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and predicted significantly shorter OS.

immunotherapies to patients who are most likely to benefit.
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Introduction
Acute myeloid leukemia (AML) is a molecularly and clinically
heterogeneous disease (1). We recently identified BM microen-
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BACKGROUND. Immune exhaustion and senescence are dominant dysfunctional states of effector T cells and major hurdles
for the success of cancer immunotherapy. In the current study, we characterized how acute myeloid leukemia (AML) promotes
the generation of senescent-like CD8* T cells and whether they have prognostic relevance.

METHODS. We analyzed NanoString, bulk RNA-Seq and single-cell RNA-Seq data from independent clinical cohorts
comprising 1,896 patients treated with chemotherapy and/or immune checkpoint blockade (ICB).

RESULTS. We show that senescent-like bone marrow CD8* T cells were impaired in killing autologous AML blasts and that
their proportion negatively correlated with overall survival (0S). We defined what we believe to be new immune effector
dysfunction (IED) signatures using 2 gene expression profiling platforms and reported that IED scores correlated with adverse-
risk molecular lesions, stemness, and poor outcomes; these scores were a more powerful predictor of 0S than 2017-ELN risk
or leukemia stem cell (LSC17) scores. IED expression signatures also identified an ICB-unresponsive tumor microenvironment

CONCLUSION. The IED scores provided improved AML-risk stratification and could facilitate the delivery of personalized

FUNDING. John and Lucille van Geest Foundation, Nottingham Trent University’s Health & Wellbeing Strategic Research
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vironmental transcriptomic profiles that stratify patients with
newly diagnosed AML into immune-infiltrated and immune-de-
pleted subtypes and that refine the accuracy of overall survival
(OS) prediction beyond that afforded by current prognosticators
(2). Several aspects of T cell derangement affect AML response to
standard-of-care chemotherapy, molecularly targeted therapies,
and immunotherapies (2-7). In this respect, [IFN-y-related RNA
profiles in baseline BM samples predict response of chemothera-
py-refractory AML to CD123xCD3-bispecific molecules (2, 8).
The degree of cytotoxic CD8* T cell infiltration has been
shown to correlate inversely with OS in select tumor types, includ-
ing AML, because of the establishment of highly dysfunctional
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Figure 1. Study workflow. Immune Signature Data Base (100); IED, immune effector
dysfunction; NES, normalized enrichment score; FDR, false discovery rate; SOC,

standard of care.

T cell states (2, 9). Phenotypic and transcriptomic analyses have
shown that CD8" T cells from patients with AML exhibit features
of exhaustion and senescence. These studies have identified
a gene signature that diverges between responders and nonre-
sponders to chemotherapy, with the former exhibiting upregula-
tion of costimulatory pathways and downregulation of apoptotic
and coinhibatory T cell signaling pathways (10).

Exhaustion and senescence are dominant dysfunction-
al states of effector T cells that are increasingly recognized as
major hurdles for the success of cancer immunotherapy (11,
12). Senescence and exhaustion share properties, but they may

:
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be functionally dissimilar (13). Exhausted T cells
express inhibitory receptors, including PDCDI
(encoding PD-1), CTLA4, HAVCR2 (encoding
TIM3), CD160, and 2B4 (encoding CD244), and
display an impaired ability to secrete effector cyto-
kines and to exert cytotoxic functions. Senescent T
cells downregulate costimulatory molecules CD27
and CD28, express senescence-associated surface
markers B3GAT1 and KLRG1, as well as MAPK p38
and y-H2AX intracellular molecules, remain meta-
bolically active and continue to secrete proinflam-
matory cytokines (14, 15), but their cytotoxic antitu-
mor activity is unclear. While more is known about
the role of T cell exhaustion in immunotherapy
responses, the contribution of T cell senescence to
anticancer immunity is less understood (13).

