAb-types were present in plasma during primary
213 infections, but these responses were superseded by four bNAb-types that became
214 dominant during reinfections.

215

216 **Duration of viremia and number of distinct infections are associated with greater**
217 **plasma neutralizing breadth and potency regardless of infection outcome.**

218

219 To identify variables associated with greater plasma neutralizing breadth, we
220 performed regression analysis to model the effect on neutralizing breadth of duration of
221 viremia, number of distinct infections (infections with genetic nucleotide distance ≥ 0.03),
222 and outcome of infection. We divided the data set into two subsets containing information
223 from persistent or cleared infections. The days of viremia variable was scaled and
224 measured in 100 days/unit. Since neutralizing breadth is an integer count, we conducted
225 the analysis using Poisson regression with quasi-likelihood to account for over-dispersion
226 (i.e., quasi-Poisson). The residuals from the model are well scattered around zero,
227 suggesting good model fitting (Supplemental Figure 5A). We examined the necessity of
228 inclusion of outcome of infection by conducting a F-test between two nested models with
229 or without this variable. Since the two models were not significantly different ($p=0.41$), the
230 outcome of infection variable was subsequently excluded from the regression model for
231 breadth. This finding indicates that clearance or persistence of infection was not
232 significantly associated with breadth in our analysis. Instead, the quasi-Poisson regression
233 determined that neutralizing breadth was significantly associated with days viremia and
234 number of distinct infections per subject (95% confidence interval of the regression
235 coefficient does not cross 0 for either variable) (Figure 4A).

236 Similar results were observed when modeling the effect of duration of viremia,
237 number of distinct infections and outcome of infection on plasma neutralizing potency
238 (Figure 4B). Since neutralizing potency is a continuous variable, a linear regression model
239 was used. The residuals were scattered and well spread, indicating good model fitting
240 (Supplemental Figure 5B). Here too, the models with or without the outcome of infection
241 variable were not significantly different from one another ($p=0.98$). As with neutralizing
242 breadth, neutralization potency was significantly associated with days viremia and number
243 of distinct infections per subject (95% confidence interval of the regression coefficient does

244 not cross 0 for either variable) (Figure 4B). Therefore, duration of viremia and number of
245 distinct infections are associated with greater plasma neutralizing breadth and potency in
246 HCV infection regardless of whether the infection is cleared or persists.

247

248

249 **Greater genetic distance between infecting viruses is not associated with greater**
250 **plasma neutralizing breadth or potency**

251

252 Next, we evaluated whether greater genetic distance between primary infection
253 and reinfection viruses was also associated with greater plasma neutralizing breadth or
254 potency. First, we compared plasma breadth and potency during reinfections with the
255 same or different HCV subtype as the primary infection and we observed that they were
256 not significantly different from one another (Supplemental Figure 6). We then treated
257 genetic distance as a continuous variable by measuring divergence of reinfection E1E2
258 sequences from primary infection transmitted/founder (T/F) virus E1E2 of each subject
259 (Figure 5A). We selected the most frequently observed primary infection T/F virus to use
260 in this analysis (Supplemental Table 2). Divergence was determined by calculating the
261 amino acid p distance between each reinfection E1E2 sequence and the most frequently
262 observed primary infection T/F virus E1E2 sequence from the same subject. This analysis
263 was limited to subjects from whom we had previously obtained 5' hemigenome sequences
264 by single genome amplification (SGA) (n=8). We then modeled the relationship between
265 E1E2 divergence of the re-infecting viruses, duration of viremia, number of distinct
266 infections, and neutralizing breadth. We compared the model with and without genetic
267 divergence via F-test and determined that inclusion of this variable did not significantly
268 improve the model ($p=0.85$). We then used the model including the genetic divergence
269 variable to make predictions about breadth. Greater genetic divergence of each re-

270 infecting virus from the primary infection T/F virus was not associated with greater
271 neutralizing breadth in reinfection subjects, as illustrated by the fact that the 95%
272 confidence interval for the divergence regression coefficient in the quasi-Poisson model
273 contains 0 (Figure 5A). Similarly, when we evaluated the effect of genetic divergence when
274 predicting potency, the F-test was not significant ($p=0.83$) and the 95% confidence interval
275 for the divergence regression coefficient in the linear model covers 0 (Figure 5A).
276 Therefore, greater genetic distance between primary and re-infecting viruses was not
277 associated with greater neutralizing breadth or potency in reinfection subjects.

278

279

280 **Repeated infections with antigenically related, antibody sensitive viruses were**
281 **associated with greater plasma neutralizing breadth and potency**

282

283 Since we found that repeated exposure to highly genetically divergent infecting
284 viruses was not associated with higher breadth or potency, we analyzed the antigenicity
285 of the infecting viruses. To do so, we measured binding in an ELISA of a panel of E1E2-
286 specific mAbs to longitudinal E1E2 proteins generated from viruses of eight of the study
287 participants. This panel of mAbs included the mAbs used for neutralization profiling in
288 Figure 3, along with the bNAb HC33.4 and the weakly neutralizing but broadly cross-
289 reactive mAb CBH-7. In addition, we hypothesized that E1E2 variants that were sensitive
290 to binding of unmutated germline bNAb ancestors might play a role in early selection of
291 bNAb-producing B cell lineages, so we also measured binding of inferred germline
292 ancestors (recombinant unmutated ancestors (rua)) of bNAbs HEPC146, HEPC74,
293 HEPC108, and HEPC98 [30].

294 To select the optimal mAb concentration for binding quantitation, we first
295 performed binding curves with serial dilutions of a subset of the reference mAbs and a

296 subset of E1E2 proteins (Supplemental Figure 7). From these curves, we identified a
297 single mAb concentration (0.08 μ g/mL) that fell in the exponential binding phase of most
298 binding curves. Subsequent mAb-E1E2 binding tests were performed at this
299 concentration. We tested rua mAbs at a higher concentration because they were known
300 from prior experiments to have low binding affinity [35]. The decision to test most mAb-
301 E1E2 combinations at a single mAb concentration was validated by the high correlation
302 between the EC₅₀values and optical density (OD) values for the mAb-E1E2 combinations
303 that were tested both with full antibody titration curves and single mAb concentrations
304 ($p<0.0001$, Supplemental Figure 8).

305 We measured binding of mAbs to longitudinal E1E2 proteins from reinfection
306 subjects and to control E1E2 protein bole1a. We included bole1a, a computationally
307 designed ancestral genotype 1a HCV sequence, because it is a genetically representative
308 strain that we have previously demonstrated to be highly neutralization sensitive, with
309 theoretical potential as a vaccine antigen [36-38]. The E1E2s clustered into 4 major
310 antigenic clades (designated clades 1-4) based on their patterns of relative binding by all
311 reference mAbs (Figure 6A). Clade 1 included E1E2 proteins that were sensitive to most
312 of the reference mAbs in the panel. Clade 3 included bole1a and 2 other E1E2 proteins
313 from reinfection subjects, which were also relatively sensitive to binding of the reference
314 mAbs. E1E2 proteins in clades 2 and 4 were resistant to binding of the majority of mAbs.
315 All clades, except clade 2, contained E1E2 proteins from multiple genotypes and/or
316 subtypes (Supplemental Figure 9), indicating that the antigenic characteristics of the
317 proteins were not dictated by their genotypes.

318 We then explored the relationship between infections with viruses from the
319 different antigenic clades, neutralizing breadth, and potency. At each timepoint, we
320 counted the number of infections each subject had experienced with viruses from
321 antigenic clades 1, 2, 3, or 4 as well as the number of infections with viruses from distinct

322 antigenic clades, and we compared these values to the neutralizing breadth of plasma
323 from the same timepoints (Supplemental Figure 10A). We found that only the number of
324 distinct infections with viruses from antigenic clade 1 was significantly associated with
325 greater neutralizing breadth (Figure 6B and Supplemental Figure 10B). We then modeled
326 the relationship between number of infections with distinct viruses from antigenic clade 1,
327 duration of viremia, total number of infections, and neutralizing breadth (Figure 6C).
328 Although the total number of infections and the number of infections with viruses from
329 antigenic clade 1 were highly correlated, inclusion of both variables was well tolerated by
330 the model. The quasi-Poisson regression showed that the number of infections with
331 antigenic clade 1 variants was highly associated with greater neutralizing breadth, as
332 illustrated by the high regression coefficient with a 95% confidence interval that did not
333 cross 0. Similarly, a very high association between the number of infections with viruses
334 expressing antigenic clade 1 E1E2 proteins and neutralizing potency was observed
335 (Figure 6D). Notably, antigenic clade 1 viruses were particularly sensitive to binding of the
336 bNAbs that were immunodominant in broadly neutralizing plasma of reinfected individuals
337 (HEPC146, AR4A, HEPC74, and HEPC108, Figure 3) as well as germline precursors of
338 two of those bNAbs (HEPC74rua and HEPC108rua). In conclusion, we found that
339 repeated infections with antigenically related, antibody sensitive viruses, together with
340 longer duration of viremia, were significantly associated with greater neutralizing breadth
341 and potency.

342

343

344 **Discussion**

345

346 Selection of HCV vaccine antigens that effectively elicit antibodies with strong
347 neutralizing activity is critical. Here, we identified key features of the antigenic stimuli
348 capable of inducing potent anti-HCV bNAbs in humans. We measured the neutralizing
349 breadth and potency of antibodies in longitudinal plasma of each study participant and
350 identified four major bNAb-types commonly induced upon reinfection. We showed that the
351 neutralizing breadth and potency of the antibody response increased upon repeated
352 exposure to genetically distinct HCV strains and with longer duration of viremia. We also
353 found that a specific antibody-sensitive antigenic profile of the infecting strains, not greater
354 genetic difference between strains, was associated with increased plasma breadth and
355 potency in HCV reinfected subjects.

