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target for disuse atrophy.

Muscle atrophy

Skeletal muscle atrophy triggers frailty,
disability, and death across the lifespan
and across the globe. It is associated with
numerous etiologies, including chronic
systemic disease, disuse, aging, dener-
vation, and intrinsic disorders of mus-
cle, thus affecting a large proportion of
humanity. Despite the widespread prev-
alence and considerable consequences
of muscle atrophy in terms of quality and
quantity of life, there are very few thera-
peutic options beyond rehabilitative and
nutritional therapies (1). Muscle atrophy,
while not homogeneous in its etiology or
pathophysiology, is recognized to reflect
predominantly a shift in balance between
protein synthesis and degradation, princi-
pally driven by the interaction of the ana-
bolic insulin-like growth factor-1 (IGF-1)/
protein kinase B (Akt)/mammalian target
of rapamycin (mTOR) pathway and the
catabolic transcription factor forkhead box

The loss of skeletal muscle mass and size, or muscle atrophy, is a common
human experience, linked to disability, for which there are no widely
accepted pharmacological therapies. Piezo1is a mechanosensitive cation
channel that opens upon alteration of the plasma membrane lipid bilayer,
such as through increased membrane tension. In this issue of the JCI, Hirata
et al. identified Piezo1 and its downstream effectors, Kriippel-like factor

15 (KLF15) and interleukin-6 (IL-6), as an important signaling pathway in

a murine model of disuse atrophy. Through genetic and pharmacological
modulation of the pathway, the authors demonstrated that immaobilization
resulted in downregulation of Piezo1 and basal intracellular calcium
concentration ([Caz*]i), increasing expression of KIf15 and its downstream
target /6 and thereby inducing muscle atrophy. Piezo1 has been considered a
therapeutic target for diverse disorders, including atherosclerosis and kidney
fibrosis, and with this publication should now also be considered a viable

O (FoxO) and atrogenes (such as MuRF1
and MAFbx; refs. 2, 3). Other import-
ant modulators of muscle mass, many of
which interact with the IGF-1/Akt/mTOR
pathway, include myostatin, androgens,
AMPK/PGCla, IKKB/NF-kB, and inflam-
matory cytokines (4-9).

In this issue of the JCI, Hirata et al.
profile an emerging, and potentially
druggable, signaling pathway regulating
muscle atrophy. The authors performed
a series of comprehensive genetic and
pharmacological experiments identifying
the Piezol/KLF15/IL-6 pathway mediat-
ing muscle atrophy following immobiliza-
tion, such as occurs with limb casting (10).
While the transcription factor Kriippel-like
factor 15 (KLF15) and the cytokine inter-
leukin-6 (IL-6) have been independently
implicated in some forms of muscle atro-
phy, the association of Piezol with muscle
atrophy represents an upstream event (11,
12). Piezol is a mechanosensitive cation
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channel that opens upon alteration of the
plasma membrane lipid bilayer, such as
through increased membrane tension (13).
Hirata et al. proposed a process by which
a reduction in mechanical stimulation
during immobilization leads to downreg-
ulation of Piezol. Reduced Piezol channel
activity and gene expression would lower
basal intracellular calcium concentrations
([Ca*]), increase KLF15 expression and,
through KLF15 binding to the promot-
er region of IL6, increase IL-6-induced
muscle atrophy (Figure 1). This narrative
was supported by a dramatic reduction
in Piezol and an increase in KifI5 and 1l6
mRNA in skeletal muscle after limb immo-
bilizationin mice. The authors demonstrat-
ed that Piezol in myotubes was activated
by mechanical stimuli and involved in the
maintenance of basal [Ca*],. GsMTx-4, a
pharmacological inhibitor of Piezol, phe-
nocopied atrophy induced by increased
expression of KIf15 and 1l6 while converse-
ly, Yoda-1, an allosteric positive modulator
of Piezol, blunted the upregulation of the
same genes after immobilization in mice.
Downstream, tissue-specific knockout
of KIfl5 abrogated Il6 upregulation and
muscle atrophy. Neutralizing antibodies
against IL-6 prevented immobilization-in-
duced upregulation of atrogenes and mus-
cle atrophy. To address the translatability
of these preclinical findings, human mus-
cle biopsy samples from patients casted for
fracture were compared with those from
patients several months out from fracture
and casting and the authors demonstrated
that PIEZO1 mRNA was reduced, KLFI15
showed a trend toward increased expres-
sion, and IL6 and various atrogenes were
increased (10).