Inthe current study, we characterized howleuke-
mia promotes the generation of senescent-like CD8*
T cells and their prognostic relevance in patients
with AML. We hypothesized that elucidation of an
immune senescence transcriptional signature in the
BM of newly diagnosed AML could both identify
individuals who are more likely to respond to immu-
notherapy and predict outcomes. We generated
RNA expression data sets from patients treated with
conventional cytotoxic chemotherapy or with the
hypomethylating agent azacitidine (AZA) in combi-
nation with immune checkpoint blockade (ICB) with
pembrolizumab (a monoclonal antibody targeting
PD-1) (designated as AZA+Pembro). We integrated
these with publicly available gene expression data
from multiple cohorts of children and adults with
AML to validate our RNA metric of immune effector
dysfunction (IED), and we analyzed BM samples col-
lected longitudinally at the time of AML onset and
response assessment (Figure 1 and Supplemental
Figure 1; supplemental material available online with
this article; https://doi.org/10.1172/JCI159579DS1).
The derived gene signatures of IED correlated with
molecular features of leukemia stemness and with
distinct clinical characteristics. IED gene sets served
as a reliable biomarker to stratify OS after standard-
of-care therapy and ICB, both in AML and in mela-
noma (a paradigm for successful immunotherapy
actualization) (16, 17).

Results

Functional and transcriptional signature of T cell senescence in AML.
AML blasts are known to be an extrinsic modifier of T cell respons-
es (18-21). Initially, we aimed to experimentally evaluate whether
AML blasts affect T cell proliferation, activation, and expression
of phenotypic markers of senescence through direct contact or by
secreting soluble mediators. Flow cytometry-sorted BM T cells
and AML blasts from newly diagnosed patients were cocultured,
either in direct contact or separated by Transwell inserts, and
stimulated as previously described (10). We found that AML blasts
induced expression of 2 well-characterized senescence markers,
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Figure 2. Markers of T cell senescence correlate with impaired T cell
killing and poor clinical outcomes. (A) Flow-sorted AML blasts were cocul-
tured with autologous, patient-derived CD8* T cells (n = 13 patients) for 5
days. Data were compared using the Kruskal-Wallis test. TW = Transwell
insert; BL = AML blasts; Mono = monocytes. (B) Flow-sorted healthy-
donor monocytes were cocultured with patient-derived CD8* T cells (n =9
patients) for 5 days. (C) In vitro killing of primary CD33* CD34* AML blasts
(n =10 patients) after 48-hour culture with autologous, flow-sorted T

cells in the presence of anti-CD33/CD3 and control bispecific T cell engager
(BIiTE) antibody constructs (effector/target ratio = 1:5). T cell cytotoxic-

ity was determined by flow cytometry, as detailed in the Supplemental
Methods. (D) Kaplan-Meier estimates of OS in patients (JHU1 cohort, n =
43 patients) with senescent T cells above and below the optimal cut point,
which was computed using the maxstat package in R. Survival curves were
compared using a log-rank test. Median OS is indicated (color-coded by the
optimal cut point of the proportion of CD3*CD8*CD57*KLRG1* T cells). (E
and F) Correlograms showing coexpression of NK and T cell markers in (E)
TCGA-AML and (F) Beat-AML cases. The correlation matrix was reordered
using the hclust function. Rectangles were drawn based on the results of
hierarchical clustering (Euclidean distance, complete linkage). Inhibitory
receptors (CD244, BTLA, CD160, TIGIT, LAG3, and PDCD1) are highlighted

in red. NK cell, T cell, monocyte-macrophage (CD74, CD68, and C0163), and
AML-associated markers (C034, IL3RA, KIT, and THY1) were selected by
integrating knowledge from multiple publications (10, 25, 101).

CD57 and y-H2AX, on AML CD8"* T cells in both experimental
conditions. Consistent with previous observations (10), direct con-
tact of AML blasts with T cells resulted in decreased expression of
activation/proliferation markers CD25, ICOS, and Ki-67 (Figure
2A). However, when T cells were separated from AML blasts by a
Transwell insert, the expression of activation markers (CD25 and
ICOS) and Ki-67 equaled that of CD8* T cells stimulated in the
absence of AML blasts. These findings suggest that interactions
between leukemia blasts and T cells occurring in the local milieu
impair T cell activation through direct contact and that induction
of senescence markers occurs primarily through bystander modu-
lation. These effects seem to be AML blast-specific, since cocul-
ture with monocytes from healthy donors did not affect any of the
markers examined (Figure 2B).