356 Induction of bNAbs is a major goal of HCV vaccine development. To date, most
357 candidate vaccines intended to induce bNAbs have relied on E1E2 antigens derived from
358 a single virus or a combination of antigens selected to maximize genetic diversity.
359 Unfortunately, these vaccines have failed to elicit high bNAb titers [39-42]. Therefore,
360 there is a need for selection or design of more effective immunogens. We screened E1E2
361 proteins from HCV-infected individuals to identify possible antigenic differences between
362 them and discovered several that were sensitive to binding of reference mAbs targeting a
363 diverse array of E2 epitopes. We found that the number of infections with viruses harboring
364 these pan-sensitive E1E2 proteins was highly associated with greater plasma neutralizing
365 breadth and potency. Notably, E1E2 proteins in this pan-sensitive antigenic cluster were
366 sensitive to the immunodominant bNAbs we identified in broadly neutralizing plasma of
367 reinfected subjects, as well as germline precursors of two of those bNAbs. We speculate
368 that highly conserved epitopes in bNAb-sensitive, antigenic clade 1 E1E2 proteins are
369 more accessible to antibody binding, favoring selection of B cells expressing bNAb

370 germline precursors. Repeated exposure to heterologous antigenic clade 1 E1E2 variants
371 exposing the same conserved epitope could favor further maturation of bNAb-expressing
372 B cell lineages, while simultaneously disfavoring maturation of B cells targeting less
373 conserved epitopes, which vary across heterologous viruses. On the other hand, bNAb-
374 resistant E1E2 variants (e.g. antigenic clade 4) may occlude conserved epitopes more
375 effectively, favoring selection of B cells targeting more exposed, variable epitopes. This
376 observation could help define characteristics of antigens that should be included in an
377 HCV vaccine.

378 A desirable vaccine will need to generate an immune response capable of
379 neutralizing very diverse viruses across multiple genotypes. However, whether the viral
380 genotype or genetic distance between infecting strains has significant influence on the
381 development of such a broad response was previously unclear. Here, we showed that
382 greater genetic distance between infecting viruses was not associated with greater
383 neutralizing breadth or potency, and that reinfection with a different HCV subtype from the
384 primary infection did not broaden the neutralizing antibody response. Instead, our data
385 point to repeated exposure to antigenically-related, neutralization sensitive viruses as a
386 better stimulus for bNAb induction. It is interesting to note that both antibody-sensitive and
387 resistant antigenic clades included viruses from multiple genotypes, further indicating that
388 genotypes do not dictate the antigenic characteristics of E1E2 proteins [33].

389 In agreement with prior studies, greater neutralizing breadth of the plasma
390 antibody response was associated with longer duration of infection and with reinfection
391 [19, 27-29]. Notably, in this study, we measured antibody breath and potency in plasma
392 from multiple reinfections from the same subjects, including subjects who cleared as many
393 as five distinct infections. Additionally, all plasma samples were time-matched based on
394 days of viremia between the reinfection and persistence subjects. This approach allowed
395 us to consider number of infections, duration of infection, and outcome of infection as

396 separate variables in the model of bNAb induction. Lastly, we identified the anti-HCV
397 bNAb-types induced in plasma. By the second or later infection, we observed a focusing
398 of the immune response towards HEPC146, AR4A, HEPC74 and HEPC108-like
399 responses (all broadly neutralizing). It is notable that AR4A and HEPC74-like responses
400 in plasma have been previously associated with clearance of primary infection [34]. AR4A
401 was recently shown to bind to the stalk of E2, while HEPC74 binds to the front layer/CD81
402 binding site of E2 [35, 43]. The two other immunodominant plasma bNAbs, HEPC146 and
403 HEPC108, were described more recently [31]. HEPC146 binding is focused at the CD81
404 binding loop of E2. The binding epitope of HEPC108 is less well defined but appears to
405 include residues in both the central beta sheet and the front layer of E2. Although the
406 reference mAbs in the panel include mAbs targeting several distinct antigenic sites, it is
407 likely that the epitopes and function of NAbS developing in different individuals do not
408 exactly match the reference mAbs to which they are most closely related. Therefore, more
409 work is needed to isolate additional mAbs from B cells of HCV-infected or vaccinated
410 subjects and to characterize the neutralizing epitopes critical to bNAb induction.

411 Despite prior studies showing an association between early plasma neutralizing
412 breadth and clearance of primary infection, we did not observe a significant association in
413 this study between plasma neutralizing breadth or potency and outcome of infection
414 (clearance vs. persistence) [19, 20, 34]. We believe this conclusion to be limited by the
415 small sample size of the clearance group (n=8), as there was a trend toward greater
416 neutralizing breadth in cleared infections. Although induction of bNAbs is the goal for
417 prophylactic vaccine development, clearance of established infection is dictated to a
418 greater extent by neutralization of autologous viruses. Further work is needed to fully
419 understand mechanisms of repeated control of HCV reinfections.

420 While we observed a significant association of neutralizing breadth and potency
421 with repeated antigenic clade 1 exposure, it is worth noting that antigenic clade 3 E1E2

422 proteins were also sensitive to binding of most of the reference mAbs. The lack of
423 association between number of antigenic clade 3 infections and breadth may have been
424 dictated by the fact that this clade only included three E1E2 proteins, one of which was
425 bole1a. Therefore, clade 3 E1E2 proteins might also be considered as possible vaccine
426 antigens capable of eliciting a broad immune response.

427 In conclusion, we have identified key features of the stimuli associated with the
428 induction of potent anti-HCV bNAbs in humans. Data here indicate that longer duration of
429 viremia and a greater number of infections are associated with greater plasma neutralizing
430 breadth and potency. This broadening of the antibody response can be attributed to
431 induction of four specific bNAb-types that we identified in the plasma upon reinfection.
432 Repeated infection with antigenically related, antibody sensitive HCV strains was strongly
433 associated with bNAb induction, while genetic distance between primary and reinfecting
434 strains was less important. This study indicates that a prime-boost vaccine strategy with
435 genetically distinct but antigenically similar, bNAb-sensitive E1E2 proteins, such as those
436 in antigenic clades 1 and 3, should be considered as a vaccine strategy to induce potent
437 bNAbs in humans.

438

439 **Methods**

440

441 **Human Subjects.** Plasma was obtained from the BBAASH cohort [44]. None of the
442 patients in the study were treated for HCV. Plasma samples from persistently infected
443 subjects were time-matched with clearance subjects based on days of viremia (DOV).
444 DOV is calculated by only counting viremic periods and excluding the period of aviremia
445 between infections. The first viremic timepoint and the aviremic timepoint prior to
446 reinfections were not time-matched, and therefore not included in comparisons between
447 groups.

448

449 **Cell lines.** HEK293T/17 cells (sex: female) were obtained from ATCC (cat# CRL-11268)
450 and maintained in Dulbecco's Modified Eagle Medium and supplemented with sodium
451 pyruvate, 10% heat inactivated fetal bovine serum, and glutamine. HEP3B cells (sex:
452 male), were obtained from the ATCC (cat # HB-8064), and maintained in Modified Eagle
453 Medium, supplemented with sodium pyruvate, 10% heat inactivated fetal bovine serum,
454 nonessential amino acids, penicillin-streptomycin, and glutamine. Cells were cultured at
455 37°C in a humidified incubator with 5% CO₂, and monolayers were disrupted at 80 to
456 100% confluence with Trypsin-EDTA.

457

458 **Source of Reference bNAbs.** HEPC74, HEPC98, HEPC112, HEPC146, HEPC108,
459 HEPC74rua, HEPC108rua, HEPC146rua, and HEPC98rua were isolated by JRB, AIF
460 and JEC [30]. MAbs CBH-2, CBH-7, HC-1 [15], HC84.26 [45], HC33.4 [46] were a kind
461 gift of Dr. Steven Foung (Stanford University School of Medicine, Palo Alto, California).
462 MAbs AR1A, AR3A [11], and AR4A [47] were a kind gift of Dr. Mansun Law (Scripps
463 Research Institute, La Jolla, California).

464

465 **HCV Viral Load and Serology Testing.** HCV viral loads (IU/mL) were quantified after
466 RNA extraction from serum using a Qiagen MinElute Virus column (Qiagen, Valencia,
467 CA) with the use of commercial real-time reagents (Abbot HCV Real-time Assay)
468 migrated onto a research-based real-time PCR platform (Roche 480 LightCycler). HCV
469 seropositivity was determined using the Ortho HCV version 3.0 ELISA Test System
470 (Ortho Clinical Diagnostics). This assay has a lower limit of detection of 50 IU/mL.

471

472 **Viral sequencing.** Total RNA was extracted from plasma using a QIAamp viral RNA
473 mini column (Qiagen, Valencia, CA) and direct sequencing of reverse transcription PCR
474 products from the Core-E1 region was performed as described previously [21, 48, 49].
475 Alignment to reference sequences was used to assign HCV subtypes. E1 sequences
476 (H77 nt 943–1288) were used for genetic clustering to identify closely related
477 sequences. Genetic nucleotide distance >0.03 was used to define distinct viral infections
478 and was calculated with HIV-TRACE [50].

479

480 **HCVpp Production, Infectivity, and Neutralization Assays.** HCVpp were produced by
481 lipofectamine-mediated transfection of HCV E1E2, pNL4-3.Luc.R-E-, and pAdVantage
482 (Promega) plasmids into HEK293T cells as previously described [51]. For infectivity
483 testing, HCVpp were incubated on Hep3B target cells for 5 hours before media was
484 removed. The panel of 19 heterologous genotype 1 HCVpp has been described
485 previously [19, 52]. All HCVpp used in neutralization assays produced RLU values at
486 least 10-fold above background entry by mock pseudoparticles. Only HCVpp
487 preparations producing at least 1E6 RLU were used for neutralization experiments, and
488 HCVpp input was normalized to a maximum of 10E6 RLU. We tested each plasma
489 sample in duplicate to control for plate-to-plate variability and in two independent

490 experiments using different stocks of panel of 19 HCVpp to control for batch-to-batch
491 variability.

492 Neutralization assays were performed as described previously [53]. HCVpp were
493 incubated for 1 hour with heat-inactivated plasma at a 1:100 dilution or mAb at 10 ug/mL
494 and then added in duplicate to Hep3B target cells for 5 hours before medium was
495 changed. Nonspecific human IgG (Sigma-Aldrich) at 100 μ g/mL and heat-inactivate pre-
496 immune plasma (PIP) at 1:100 were used as a negative control. HCVpp entry was
497 determined after 72 hours by measurement of luciferase activity of cell lysates in RLU.
498 Percent neutralization was calculated by the formula 1 -
499 $(RLU_{autologous\ plasma}/RLU_{autologous\ PIP}) * 100$. Based on independent negative
500 control neutralization assays performed in duplicate with isotype control mAb R04 at
501 100mcg/mL and 65 different HCVpp [33], nonspecific neutralization in this assay was an
502 average of 1.0%, with a standard deviation of 19.9%. Therefore, we set the cutoff for
503 true-positive neutralization in this assay at >25%. Percent neutralization values were
504 converted to a neutralization profile for each plasma sample (rank order of HCVpp
505 neutralization with the most sensitive HCVpp ranked 1 and the least sensitive HCVpp
506 ranked 19) for input into the deconvolution algorithm.