During immobilization, downregu-
lation of Piezol and upregulation of Kif15
were observed in the non-satellite cell
fraction, which contained multinucleated
myofibers, fibroblasts, and endothelial
cells. Conversely, Piezol and KLF15 chang-
es were not observed in the satellite cell
fraction, which corresponded with Pax70°
muscle stem cells (MuSCs), suggesting
that the Piezol/KLF15/IL-6 pathway of
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Figure 1. A reduction in mechanical stimulation during immobilization leads to downregulation of Piezo1 and muscle atrophy. During muscle immobi-
lization, such as through limb casting, the muscle atrophies primarily through a reduction in myofiber size. Hirata et al. (10) provide evidence that muscle
atrophy occurs through decreased expression and activation of the cation channel Piezo1, which is sensitive to mechanical tension. Absent Piezo1 activa-
tion, an increase in the transcription factor KLF15 modulates the expression of multiple target genes, including /L6.

muscle atrophy occurs predominantly if
not exclusively in myofibers (10). How-
ever, recently, two intriguing papers have
also demonstrated key roles of Piezol
in MuSC function, implicating Piezol in
MuSC fusion and muscle regeneration
(14, 15). MuSCs play a major role in muscle
growth and regeneration but there is little
evidence to support their role in acute mus-
cle atrophy. Therefore, currently, from the
flurry of recent papers on Piezol in skeletal
muscle, it appears that the cation chan-
nel is critical in both myofiber and MuSC
physiology where it is similarly sensitive to
stretch and responsible for calcium influx
but where it potentially activates different
downstream signaling, gene expression,
and cell functions.

A druggable target for muscle
wasting

Piezol represents a potential druggable
target in the quest to halt muscle wast-
ing. There are still mechanistic gaps in
the understanding of how Piezo channels
are modulated by muscle activity. How-
ever, since Piezol is linked to multiple
diseases, there is already good knowledge

on the druggability of the channel with a
wealth of structural and functional data,
including an understanding of potential
allosteric sites that can support rational
design of putative isoform-selective Piezo
modulators (16). Until then, the safe-
ty profile of Piezol modulators remains
to be determined, since it is rather pro-
miscuously expressed and since there
are data suggesting that modulation of
both Piezol and KLF15 may need care-
ful titration to avoid adverse effects on
muscle growth and regeneration (15, 17).
Notwithstanding the fact that there are
certainly many downstream effectors of
Piezol activity, IL-6 may be a good alter-
native target in this pathway and there are
already several approved IL-6 inhibitors,
including anti-IL-6 receptor and anti-
IL-6 monoclonal antibodies (18).

Hirata et al. identify Piezol as a rele-
vant upstream target in muscle atrophy,
warranting future exploration (10). Like
any good study, it raises many additional
questions: (a) How is Piezol modulated
in mature myofibers and satellite cells in
atrophy, degeneration, and regeneration?
(b) Is there crosstalk between this pathway

and other major known pathways directing
muscle atrophy? (c) How does Ca?" influx
from the Piezol channel modulate KLF15
expression and what is the interplay with
other Ca? sources, such as through volt-
age-gated calcium channels and the ryan-
odine receptor? (d) Is this pathway import-
ant in both acute and chronic processes
involved in muscle atrophy? (e) And per-
haps most importantly, are these findings
generalizable to other etiologies of muscle
atrophy? Hopefully, many of these ques-
tions will be answered while moving mol-
ecules on the path to clinical development.
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