Given the high frequency of senescent-like T cells in the BM
of patients with AML (10), we next investigated in vitro cytotox-
icity of flow-sorted, BM-derived senescent-like (CD3*CD8*CD57*
KLRG1") and nonsenescent (CD3*CD8'CD57KLRGI) T cells
against autologous AML blasts using an anti-CD3/CD33 bispe-
cific T cell engaging (BiTE) antibody construct (22, 23). As shown
in Figure 2C, senescent-like T cells were significantly impaired
in their ability to lyse AML blasts compared with their nonsenes-
cent counterparts. These findings could explain the inferior kill-
ing ability of the CD3/CD33 BiTE construct when using patient T
cells versus those of healthy controls (24). Analysis of 43 patients
with newly diagnosed AML (JHU1 cohort; Supplemental Table
1) also revealed that a higher proportion of senescent-like (CD3*
CD8'CD57*KLRG1") T cells in baseline BM samples was associ-
ated with significantly worse OS (P = 0.004) after treatment with
standard chemotherapy (Figure 2D; optimal cut-point of CD3*
CD8*CD57*KLRG1* T cells = 31.9%). Senescent-like T cells mea-
sured at time of response assessment in 22 patients from the JHU1
cohort who achieved a CR also correlated with shorter OS (Supple-
mental Figure 2), suggesting that both preexisting senescent-like

The Journal of Clinical Investigation

T cells and those accumulating after chemotherapy might contrib-
ute to poor clinical outcomes.

Transcriptional profiling of the tumor microenvironment
(TME) has been used to identify immunological signatures, char-
acterize biological processes, and develop predictors of protective
immunity (25, 26). We therefore sought to derive gene expression
signatures of T cell senescence in the AML BM microenviron-
ment. We compiled a manually curated senescence-related gene
set that encompassed KLRGI, CD57 and other senescence mark-
ers (KLRC1, KLRC3, KLRDI1, KLRFI1, and CDI58A) previously
shown to be expressed by circulating CD8* T cells from patients
with AML (10) and to be upregulated on senescence-like T cells
(27) and on dysfunctional chimeric antigen receptor (CAR) T cells
(28). We used RNA-Seq data and related clinical information from
the TCGA-AML and Beat-AML Master Trial (hereafter Beat-AML)
cohorts (n =157 and n = 264 unique patients, respectively) and cor-
related the expression of genes in the immunosenescence signa-
ture with markers of immune cells and leukemia blasts.

We found a positive correlation between immunosenescence
genes and T cell markers — but not with markers of AML blasts
(CD34, CD38, IL3RA, KIT), or with markers of accessory cells of
the monocyte/macrophage lineage (CD14, CD68, CD163; Figure 2,
E and F). The clustering of T cell exhaustion and senescence-asso-
ciated genes is consistent with our previous flow cytometry studies
(10), suggesting that T cells in the AML microenvironment exhibit
features of both biological processes (13). Overall, the above find-
ings indicate that cellular and transcriptional signatures of CD8* T
cell senescence are present in newly diagnosed AML patients, and
that the abundance of senescent-like T cells may correlate with
antileukemia responses and OS after induction chemotherapy.

Identification of a BM IED signature in 2 discovery AML
cohorts. We hypothesized that probing ImmuneSigDB (https://
immunespace.org/announcements/home/thread.view?rowld=50)
gene sets within the BM microenvironment might reveal core
biological processes involved in antitumor immune responses
and in therapeutic outcomes. To this end, both TCGA-AML and
Beat-AML cases were split into quartiles based on average expres-
sion levels of the 7 T cell senescence-associated genes. Gene set
enrichment analysis (GSEA) was used to identify core gene sets
accounting for the enrichment signal in immunosenescenceh!
(highest quartile) versus immunosenescence' cases (lowest quar-
tile). Among the 4,872 curated gene sets from the ImmuneSigDB,
only gene sets with a FDR of less than 0.05 and a normalized
enrichment score of more than 2.0 (n =123 and n =126 gene sets at
the intersection of TCGA-AML and Beat-AML cases, respectively)
were carried forward for leading-edge analysis. We reasoned that
those genes contained in the leading edge would represent bio-
logically related genes enriched for a phenotype of interest (29).
This analysis identified 172 genes that are common to multiple
significantly enriched ImmuneSigDB gene sets and that contrib-
ute most to the enrichment signal (Supplemental Figure 3A and
Supplemental Table 2). The uniform manifold approximation and
projection (UMAP) of single-cell RNA-Seq (scRNA-Seq) data from
8 patients in the Institute for Molecular Medicine Finland (FIMM)
AML cohort (30) revealed that naive, central memory and effector
memory CD4* and CD8" T cells, regulatory T cells, and NK cells
were highly enriched in this signature (Supplemental Figure 3, B