507

508 **Deconvolution of mAb-types in plasma.** Plasma neutralization profiles (rank order of
509 sensitivity of 19 HCVpp to each sample) were averaged across the two independent
510 experiments to generate a final neutralization profile for each plasma sample.
511 Neutralization profiles of each plasma are compared to neutralization profiles of a panel
512 of 11 reference HCV-specific mAbs. Neutralization profiles of each of the three new
513 reference mAbs added for this study and the 8 reference mAbs selected in a previous
514 study were averaged across five independent experiments [34]. Deconvolution analysis
515 was performed using Pearson correlations between control mAb spike-in experiment or

516 plasma neutralization profiles and neutralization profiles of the 11 reference mAbs to
517 delineate the relative proportion of each reference mAb-type present in each test
518 sample, as previously described [34], using code written in R. GitHub repository:
519 BaileyLabHCV/Neutralizing-breadth. The true positive deconvolution value for each
520 reference mAb was set based on control mAb spike-in experiments with single mAbs or
521 combinations of 2 or 3 mAbs (Supplemental Table 1). HEPC74 served as a positive
522 control in each plasma neutralization experiment. We only included plasma
523 neutralization results from experiments where HEPC74 had a breadth of 18 (+/- 1
524 standard deviation) and where deconvolution of the neutralization profile of HEPC74
525 obtained in that experiment resulted in a HEPC74-positive result (*i.e.*, proportion of
526 response attributed to HEPC74 surpassed the true positive cutoff (Supplemental Figure
527 3)).

528

529 **5' hemigenome single genome amplification and E1E2 cloning.** HCV 5'
530 hemigenomes from plasma virus were amplified by RT-PCR after limiting dilution to
531 ensure single-genome amplification, using previously described methods [54].
532 Hemigenomes from the earliest viremic and last viremic timepoints for each infection
533 were preferentially selected over sequences from intermediate timepoints. At each
534 timepoint, the most frequently observed sequence from a dominant clade (clade with
535 most sequences) was selected. If no sequence was most abundant in the dominant
536 clade, the sequence closest to the MRCA for that clade was selected. In infections with
537 multiple viremic timepoints, when possible, hemigenomes from the same phylogenetic
538 lineage spanning multiple timepoints were selected. Transmitted/founder viruses were
539 identified with clustering by average mutation method of SGA sequences from the
540 earliest viremic timepoint of an infection. When more than one T/F virus was identified,
541 the most abundant virus was selected based on detection of multiple identical

542 sequences [55]. E1E2 genes were PCR amplified from single-genome amplification
543 hemigenomes of interest and cloned as previously described [19]. Sequences of all
544 E1E2 clones were confirmed after cloning. All original sequence data were deposited in
545 GenBank.

546

547 **HCV E1E2 ELISA.** mAb binding to E1E2 was quantitated using an ELISA as previously
548 described [30]. Briefly, 293T cells were transfected with E1E2 expression plasmids. Cell
549 lysates were harvested at 48 hours. Plates were coated with 500 ng *Galanthus nivalis*
550 lectin (EY Labs) and blocked with PBS containing 0.5% Tween-20, 1% nonfat dry milk,
551 and 1% goat serum, and E1E2-containing cell lysates were added. For titration binding
552 curves, mAbs were assayed in duplicate at 3-fold serial dilutions, starting at 10 ug/mL,
553 and binding was detected with HRP-conjugated anti-human IgG secondary antibody
554 (Vector Laboratories PI-3000). Relative protein concentrations in each E1E2 lysate
555 preparation were determined by measuring binding of serial dilutions of control mAb,
556 HCV-1, which was selected because the linear HCV-1 epitope was intact in all E1E2
557 proteins [56]. For antigenic profiling, rna mAbs were assayed in duplicate at 10 μ g/mL,
558 while the rest of the mAbs were assayed at 0.08 μ g/mL. HCV-1 and nonspecific human
559 IgG (Sigma-Aldrich) were included in the antigenic profiling experiment as positive and
560 negative control, respectively. All lysates were tested against all mAbs in the panel in the
561 same experiment.

562

563 **Antigenic profiling data cleanup and clustering.** To exclude ELISA data arising from
564 inconsistent replicate wells, we calculated the absolute difference between OD values of
565 replicate wells measuring nonspecific human IgG binding to each E1E2 protein. We then
566 discarded any OD pairs with absolute difference greater than this average IgG replicate
567 difference + 2 standard deviations. This led to 4 replicate pairs being deleted for AR3A

568 binding. To remove from the analysis any E1E2 lysates with inadequate protein
569 expression, we calculated the true positive OD cutoff (nonspecific IgG average OD + 2
570 standard deviations) and then excluded E1E2 lysates with HCV-1 binding below this true
571 positive cutoff. This led to exclusion of 6 E1E2 lysates from our analysis. HEPC146rua
572 and HEPC98rua did not have detectable binding to any E1E2 proteins, so they were
573 excluded from subsequent analyses. To account for differences in E1E2 protein
574 concentrations, we normalized average OD values for each mAb to the HCV-1 average
575 OD for the same lysate. The resulting OD values were entered into a code in R that
576 clustered E1E2 proteins based on mean squared distance between binding profiles [57],
577 using Ward's minimum variance method in the hclust R package [57].

578

579 **Statistical analysis.** Statistical analyses were performed in Prism (GraphPad software,
580 v7.02). Correlations between plasma and reference mAb neutralization profiles were
581 calculated using Pearson's method. For all comparisons, p values less than 0.05 were
582 considered significant. Breadth and potency models were computed in R. GitHub
583 repository: TIngchangW/Neut-Breadth-Analysis: 2022 with Nicole (github.com)

584

585 **Accession number(s).** The GenBank accession numbers of E1E2 clones expressed
586 are: OK553726 - OK554430, OK583165 - OK583829, MZ834892-MZ835192, OK582746
587 - OK583164, OL332220 - OL332312, MZ556841 - MZ556946, OK502877 - OK503334,
588 MZ457964 - MZ458098, OK503618 - OK504315, OK582292 – OK582745. E1E2
589 sequences included in this study with GenBank accession MZ834892-MZ835192 were
590 previously described [16, 30]. The Bole1a genomic sequence with GenBank accession
591 number JQ791196 was previously described [36].

592

593 **Authors contributions**

594 J.R.B., and A.L.C conceived the study; M.N.Z., S.W., and G.M.S. performed viral
595 sequencing and sequence analysis; S.W. and H.J. performed the statistical analysis; N.F.
596 and A.F. performed binding, and neutralization experiments; J.E.C. and A.I.F. provided
597 antibodies; N.F., A.L.C., G.M.S., G.S. and J.R.B. analyzed the data; N.F. and J.R.B. wrote
598 the original draft; and all authors reviewed and edited the manuscript.

599

600 **Acknowledgments**

601 We thank Kaitlyn Clark for technical support. This research was supported by the National
602 Institutes of Health grant R01AI127469 (to J.R.B. and J.E.C.) and U19 AI088791 (to
603 J.R.B., G.M.S., and A.L.C.). A.I.F. is a Cancer Research Institute Irvington Fellow
604 supported by the Cancer Research Institute. Content is solely the responsibility of the
605 authors and does not necessarily represent the official views of the NIH.

606

607 **References**

- 608 1. WHO, *Global hepatitis report, 2017*. 2017, World Health Organization.
- 609 2. Terrault, N.A., *Hepatitis C elimination: challenges with under-diagnosis and*
610 *under-treatment*. *F1000Res*, 2019. **8**.
- 611 3. Grebely, J., et al., *Elimination of HCV as a public health concern among people*
612 *who inject drugs by 2030 - What will it take to get there?* *J Int AIDS Soc*, 2017.
613 **20**(1): p. 22146.
- 614 4. Kanwal, F., et al., *Risk of hepatocellular cancer in HCV patients treated with*
615 *direct-acting antiviral agents*. *Gastroenterology*, 2017. **153**(4): p. 996-1005.e1.
- 616 5. Hamdane, N., et al., *HCV-induced epigenetic changes associated with liver*
617 *cancer risk Persist Aater sustained virologic response*. *Gastroenterology*, 2019.
618 **156**(8): p. 2313-2329.e7.
- 619 6. Bailey, J.R., E. Barnes, and A.L. Cox, *Approaches, progress, and challenges to*
620 *hepatitis C vaccine development*. *Gastroenterology*, 2019. **156**(2): p. 418-430.
- 621 7. Bartenschlager, R., et al., *Critical challenges and emerging opportunities in*
622 *hepatitis C virus research in an era of potent antiviral therapy: Considerations for*
623 *scientists and funding agencies*. *Virus Research*, 2018. **248**: p. 53-62.
- 624 8. Smith, D.B., et al., *Expanded classification of hepatitis C virus into 7 genotypes*
625 *and 67 subtypes: updated criteria and genotype assignment web resource*.
626 *Hepatology*, 2014. **59**(1): p. 318-27.
- 627 9. Smith, D.B., et al., *Proposed revision to the taxonomy of the genus Pestivirus*,
628 *family Flaviviridae*. *J Gen Virol*, 2017. **98**(8): p. 2106-2112.
- 629 10. Bukh, J., *The history of hepatitis C virus (HCV): Basic research reveals unique*
630 *features in phylogeny, evolution and the viral life cycle with new perspectives for*
631 *epidemic control*. *J Hepatol*, 2016. **65**(1 Suppl): p. S2-S21.

632 11. Law, M., et al., *Broadly neutralizing antibodies protect against hepatitis C virus*
633 *quasispecies challenge*. Nat.Med., 2008. **14**: p. 25-27.

634 12. Keck, Z.Y., et al., *Affinity maturation of a broadly neutralizing human monoclonal*
635 *antibody that prevents acute hepatitis C virus infection in mice*. Hepatology,
636 2016. **64**(6): p. 1922-1933.

637 13. Giang, E., et al., *Human broadly neutralizing antibodies to the envelope*
638 *glycoprotein complex of hepatitis C virus*. Proc Natl Acad Sci U S A, 2012.
639 **109**(16): p. 6205-10.

640 14. Morin, T.J., et al., *Human monoclonal antibody HCV1 effectively prevents and*
641 *treats HCV infection in chimpanzees*. PLoS.Pathog., 2012. **8**: p. e1002895.

642 15. Hadlock, K.G., et al., *Human monoclonal antibodies that inhibit binding of*
643 *hepatitis C virus E2 protein to CD81 and recognize conserved conformational*
644 *epitopes*. J.Viro., 2000. **74**: p. 10407-10416.

645 16. Kinchen, V.J., et al., *Broadly neutralizing antibody mediated clearance of human*
646 *hepatitis C virus infection*. Cell Host Microbe, 2018. **24**(5): p. 717-730 e5.

647 17. Zibert, A., et al., *Early antibody response against hypervariable region 1 is*
648 *associated with acute self-limiting infections of hepatitis C virus*. Hepatology,
649 1997. **25**: p. 1245-1249.

650 18. Micallef, J.M., J.M. Kaldor, and G.J. Dore, *Spontaneous viral clearance following*
651 *acute hepatitis C infection: a systematic review of longitudinal studies*. J Viral
652 Hepat, 2006. **13**(1): p. 34-41.

653 19. Osburn, W.O., et al., *Clearance of hepatitis C infection is associated with the*
654 *early appearance of broad neutralizing antibody responses*. Hepatology, 2014.
655 **59**(6): p. 2140-51.

656 20. Pestka, J.M., et al., *Rapid induction of virus-neutralizing antibodies and viral*
657 *clearance in a single-source outbreak of hepatitis C*. Proc.Natl.Acad.Sci.U.S.A,
658 2007. **104**: p. 6025-6030.

659 21. Osburn, W.O., et al., *Spontaneous control of primary hepatitis C virus infection*
660 *and immunity against persistent reinfection*. Gastroenterology, 2010. **138**: p. 315-
661 324.

662 22. Kinchen, V.J., A.L. Cox, and J.R. Bailey, *Can broadly neutralizing monoclonal*
663 *antibodies lead to a hepatitis C virus vaccine?* Trends Microbiol, 2018. **26**(10): p.
664 854-864.

665 23. Lanford, R.E., et al., *Cross-genotype immunity to hepatitis C virus*. J Virol., 2004.
666 **78**: p. 1575-1581.

667 24. Hou, J., et al., *Sequential immunization induces strong and broad immunity*
668 *against all four dengue virus serotypes*. npj Vaccines, 2020. **5**(1): p. 68.

669 25. Dong, W., et al., *Cross-protective immune responses induced by sequential*
670 *influenza virus infection and by sequential vaccination with inactivated influenza*
671 *vaccines*. Frontiers in Immunology, 2018. **9**: p. 2312.

672 26. Sprenger, K.G., et al., *Optimizing immunization protocols to elicit broadly*
673 *neutralizing antibodies*. Proceedings of the National Academy of Sciences, 2020.
674 **117**(33): p. 20077-20087.

675 27. Underwood, A.P., et al., *Understanding the determinants of BnAb induction in*
676 *acute HCV infection*. Viruses, 2018. **10**(11): p. 659.

677 28. Logvinoff, C., et al., *Neutralizing antibody response during acute and chronic*
678 *hepatitis C virus infection*. Proc.Natl.Acad.Sci.U.S.A, 2004. **101**: p. 10149-10154.

679 29. Bartosch, B., et al., *In vitro assay for neutralizing antibody to hepatitis C virus:*
680 *evidence for broadly conserved neutralization epitopes*.
681 Proc.Natl.Acad.Sci.U.S.A, 2003. **100**: p. 14199-14204.

682 30. Bailey, J.R., et al., *Broadly neutralizing antibodies with few somatic mutations*
683 *and hepatitis C virus clearance*. JCI Insight, 2017. **2**(9): p. e92872.

684 31. Colbert, M.D., et al., *Broadly neutralizing antibodies targeting new sites of*
685 *vulnerability in hepatitis C virus E1E2*. J Virol, 2019. **93**(14): p. e02070-18.

686 32. Kinchen, V.J. and J.R. Bailey, *Defining breadth of hepatitis C virus neutralization*.
687 Front Immunol, 2018. **9**: p. 1703.

688 33. Salas, J.H., et al., *An antigenically diverse, representative panel of envelope*
689 *glycoproteins for hepatitis C virus vaccine development*. Gastroenterology, 2022.
690 **162**(2): p. 562-574.

691 34. Kinchen, V.J., et al., *Plasma deconvolution identifies broadly neutralizing*
692 *antibodies associated with hepatitis C virus clearance*. J Clin Invest, 2019. **130**.

693 35. Flyak, A.I., et al., *HCV broadly neutralizing antibodies use a CDRH3 disulfide*
694 *motif to recognize an E2 glycoprotein site that can be targeted for vaccine*
695 *design*. Cell Host Microbe, 2018. **24**(5): p. 703-716 e3.

696 36. Munshaw, S., et al., *Computational reconstruction of Bole1a, a representative*
697 *synthetic hepatitis C virus subtype 1a genome*. J Virol, 2012. **86**(10): p. 5915-21.

698 37. Burke, K.P., et al., *Immunogenicity and cross-reactivity of a representative*
699 *ancestral sequence in HCV infection*. J Immunol., 2012. **188**: p. 5177-5188.

700 38. Wasilewski, L.N., et al., *A hepatitis C virus envelope polymorphism confers*
701 *resistance to neutralization by polyclonal sera and broadly neutralizing*
702 *monoclonal antibodies*. J Virol, 2016. **90**(7): p. 3773-82.

703 39. Law, J.L., et al., *A hepatitis C virus (HCV) vaccine comprising envelope*
704 *glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-*
705 *genotype neutralizing antibodies in humans*. PLoS One, 2013. **8**(3): p. e59776.

706 40. Frey, S.E., et al., *Safety and immunogenicity of HCV E1E2 vaccine adjuvanted*
707 *with MF59 administered to healthy adults*. Vaccine, 2010. **28**: p. 6367-6373.

708 41. Houghton, M., *Prospects for prophylactic and therapeutic vaccines against the*
709 *hepatitis C viruses*. Immunol Rev, 2011. **239**(1): p. 99-108.

710 42. Liang, T.J., *Current progress in development of hepatitis C virus vaccines*. Nat
711 Med, 2013. **19**(7): p. 869-78.

712 43. de la Peña, A.T., et al., *Structure of the hepatitis C virus E1E2 glycoprotein*
713 *complex*. bioRxiv, 2021: p. 2021.12.16.472992.

714 44. Cox, A.L., et al., *Prospective evaluation of community-acquired acute-phase*
715 *hepatitis C virus infection*. Clin.Infect.Dis., 2005. **40**: p. 951-958.

716 45. Keck, Z.Y., et al., *Human monoclonal antibodies to a novel cluster of*
717 *conformational epitopes on HCV e2 with resistance to neutralization escape in a*
718 *genotype 2a isolate*. PLoS.Pathog., 2012. **8**: p. e1002653.

719 46. Keck, Z., et al., *Cooperativity in virus neutralization by human monoclonal*
720 *antibodies to two adjacent regions located at the amino terminus of hepatitis C*
721 *virus E2 glycoprotein*. J.ViroL., 2013. **87**: p. 37-51.

722 47. Giang, E., et al., *Human broadly neutralizing antibodies to the envelope*
723 *glycoprotein complex of hepatitis C virus*. Proc.Natl.Acad.Sci.U.S.A, 2012. **109**:
724 p. 6205-6210.

725 48. Ray, S.C., et al., *Genetic epidemiology of hepatitis C virus throughout egypt*.
726 J.Infect.Dis., 2000. **182**: p. 698-707.

727 49. Enomoto, N., et al., *There are two major types of hepatitis C virus in Japan*.
728 Biochem Biophys Res Commun, 1990. **170**(3): p. 1021-1025.

729 50. Rose, R., et al., *Inconsistent temporal patterns of genetic variation of HCV*
730 *among high-risk subjects may impact inference of transmission networks*.
731 Infection, Genetics and Evolution, 2019. **71**: p. 1-6.

732 51. Hsu, M., et al., *Hepatitis C virus glycoproteins mediate pH-dependent cell entry*
733 *of pseudotyped retroviral particles*. Proc.Natl.Acad.Sci.U.S.A, 2003. **100**: p.
734 7271-7276.

735 52. Bailey, J.R., et al., *Naturally selected hepatitis C virus polymorphisms confer*
736 *broad neutralizing antibody resistance*. J Clin Invest, 2015. **125**(1): p. 437-47.

737 53. Dowd, K.A., et al., *Selection pressure from neutralizing antibodies drives*
738 *sequence evolution during acute infection with hepatitis C virus*.
739 Gastroenterology, 2009. **136**: p. 2377-2386.

740 54. Li, H., et al., *Elucidation of hepatitis C virus transmission and early diversification*
741 *by single genome sequencing*. PLoS Pathog, 2012. **8**(8): p. e1002880.

742 55. Li, H., et al., *Single-Genome Sequencing of Hepatitis C Virus in Donor-Recipient*
743 *Pairs Distinguishes Modes and Models of Virus Transmission and Early*
744 *Diversification*. J Virol, 2016. **90**(1): p. 152-66.

745 56. Broering, T.J., et al., *Identification and characterization of broadly neutralizing*
746 *human monoclonal antibodies directed against the E2 envelope glycoprotein of*
747 *hepatitis C virus*. J.Virol., 2009. **83**: p. 12473-12482.

748 57. Pierce, B.G., et al., *Global mapping of antibody recognition of the hepatitis C*
749 *virus E2 glycoprotein: Implications for vaccine design*. Proc Natl Acad Sci U S A,
750 2016.

751

752

753 **Figure Legends**

754

755 **Figure 1. Representative viral load graphs of HCV-infected participants with (A)**
756 **cleared reinfection, (B) persistent reinfection, (C) persistent infection with a strain**
757 **switch, or (D) persistent infection with 1 strain.** The study was designed for monthly
758 viral load testing, with more than 8 years of follow-up in some individuals. Dashed line
759 indicates limit of detection (LOD) of the HCV RNA assay. Infections are shaded with
760 different colors based on the HCV subtype of the infecting virus, with subtype indicated,
761 determined by sequencing of Core-E1 genes.

762

763 **Figure 2. Neutralizing breadth and potency of antibodies in longitudinal plasma**
764 **samples.** A) Percent neutralization of 19 HCVpp by plasma of (A) reinfection clearance,
765 reinfection persistence and persistence strain switch subjects and (B) persistence 1
766 strain subjects. Subjects from each group are arranged from highest to lowest
767 neutralizing breadth. Negative percent neutralization values were converted to 0. DOV =
768 days of viremia, calculated by counting viremic periods and excluding periods of
769 aviremia between infections. Infnx # (gt) = number of genetically distinct infections the
770 subject has experienced (genotype of the current infection). Breadth = number of HCVpp
771 neutralized at least 25% by plasma at 1:100 dilution. Potency = highest percent
772 neutralization across the panel of 19 HCVpp by plasma at 1:100 dilution. Percent
773 neutralization values are the average of two independent experiments performed in
774 duplicate.