J Clin Invest. 2022;132(21):e159579 https://doi.org/10.1172/)C1159579
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Figure 3. Signatures of immune effector dysfunction correlate with
immune infiltration and with adverse-risk molecular features in the
TCGA-AML and Beat-AML cohorts. (A) Overlap between the IED172
signature genes from this study and published signatures that predict
chemotherapy refractoriness as well as response to bispecific T cell
engagers (2). IFN, interferon; IED, Immune effector dysfunction. (B)
Semantic similarity between the IED172 genes in the context of their
chromosomal location (XGR [eXploring Genomic Relations] web tool [ref.
102]). The degree of similarity between genes is visualized by the color of
the links, with light yellow representing a low degree of similarity and red
representing more. The chromosomal locus of each gene is indicated by
the numbers and colors along the outer rim of the diagram. GO:MF, gene
ontology molecular functions. (C) Correlation between the IED172 score
and previously published immune traits (n = 45) (2, 42) in TCGA-AML (n =
157 patients). Signature scores are available through the original publica-
tions. (D) Correlation between the IED172 score and previously published
immune traits and PARADIGM scores (n = 68; downloaded from the UCSC
Xena data portal [https://xenabrowser.net/datapages/]; refs. 40, 44). The
principal component analysis (PCA) plot was generated using the ggfortify
and ggplot2 R packages. The top contributors to the first and second PC (n
= 20) are shown as a bar graph. The dotted reference line in the bar graph
indicates the expected value if the contribution were uniform. Any feature
above the reference line can be considered as important in contributing

to the dimension. (E) IED172 scores and percentage of blasts at diagnosis
in TCGA-AML cases. Data were compared using the Mann-Whitney U test
for unpaired determinations. PB = peripheral blood. (F) IED172 scores and
leukemia burden at diagnosis in Beat-AML cases (n = 264). Data were
compared using the Mann-Whitney U test for unpaired determinations.
(G) Stacked bar graph showing the proportion of IED172" and IED172" cases
harboring mutations of TP53, RUNX1, ASXL1, DNMT3A, NPM1, and FLT3-
internal tandem duplication (ITD). Mut, mutated.

and C). These findings were further validated in an independent
single-cell RNA-Seq cohort from van Galen et al. (31) (Supple-
mental Figure 4 and Supplemental Figure 5). When mapping gene
expression to an integrated scRNA-Seq data set including BM
NK cells from healthy controls (32) and from patients with FIMM
AML, we found that the 172 genes were predominantly expressed
by functionally matured and adaptive NK cells (Supplemental Fig-
ures 6 and 7; marker genes from Yang et al., ref. 32 are provided
in Supplemental Table 3). However, abnormalities — most often,
RNA upregulation and/or gene amplification — in the top 15 genes
defining the mature NK cluster, but not the adaptive NK cluster,
were associated with worse survival in the TCGA-AML cohort
(Supplemental Figure 7).

Flow cytometric and bulk RNA-Seq studies have suggested
that features of cellular senescence are manifested by T cells in
all differentiation states (27, 33). The 172 genes showed broad
transcriptional overlap among multiple effector subsets and were
enriched in markers associated with T and NK cell recruitment
(CXCR3, CCR7, CXCR6), dysfunction and/or exhaustion (ID3,
EOMES, and SLAMF6) (28), and senescence (SESN3, IFNG, and
ETSI) (27). We hereafter refer to this IED gene set as the [ED172
signature. The IED172 genes were nonredundant with knowl-
edge-based transcriptional signatures of T cell exhaustion, CAR T
cell dysfunction (28), solid tumor response to ICB (Supplemental
Figure 8A and Supplemental Table 4) (34, 35), and IFN-y—related
RNA profiles carrying prognostic significance in AML (Figure 3A)
(2). The semantic similarity between IED172 genes in the context
of their chromosomal location is shown in Figure 3B. No genes in
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the IED172 signature were on chromosome 7, the loss of which
has been associated with failure to respond to PD-1 blockade (36).
Furthermore, IED172 genes were enriched in Kyoto Encyclopedia
of Genes and Genomes pathways related to T helper differentia-
tion, T cell receptor (TCR) signaling, and T and NK cell-mediated
cytotoxicity (Supplemental Table 5), as well as miRNAs implicated
in cancer immune escape and immune metabolism (37-39) (Sup-
plemental Figure 8, B and C). Using a broad collection of immune
gene sets (40-43), we found that IED states correlated with lym-
phoid cells, CD8* T cell and NK cell infiltration, the tumor inflam-
mation signature score, and immune checkpoints TIGIT, CTLA4,
and PD-LI (Figure 3C). A principal component analysis with the
dependent variables of publically available immune signatures
and PARADIGM-integrated pathways further supported the
association between IED states and immune infiltration. It also
identified T cell and B cell scores, STAT1 signaling, and stemness-
related pathways as the top discriminative features (Figure 3D and
Supplemental Table 6).