775

776 **Figure 3. Plasma deconvolution reveals mAb-types contributing to plasma**
777 **neutralizing breadth and potency.** A) mAb-types identified by deconvolution of
778 neutralizing activity of each plasma sample. Neutralization profiles entered into the

779 deconvolution algorithm were averaged from two independent neutralization
780 experiments performed in duplicate. For each plasma sample, mAbs-types with
781 deconvolution values exceeding the true positive cutoff are indicated, with a different
782 color assigned to each mAb-type. Reference mAbs were designated narrow-spectrum or
783 bNAbs based on neutralization of <50% or >50% of the HCVpp panel. Deconvolution
784 was performed only for plasma samples with neutralizing breadth greater than or equal
785 to 4. This breadth ≥ 4 cutoff was determined using control mAb 'spike-in' experiments to
786 determine the minimum neutralizing activity necessary for accurate antibody
787 deconvolution. Subjects with neutralizing breadth <4 for all samples were excluded from
788 this analysis. Plasma samples are grouped by subject outcome. P values were
789 calculated for the Pearson correlation between the plasma sample neutralization profile
790 and the best fit combined reference mAb neutralization profile. Breadth = number of
791 HCVpp neutralized at least 25% by plasma at 1:100 dilution. Potency = highest percent
792 neutralization across the panel of 19 HCVpp by plasma at 1:100 dilution. B) Number of
793 mAb types detected per subject after 1 infection (n=17), after two infections (n=8), and
794 after >2 infections (n=4). Median with IQR is shown. C) The proportion of subjects with
795 each mAb-type (or 0 mAb-types) after 1 infection, after two infections, and after >2
796 infections (n=4).

797

798 **Figure 4. Duration of viremia and number of distinct infections are associated with**
799 **increased neutralizing breadth and potency.** A) Quasi-Poisson regression analysis
800 for the association of number of infections and duration of infection with neutralizing
801 breadth. Curve and 95% prediction intervals (shaded areas) for each number of
802 infections are indicated with different colors. The regression model equation and table
803 with the estimated coefficients and 95% confidence intervals (CI) for each variable are
804 shown (right). B) Linear regression analysis for the association of number of infections

805 and duration of infection with neutralizing potency. Curves and 95% prediction intervals
806 (shaded areas) for each number of infections are indicated with different colors. The
807 linear model equation and table with the estimated coefficients and 95% confidence
808 intervals (CI) for each variable are shown (right).

809

810 **Figure 5. Greater genetic distance between infecting viruses is not associated**
811 **with increased neutralizing breadth or potency.** A) Table illustrating divergence of
812 each re-infecting virus E1E2 sequence (amino acid p distance) from that subject's
813 infection 1 transmitted/founder (T/F) virus E1E2 sequence. B) Quasi-Poisson regression
814 (left) and linear regression (right) analyses for the association of divergence, number of
815 infections, and days of viremia with neutralizing breadth (left) or neutralizing potency
816 (right). Curves and 95% prediction intervals (shaded areas) for each number of
817 infections are shown in different colors. Model equations and tables with the estimated
818 coefficients and 95% confidence intervals (CI) for each variable are shown (below).

819

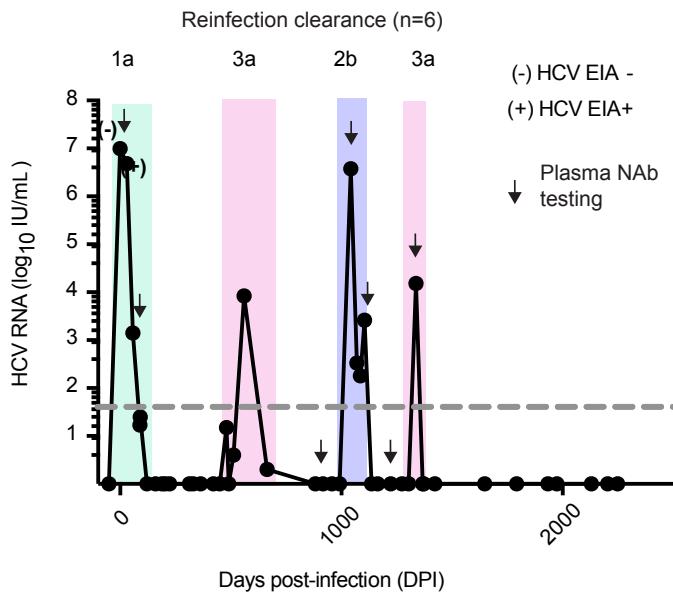
820 **Figure 6. Longitudinal E1E2 isolates from reinfection subjects cluster in**
821 **antigenically distinct clades, and infection with viruses from antigenic clade 1 is**
822 **associated with increased neutralizing breadth and potency.** A) Heat map
823 illustrating ELISA binding of a panel of mAbs recognizing conformational epitopes to
824 longitudinal E1E2 proteins from reinfection subjects. Each value is the average of 2
825 replicates and is normalized for binding of HCV-1, a control mAb recognizing a linear
826 epitope that is 100% conserved across all isolates. Grey cells indicate missing data.
827 E1E2 proteins were clustered based on mean squared distance between binding
828 profiles. * = mAb-types or recombinant unmutated ancestors (rua) of mAb-types
829 identified in broadly neutralizing plasma after multiple infections (Figure 3). B) Number of
830 infections with viruses from antigenic clade 1 is significantly associated with greater

831 neutralizing breadth, but number of infections with viruses from clades 2-4 are not (p-
832 value>0.05). Normality of data was tested by Shapiro-Wilk test. Kruskal-Wallis test
833 (clades 1 and 4) and Mann Whitney nonparametric test (clades 2 and 3) were
834 conducted. Horizontal lines indicate medians. C-D) Quasi-Poisson regression (C) and
835 linear regression (D) analyses for the association of number of infections with viruses
836 from antigenic clade 1, total number of infections, and days of viremia with neutralizing
837 breadth (C) or neutralizing potency (D). Each total number of infections from 1-4 is
838 illustrated on a separate graph. Curves and 95% prediction intervals (shaded areas) for
839 each number of antigenic clade 1 infections are shown in different colors. Model
840 equations and tables with the estimated coefficients and 95% confidence intervals (CI)
841 for each variable are shown (below).

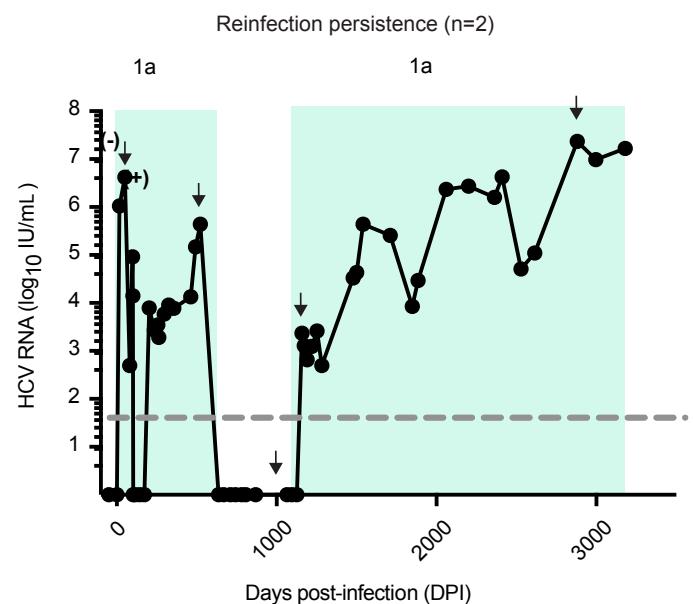
842

843 **Table 1. Participant Demographic and HCV Infection Data.**

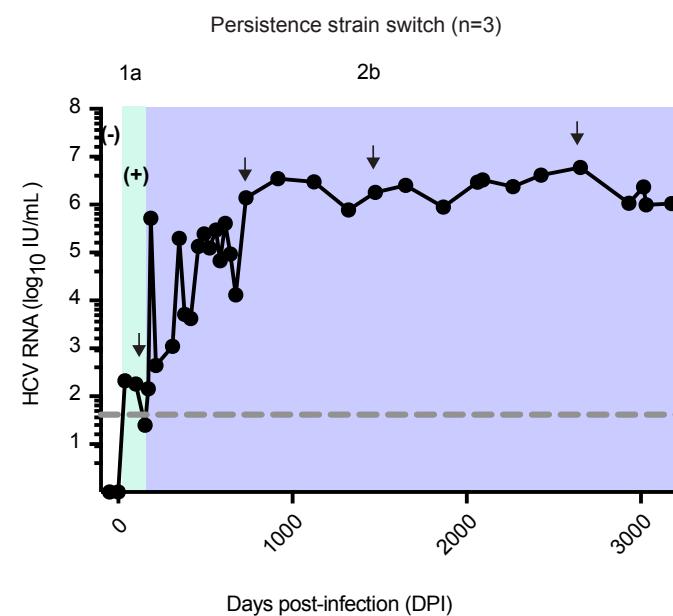
	Reinfection clearance	Reinfection persistence	Persistence strain switch	Persistence 1 strain
N of subjects	6	2	3	17
Age*	24.7 (2.9)	29.5 (9.2)	23.3 (4.7)	25.25 (2.7)
% Female	33.3	50	33.3	12.5
% Caucasian	100	100	100	100
HCV subtype (%)				
1a	53.3	100.0	75.0	88.2
1b	6.7	0.0	0	0.0
2b	6.7	0.0	25.0	5.8
3a	33.3	0.0	0	5.8
Breadth**	6 (12.5)	7 (9.75)	14.5 (5.5)	1.5 (11)
Potency**	57.7 (52.3)	59.7 (34.6)	79.9 (17.1)	36.7 (48.1)
Highest breadth***	11.5 (13.25)	11.5 (1)	18 (7)	7 (12.25)
Highest potency***	75.3 (38.0)	72.0 (3.44)	89.1 (13.1)	56.1(39.2)


844

845 * At seroconversion, mean years (SD)


846 **Time-matched, median (IQR)

847 ***For each subject across all infections, median (IQR)


A

B

C

D

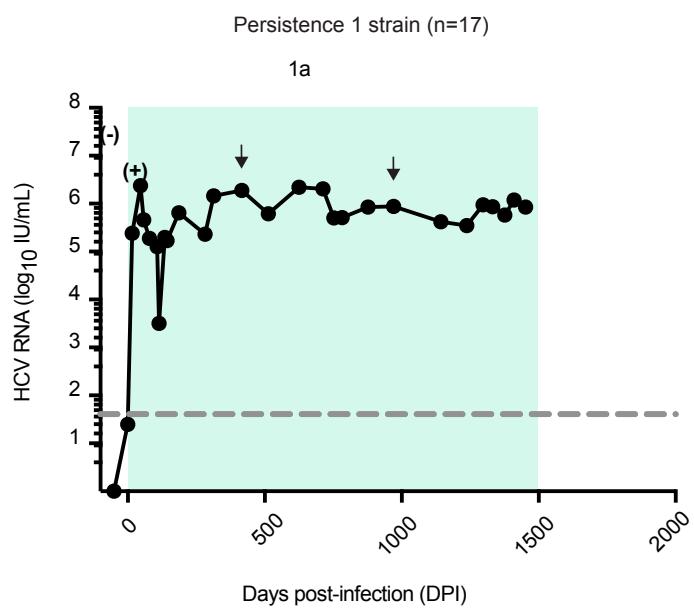


Figure 1. Representative viral load graphs of HCV-infected participants with (A) cleared reinfection, (B) persistent reinfection, (C) persistent infection with a strain switch, or (D) persistent infection with 1 strain. The study was designed for monthly viral load testing, with more than 8 years of follow-up in some individuals. Dashed line indicates limit of detection (LOD) of the HCV RNA assay. Infections are shaded with different colors based on the HCV subtype of the infecting virus, with subtype indicated, determined by sequencing of Core-E1 genes.

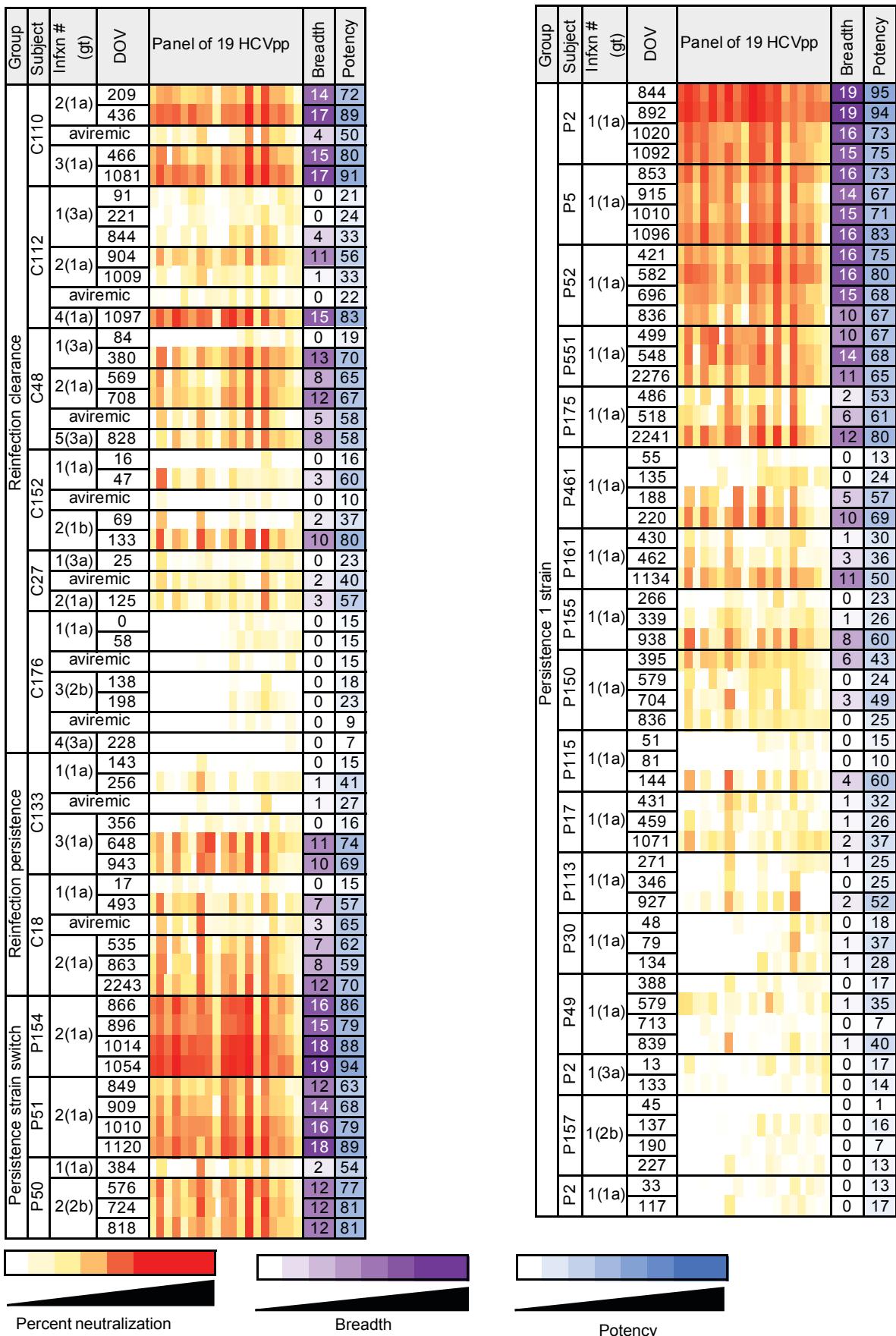


Figure 2. Neutralizing breadth and potency of antibodies in longitudinal plasma samples. A) Percent neutralization of 19 HCVpp by plasma of (A) reinfection clearance, reinfection persistence and persistence strain switch subjects and (B) persistence 1 strain subjects. Subjects from each group are arranged from highest to lowest neutralizing breadth. Negative percent neutralization values were converted to 0. DOV = days of viremia, calculated by counting viremic periods and excluding periods of aviremia between infections. Infxn # (gt) = number of genetically distinct infections the subject has experienced (genotype of the current infection). Breadth = number of HCVpp neutralized at least 25% by plasma at 1:100 dilution. Potency = highest percent neutralization across the panel of 19 HCVpp by plasma at 1:100 dilution. Percent neutralization values are the average of two independent experiments performed in duplicate.

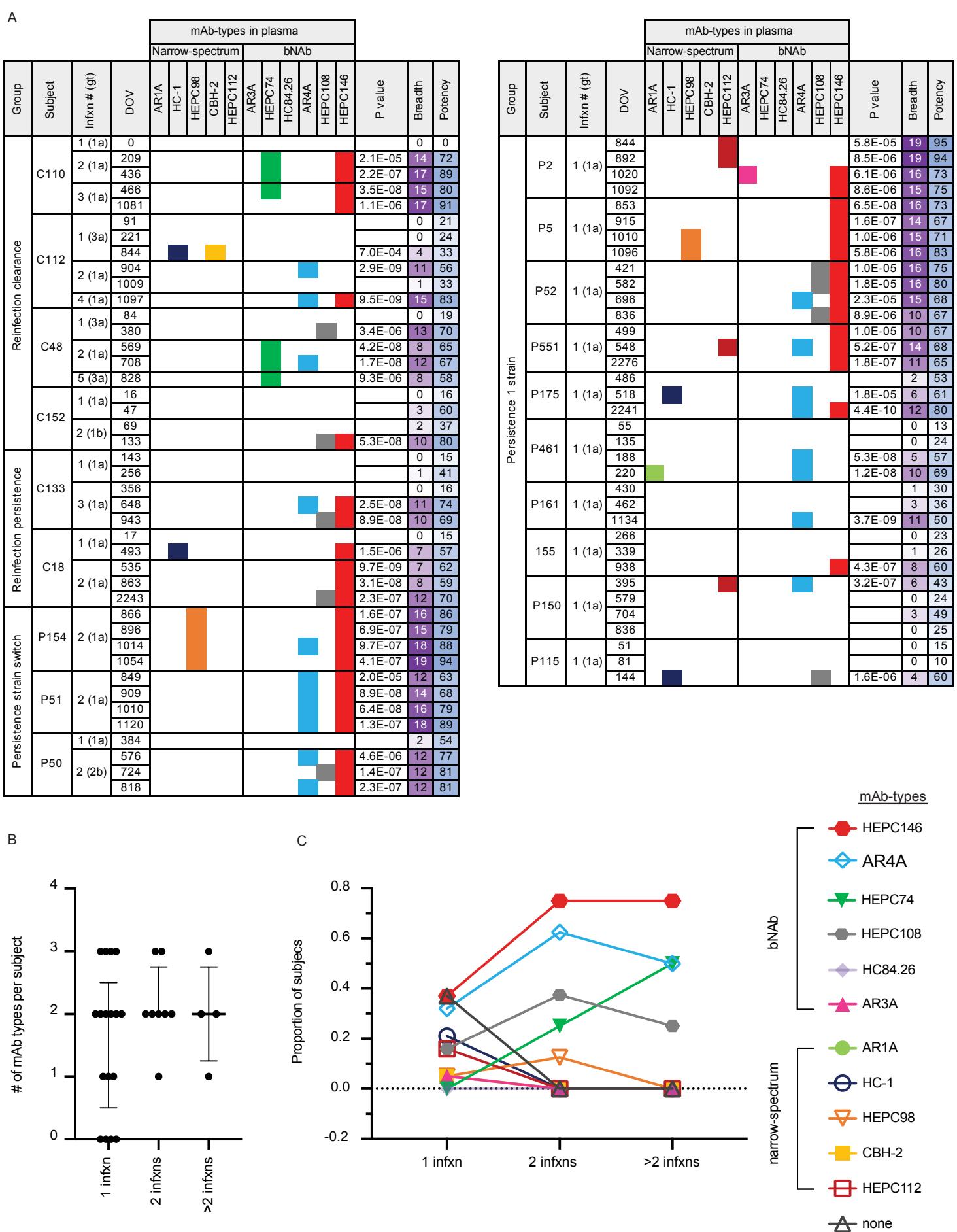
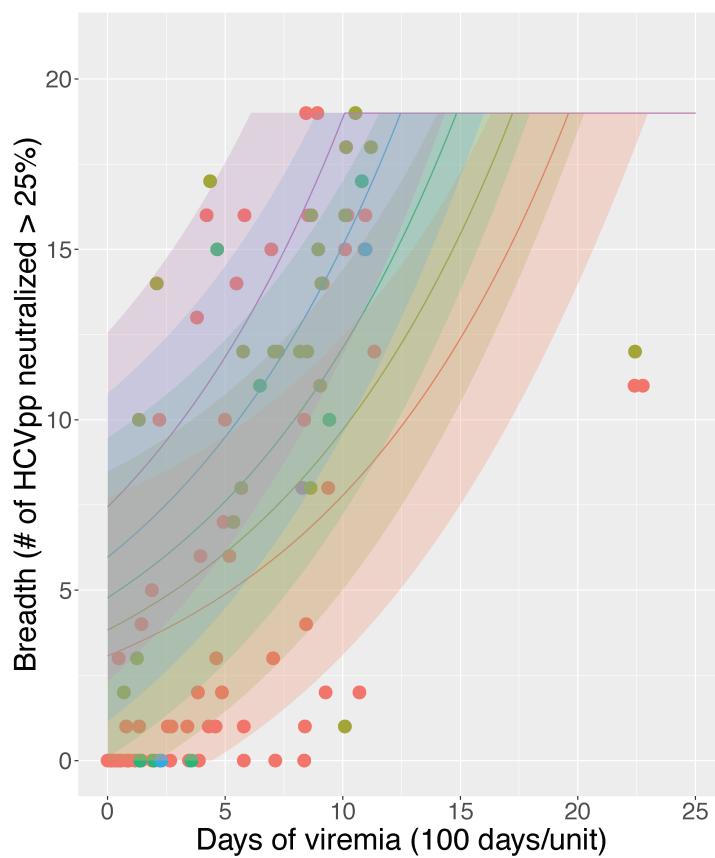