We looked for correlations between the IED172 score and
pretreatment variables in diagnostic samples from the TCGA-
AML and Beat-AML cohorts (Supplemental Table 7) (46). We
found that the IED172 score did not correlate with patient age at
diagnosis, 2017 European LeukemiaNet (ELN; https://www.leu-
kemia-net.org/home/) risk category, or mutation count (Supple-
mental Figure 9, A and B), and that it was higher in AML cases
with low leukemia burden (Figure 3, E and F) or in those harbor-
ing TP53, RUNX1, ASXL1, and RAS mutations (Figure 3G). These
findings are consistent with previous reports on the immune
landscape of TP53- and RUNXI-mutated AML (47, 48) and on the
inverse correlation between immune infiltration and percentage
of blasts, i.e., tumor purity (49). The analysis of Beat-AML cases (n
= 264, of which 195 have chemotherapy-response data) revealed
significantly higher IED172 scores at baseline in patients with pri-
mary induction failure (PIF; n = 63) compared with those achiev-
ing complete remission (CR; n = 132; P = 0.0044; Supplemental
Figure 10, A and B). When analyzing matched samples collected
at baseline and after induction chemotherapy (available only for
13 patients in the Beat-AML series), we found that the IED172
score was significantly higher in BM samples obtained at the time
of response assessment — CR with measurable residual disease
and relapse — compared with the baseline (P = 0.0046; Sup-
plemental Figure 10, C and D). Immune cell type deconvolution
with quanTIseq, which estimates an absolute score and therefore
allows inter-sample comparisons (50), showed lack of statistical-
ly significant differences between baseline and post-chemother-
apy samples (Supplemental Figure 10, E and F), suggesting that
increased IED scores do not merely reflect a larger fraction of T
and NK cells after treatment. When analyzing scRNA-Seq pro-
files of 11 patients with AML from van Galen et al. (31) for whom
serial BM samples were available, we observed significantly high-
er IED172 scores after chemotherapy, both in responders and in
nonresponders (Supplemental Figure 11, A-C).

IED scores correlate with transcriptomic features of AML stem-
ness and stratify survival. The 17-gene leukemia stem cell (LSC17)
score has previously been associated with poor clinical outcomes
and with TP53 and RUNXI mutational status in de novo AML (51,
52). The LSC17 score discriminated survival outcomes in TCGA-
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Figure 4. Covarying gene programs of immune effector dysfunction and stemness in the TCGA-AML cohort. (A) Pairwise correlation between transcrip-
tomic traits of immune infiltration and LSC17/1ED172 scores. Nonsignificant P values are shown as blank boxes. Modules, including traits that are densely
connected (hubs), are identified based on hierarchical clustering (Euclidean distance, complete linkage) and are shown in black boxes. The IED172 and
LSC17 scores are highlighted in red. IED, Immune effector dysfunction. (B) LSC17 score in IED172" and IED172" TCGA cases (n = 157; median split). Data were
compared using the Mann-Whitney U test for unpaired determinations. (C) Inferred relative frequency of hematopoietic stem cells (HSCs) in patients with
IED172" or IED172", as estimated by xCELL (54). Precalculated TCGA scores were downloaded from https://xcell.ucsf.edu/. (D) Kaplan-Meier estimates of
overall survival (0S) in patients with IED172" with above-median and below-median LSC17 scores. Survival curves were compared using a log-rank test. HR,
hazard ratio. (E) Kaplan-Meier estimates of OS in patients with IED172"° with above-median and below-median LSC17 scores.

AML and in Beat-AML patient cohorts (Supplemental Figure 12,
A and B). The LSC17 score was not colinear with previously pub-
lished immune cell type-specific gene signatures (42), immune
checkpoints, and IFN-y-related gene programs (Figure 4A) (53),
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and it was significantly higher in samples with above-median
IED172 scores (Figure 4B). This finding was corroborated using
xCELL, a single-sample GSEA-based tool that infers cellular con-
tent in the TME (Figure 4C) (54). When patients were stratified
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Figure 5. Predictive ability of immune effector dysfunction gene programs in the TCGA-AML cohort. (A) Area under the receiver operating characteris-
tic (AUROC) curve measuring the predictive ability of the prognostic index (P124) genes for overall survival (n = 157 TCGA cases). (B) Forest plot (ggforest
function in survminer package in R) of pretreatment features (WBC count at diagnosis, percentage of bone marrow blasts, FLT3-ITD and NPM1 mutational
status, patient age at diagnosis), and RNA-based scores associated with survival in multivariate Cox proportional hazard analyses (PI24, LSC17, and IFN
scores; refs. 2, 47,52). HR = hazard ratio for death. (C) Kaplan-Meier estimates of relapse-free survival (RFS) in patients with TCGA-AML with above-
median and below-median PI24 scores, which were calculated using B values from Cox regression analyses of gene expression and patient survival (56).
Survival curves were compared using the log-rank test. (D) Kaplan-Meier estimates of OS in TCGA-AML patients with above-median and below-median

P124 scores. Survival curves were compared using the log-rank test.

into IED172% and IED172" groups, the LSC17 score continued to
predict OS (Figure 4, D and E).

To determine the parameters most predictive of OS in the
IED172 signature, we used the least absolute shrinkage and selec-
tion operator (LASSO) statistical method to fit an L1-regularized
linear model (55) that revealed a parsimonious set of 24 genes
(Supplemental Table 2). We then generated a prognostic index
(PI) using B values from Cox regression analyses of gene expres-
sion and OS (Supplemental Figure 13, A and B) (56). The 24-gene
PI (PI24) scores inversely correlated with OS time (Supplemen-

tal Figure 13C) and was an independent predictor of OS with an
area under the receiver operating characteristic (AUROC) value
of 0.911 in the TCGA-AML cohort (Figure 5A and Supplemental
Figure 13D). In multivariable analyses controlling for tumor purity
— based on the percentage of BM blasts — and for patient age, the
PI24 score was a more powerful predictor of OS than the LSC17
score (52), the IFN-y-related score (2), and other established AML
prognosticators, including FLT3-ITD and NPMI-mutational status
at diagnosis (Figure 5B). On stratifying patients above or below the
median P124 scores, we found that subjects with an above-median
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Figure 6. Immune effector dysfunction scores correlate with immune
infiltration, stemness, primary induction failure, and patient outcome

in an external AML cohort. (A) Bubble plot depicting enriched REACTOME
pathways (https://reactome.org/) in IED172 and IEDE8 signature genes
(clusterProfiler package in R), which were ranked based on the gene ratio
(gene count divided by set size). IED, immune effector dysfunction. (B)
Correlation between the IED68 score and previously published immune
traits (n = 45; refs. 2, 42) in the PMCC cohort (n = 290 patients). Signature
scores are available in the original publications. (C) Correlation between
IED68 scores and leukemia burden at diagnosis in the PMCC cohort. Data
were compared using the Mann-Whitney U test for unpaired determina-
tions. BM, bone marrow; PB, peripheral blood. (D) Response to induction
chemotherapy in patients with above-median and below-median prognos-
tic index (PI20) scores in the PMCC cohort. PIF, primary induction failure
following a standard 1 or 2 cycles of induction chemotherapy. CR, complete
remission (defined as <5% BM blasts). (E) Kaplan-Meier estimates of
relapse-free survival (RFS) in PMCC patients with above-median and
below-median PI20 scores. Survival curves were compared using a log-rank
test. HR, hazard ratio. (F) Kaplan-Meier estimates of overall survival (0S)
in PMCC patients with higher than median and lower-than-median PI20
scores. Survival curves were compared using a log-rank test. (G) Area
under the receiver operating characteristic (AUROC) curve measuring the
predictive ability of the P120 and the ELN cytogenetic risk classifier for OS.
Cl, confidence interval.

PI24 score experienced significantly shorter relapse-free surviv-
al (RFS) and OS (P < 0.0001 for both; Figure 5, C and D). Other
gene sets related to NK cells and/or capturing cytolytic activity
and senescence-associated genes enriched in terminally differen-
tiated CD8" T cells from healthy individuals (27, 30) were unable
to stratify survival in TCGA cases (Supplemental Figure 14). High
PI24 scores were also associated with significantly inferior OS
compared with patients with low PI24 scores in the Beat-AML
cohort (P = 0.012; Supplemental Figure 15A). In agreement with
TCGA data, the PI24 score was a good predictor of OS, with an
AUROC value of 0.805 (Supplemental Figure 15B).