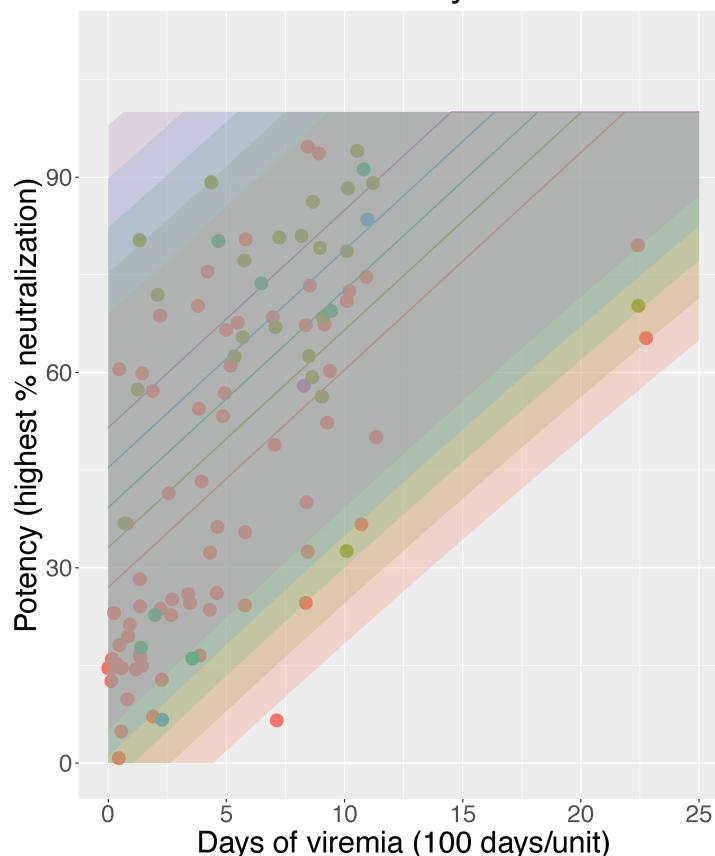
Figure 3. Plasma deconvolution reveals mAb-types contributing to plasma neutralizing breadth and potency. A) mAb-types identified by deconvolution of neutralizing activity of each plasma sample. Neutralization profiles entered into the deconvolution algorithm were averaged from two independent neutralization experiments performed in duplicate. For each plasma sample, mAbs-types with deconvolution values exceeding the true positive cutoff are indicated, with a different color assigned to each mAb-type. Reference mAbs were designated narrow-spectrum or bNAbs based on neutralization of <50% or >50% of the HCVpp panel. Deconvolution was performed only for plasma samples with neutralizing breadth greater than or equal to 4. This breadth ≥ 4 cutoff was determined using control mAb 'spike-in' experiments to determine the minimum neutralizing activity necessary for accurate antibody deconvolution. Subjects with neutralizing breadth <4 for all samples were excluded from this analysis. Plasma samples are grouped by subject outcome. P values were calculated for the Pearson correlation between the plasma sample neutralization profile and the best fit combined reference mAb neutralization profile. Breadth = number of HCVpp neutralized at least 25% by plasma at 1:100 dilution. Potency = highest percent neutralization across the panel of 19 HCVpp by plasma at 1:100 dilution. B) Number of mAb types detected per subject after 1 infection (n=17), after two infections (n=8), and after >2 infections (n=4). Median with IQR is shown. C) The proportion of subjects with each mAb-type (or 0 mAb-types) after 1 infection, after two infections, and after >2 infections (n=4).

A

Breadth

of distinct infections

- 1
- 2
- 3
- 4
- 5


Poisson model:

$$\log(E[\text{breadth}|\text{number of infections, days of viremia}]) = \beta_0 + \beta_1 * \text{number of infections} + \beta_2 * \text{days of viremia}$$

Breadth	Estimate (95% CI)
Intercept (β_0)	0.9 (0.49, 1.31)
# of infections effect (β_1)	0.22 (0.04, 0.4)
Days of viremia effect (β_2)	0.09 (0.07, 0.12)

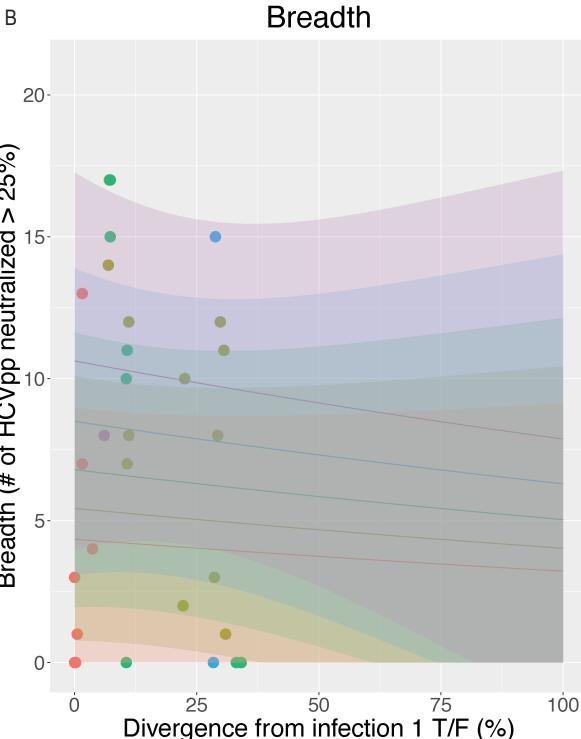
B

Potency

of distinct infections

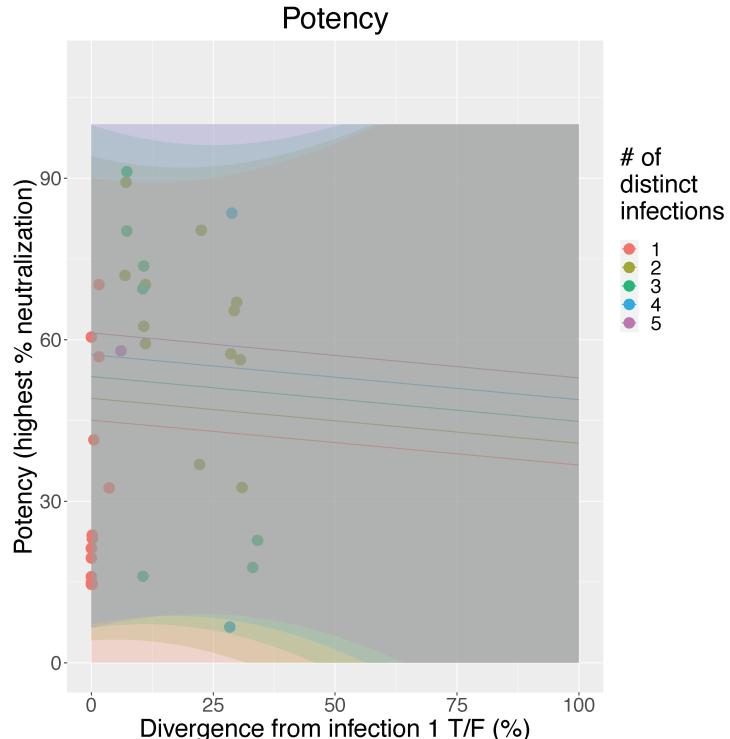
- 1
- 2
- 3
- 4
- 5

Linear model:


$$E[\text{breadth}|\text{number of infections, days of viremia}] = \beta_0 + \beta_1 * \text{number of infections} + \beta_2 * \text{days of viremia}$$

Potency	Estimate (95% CI)
Intercept (β_0)	20.9 (11.5, 30.3)
# of infections effect (β_1)	6.13 (0.81, 11.5)
Days of viremia effect (β_2)	3.34 (2.43, 4.25)

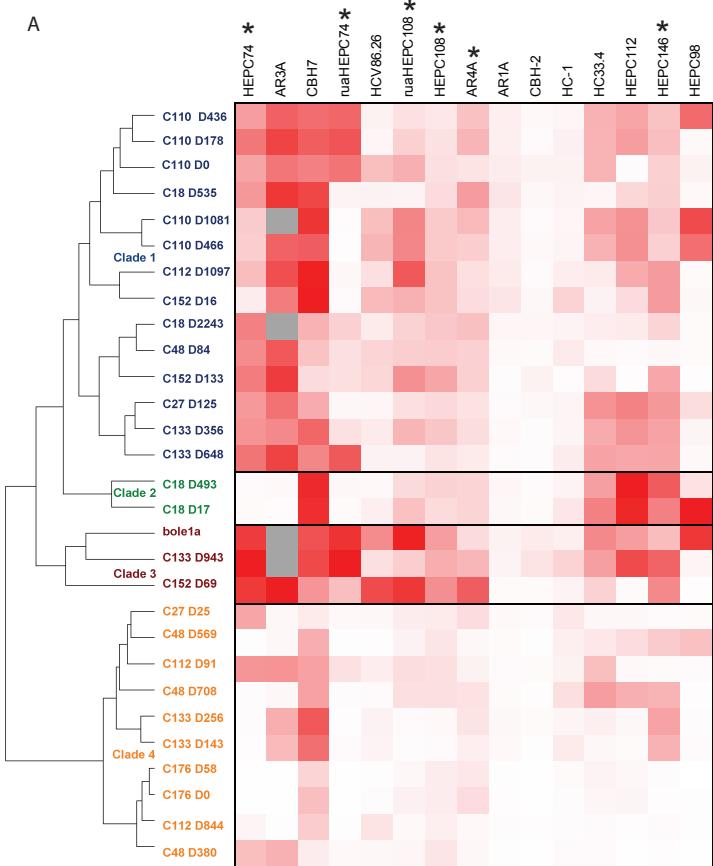
Figure 4. Duration of viremia and number of distinct infections are associated with increased neutralizing breadth and potency. A) Quasi-Poisson regression analysis for the association of number of infections and duration of infection with neutralizing breadth. Curve and 95% prediction intervals (shaded areas) for each number of infections are indicated with different colors. The regression model equation and table with the estimated coefficients and 95% confidence intervals (CI) for each variable are shown (right). B) Linear regression analysis for the association of number of infections and duration of infection with neutralizing potency. Curves and 95% prediction intervals (shaded areas) for each number of infections are indicated with different colors. The linear model equation and table with the estimated coefficients and 95% confidence intervals (CI) for each variable are shown (right).