As shown in Supplemental Figure 16, A-D, an optimal PI24
cut point of 1.73 parsed the TCGA population into subgroups with
maximally different survival probabilities. Furthermore, patients
in the highest quartile of PI24 values had poor clinical outcomes
(1-year RFS and OS rates of 0% and 3%, respectively) compared
with patients in the lowest quartile (I-year RFS and OS rates of
74% and 97%, respectively). These findings were validated in the
Beat-AML cohort (Supplemental Figure 16, E and F; optimal cut
point = 0.94) and in another large cohort of 562 adult subjects with
AML treated on the German AMLCG 1999 trial (GSE37642; Sup-
plemental Figure 17, A and B; optimal cut-points for Affymetrix
series GPL570 and GPL96 = 3.84 and 3.67, respectively) (57).

Validation of IED scores in relation to immune infiltration, stem-
ness, chemotherapy refractoriness, and patient outcome in independent
AML cohorts. Benefiting from our previous work that harnessed
large numbers of clinically annotated AML samples (2, 10) and
with the aim to develop a gene expression assay that can be rap-
idly implemented in clinical practice, we turned to the nCounter
platform (NanoString Technologies) (52, 58). We initially mined
our published AML data set (GSE134589; Princess Margaret Can-
cer Center [PMCC] cohort encompassing 290 patients with newly
diagnosed AML) and identified 68 genes that were shared between
the RNA-Seg-based IED172 and NanoString panel (IED68) sig-
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natures (Supplemental Table 2). Both the IED172 and the IED68
signatures showed enrichment in genes with annotated functions
in cytokine and chemokine signaling, TCR signaling, costimula-
tion by the CD28 family, and PD-1/PD-L1 immune checkpoints in
cancer (Figure 6A). As shown in Figure 6B and in agreement with
earlier analyses, the IED68 signature was enhanced in tumors
that were infiltrated with CD8* and NK cells, characterized by the
expression of inhibitory molecules, and inversely correlated with
leukemia burden (Figure 6C). Overlaying the IED68 transcription-
al signatures onto the UMAP of scRNA-Seq data from Dufva et al.
(Supplemental Figure 18; ref. 30) and from van Galen et al. (Sup-
plemental Figure 19, A and B; ref. 31) revealed that, similar to the
IED172 score, the IED68 gene set largely mapped to cytotoxic T
lymphocyte (CTL) and NK cell clusters, both in AML samples and
in BM specimens from healthy controls.

Using LASSO-penalized regression for feature selection and
colinearity reduction, we identified 20 genes in the NanoString
IED68 signature that were most predictive of OS and that showed
minimal overlap with the PI24 genes (Supplemental Figure 13B).
We therefore computed a 20-gene PI (P120) using gene expression
values and P coefficients previously derived from Cox proportion-
al hazards (PH) models of the TCGA-AML discovery cohort. The
PI20 score was associated with PIF in response to standard che-
motherapy (Figure 6D) and with significantly shorter RFS and OS
in the PMCC cohort (P < 0.001 for both; Figure 6, E and F). Over-
all, the PI20 score predicted OS with greater accuracy (AUROC
value of 0.847) than the 2017-ELN cytogenetic risk classifier
(AUROC value of 0.643; Figure 6G and Supplemental Figure 20).
These observations were validated in an independent AML series
including participants with PIF, enrolled in the AMLCG-2008
study (GSE106291; n = 250 patients; Supplemental Figure 21; opti-
mal cut point = 0.1) (57).

Similar to the recently defined IFN-y gene signature (59), the
PI20 score significantly separated survival in patients with inter-
mediate and high ELN risk (Supplemental Figure 22A), as well as
after censoring at the time of hematopoietic stem cell transplan-
tation (Supplemental Figure 22B). The latter finding suggests that
differences in clinical outcomes between PI20" and PI20" cases
were not merely attributable to treatment intensity.

We calculated the LSC17 score for the PMCC cohort using
publicly available gene expression data (GSE76004) and the same
weights as those provided in the original publication (Supplemental
Figure 23, A and B) (52). In line with TCGA data, the LSC17 score
separated RFS and OS in both PI20* and PI20" cases (Supple-
mental Figure 23, C-F). Specifically, patients with PI20", a group
with a 5-year OS of 11% (Figure 6), were further dichotomized
into a subgroup of LSC17® individuals with an improved 5-year
OS probability of 55% (Supplemental Figure 23F). Furthermore,
when stratifying patients in the LSC17" and LSC17° subgroup by
the PI20 scores, we identified a subset of LSC17" participants with
very-poor-prognosis AML, who had 5-year RFS and OS rates of
only 10% and 3.5%, respectively (Supplemental Figure 23, G-J).