A

Group	Subject	Infxn # (gt)	D.O.V.	Divergence from infxn 1 T/F	Breadth	Potency
Reinfection clearance	C110	2 (1a)	209	0.07	14	72
			436	0.07	16	89
		3 (1a)	466	0.07	14	80
			1081	0.07	16	91
	C112	1 (3a)	91	0.00	1	21
			221	0.00	1	24
		844	0.04	5		33
		2 (1a)	904	0.31	11	56
			1009	0.31	2	33
	4 (1a)	1097	0.29	15		83
Reinfection persistence	C48	1 (3a)	84	0.00	1	19
			380	0.02	12	70
		2 (1a)	569	0.29	8	65
			708	0.30	12	67
		5 (3a)	828	0.06	8	58
	C152	1 (1a)	16	0.00	0	16
			47	0.00	4	60
		2 (1b)	69	0.22	3	37
			133	0.23	10	80
	C27	1 (3a)	25	0.00	0	23
		2 (1a)	125	0.29	4	57
Reinfection persistence	C176	1 (1a)	0	0.00	0	15
			58	0.00	1	15
		3 (2b)	138	0.33	1	18
			198	0.34	1	23
		4 (3a)	228	0.28	1	7
	C133	1 (1a)	143	0.00	1	15
			256	0.01	2	41
		3 (1a)	356	0.11	1	16
			648	0.11	11	74
	C18	1 (1a)	943	0.11	11	69
			17	0.00	0	15
			493	0.02	8	57
		2 (1a)	535	0.11	8	62
			863	0.11	9	59
			2243	0.11	11	70

Poisson model:
 $\log[E[\text{breadth}|\text{number of infections, days of viremia}]] = \beta_0 + \beta_1 * \text{number of infections} + \beta_2 * \text{days of viremia} + \beta_3 * \text{divergence}$

Breadth	Estimate (95% CI)
Intercept (β_0)	0.85 (0.05, 1.65)
# of infections effect (β_1)	0.22 (-0.08, 0.53)
Days of viremia effect (β_2)	0.08 (0.03, 0.13)
Divergence effect (β_3)	-0.3 (-3.29, 2.69)



Linear model:
 $E[\text{potency}|\text{number of infections, days of viremia}] = \beta_0 + \beta_1 * \text{number of infections} + \beta_2 * \text{days of viremia} + \beta_3 * \text{divergence}$

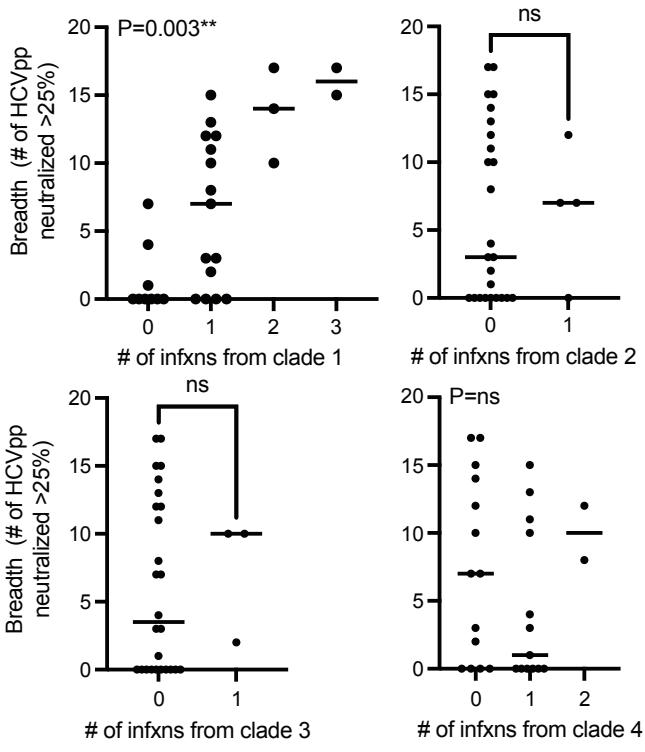
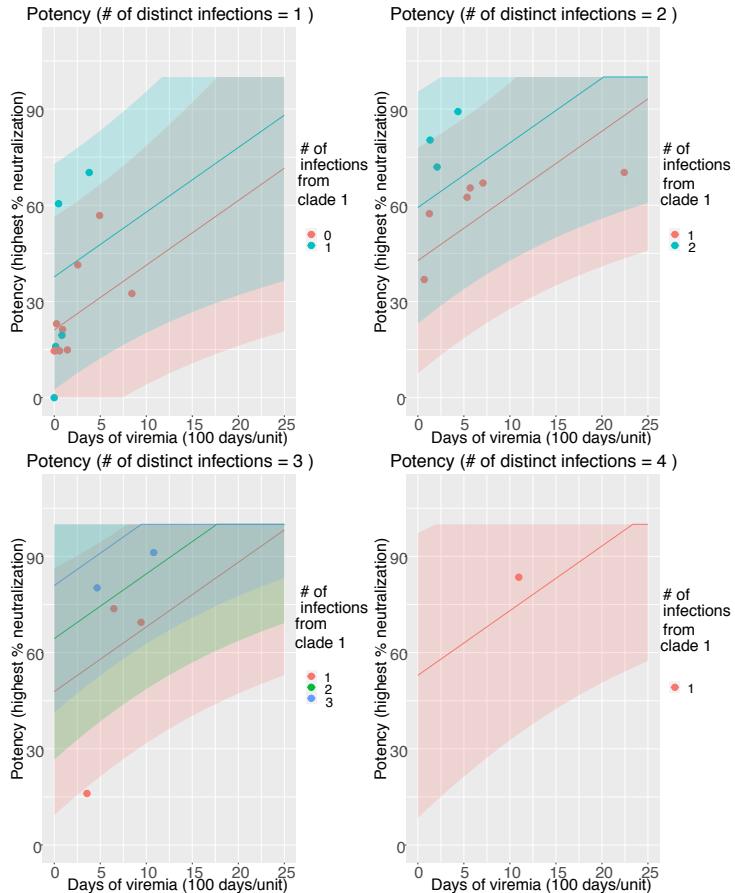

Potency	Estimate (95% CI)
Intercept (β_0)	27.7 (11.0, 44.4)
# of infections effect (β_1)	4.05 (-5.08, 13.2)
Days of viremia effect (β_2)	2.66 (0.88, 4.45)
Divergence effect (β_3)	-8.34 (-82.2, 65.5)

Figure 5. Greater genetic distance between infecting viruses is not associated with increased neutralizing breadth or potency. A) Table illustrating divergence of each re-infecting virus E1E2 sequence (amino acid p distance) from that subject's infection 1 transmitted/founder (T/F) virus E1E2 sequence. B) Quasi-Poisson regression (left) and linear regression (right) analyses for the association of divergence, number of infections, and days of viremia with neutralizing breadth (left) or neutralizing potency (right). Curves and 95% prediction intervals (shaded areas) for each number of infections are shown in different colors. Model equations and tables with the estimated coefficients and 95% confidence intervals (CI) for each variable are shown (below).

A


B

C

D

Poisson model : $\log(E[\text{breadth}|\text{number of infections, days of viremia}]) =$ $\beta_0 + \beta_1 * \text{number of infections} + \beta_2 * \text{days of viremia} + \beta_3 * \text{number of infections from clade 1}$

Breadth	Estimate (95% CI)
Intercept (β_0)	0.42 (-0.36, 1.2)
# of infections effect (β_1)	0.23 (-0.17, 0.62)
Days of viremia effect (β_2)	0.06 (0.01, 0.11)
Antigenic clade effect (β_3)	0.51 (0.18, 0.83)

Linear model : $E[\text{potency}|\text{number of infections, days of viremia}] =$ $\beta_0 + \beta_1 * \text{number of infections} + \beta_2 * \text{days of viremia} + \beta_3 * \text{number of infections from clade 1}$

Potency	Estimate (95% CI)
Intercept (β_0)	16.1 (0.89, 31.3)
# of infections effect (β_1)	5.07 (-5.99, 16.1)
Days of viremia effect (β_2)	2.02 (0.39, 3.64)
Antigenic clade effect (β_3)	16.5 (6.43, 26.7)

Figure 6. Longitudinal E1E2 isolates from reinfection subjects cluster in antigenically distinct clades, and infection with viruses from antigenic clade 1 is associated with increased neutralizing breadth and potency. A) Heat map illustrating ELISA binding of a panel of mAbs recognizing conformational epitopes to longitudinal E1E2 proteins from reinfection subjects. Each value is the average of 2 replicates and is normalized for binding of HCV-1, a control mAb recognizing a linear epitope that is 100% conserved across all isolates. Grey cells indicate missing data. E1E2 proteins were clustered based on mean squared distance between binding profiles. * = mAb-types or recombinant unmutated ancestors (rua) of mAb-types identified in broadly neutralizing plasma after multiple infections (Figure 3). B) Number of infections with viruses from antigenic clade 1 is significantly associated with greater neutralizing breadth, but number of infections with viruses from clades 2-4 are not (p-value>0.05). Normality of data was tested by Shapiro-Wilk test. Kruskal-Wallis test (clades 1 and 4) and Mann Whitney nonparametric test (clades 2 and 3) were conducted. Horizontal lines indicate medians. C-D) Quasi-Poisson regression (C) and linear regression (D) analyses for the association of number of infections with viruses from antigenic clade 1, total number of infections, and days of viremia with neutralizing breadth (C) or neutralizing potency (D). Each total number of infections from 1-4 is illustrated on a separate graph. Curves and 95% prediction intervals (shaded areas) for each number of antigenic clade 1 infections are shown in different colors. Model equations and tables with the estimated coefficients and 95% confidence intervals (CI) for each variable are shown (below).