We formally tested the interaction between senescence- and
stemness-related pathways by a multiplication term in the Cox PH
model. As shown by the Wald y?2 statistics (Supplemental Table 8),
the P120 score was substantially more predictive of OS (P < 0.001)
in this modeling framework than the LSC17 score (P = 0.001). In

J Clin Invest. 2022;132(21):e159579 https://doi.org/10.1172/)C1159579


https://doi.org/10.1172/JCI159579
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://www.jci.org/articles/view/159579#sd
https://reactome.org/

The Journal of Clinical Investigation

COG-TARGET AML cohort

CHOP AML cohort

A

o

Survival probability

Prognostic

Survival probability

Prognostic

N
o
o

0.75-

0.50-

0.25-

0.00-

index

Immune traits
(Danaher P, et al.)

1.00 -

0.75-

0.50

0.25-

BM PB P <0.0001
P<0.0001 P=0.0033 . 600
[ -
100 m\i 500 -
o
=75 AV 400
< = 300
@ 50 5
K 8 200
m
% Q 100-
0 T T T 0-
< o £ o £ o
Nog R Y S
o o o o o o
wow wow w w
Prognostic index
== Above median
Iog-rank == Below median
P=0.0044

0 12
Number at risk

71 38

70 50

0o 12

(¢}

IED172 score

CLINICAL MEDICINE

P =0.0004

Onset Relapse
N = 31 matched BMs

1.00-

Prognostic index
== Above median
== Below median

log-rank

HR =1.77 (95% Cl = 1.19-2.63)

Median RFS =
12.8 mo, 18.03 mo

24 3 48 60 72 8 96 108
Relapse-free survival time (months)

18 14 12 10 5 4 2 2

32 28 26 25 21 14 {3y 1

24 36 48 60 72 8 96 108

Relapse-free survival time (months)

|IED68 score

Lymphoid cells
yme TIGIT

0.00 -

index
1

0

Number at risk

17
20
0

Inflammatory chemokines
IDO1

CD8T cells
Cytotogly
ytotoxici
) Fig
Cytotoxic cells. 0.8
CTLA4
Th1 cells
NK cells
PD1
Tre
Exhausted CDB 06
PDL1
ARG1
IFN-gamma
B cells
DCs
PDL2
MAGEs 04
IFN downstream i
CD45
A tILw
poptosis
Neutrophils
Myeloid cells.
Immunoproteasome:
Macrophages: 0.2
Mast cells
B7-H3
Myeloid inflammation
TGF-beta

Spearman correlation
coefficient (R)

log-rank
P=0.14

12 24 36 48

Relapse-free survival time (months)
10 4 1 0
13 10 7 3
12 24 36 48

Relapse-free survival time (months)

0
120

Prognostic index
== Above median
== Below median

60

60

Survival probability

0.00-

o
~
o

o
13
=}

o
N
a

P=0.018

HR =1.78 (95% CI = 1.11-2.87)

0 12 24 36 48 60 72 84 96

Number at risk

Median OS =
36.5 mo, not reached

108 120 132 144
Overall survival time (months)

o
% é— 73 64 41 35 31 26 20 12 8 5 2 1 0
=4
92~ 72 63 54 48 42 39 82 2 12 2 0o o0
o 0 12 24 36 48 60 72 84 96 108 120 132 144
Overall survival time (months)
P =0.0001
104 ’—‘
o 81
o4
<]
o]
[2]
0 6
©
[a]
w
4
2 I 1
Diagnosis Response
assessment
I 1.00- Prognostic index
log-rank = Above median
P=0.03 == Below median
> 075! || ]
E
®©
S
S 0507 oo
— : 20.4 mo, not reached
o Y
= E
= :‘
S 025 :
wn '
HR =2.64 (95% CI = 1.1-6.35) |
0.0 '

Prognostic
index

Overall survival time (months)

J Clin Invest. 2022;132(21):e159579 https://doi.org/10.1172/)CI159579

0 12 24 36 48 60 72
Number at risk Overall survival time (months)

20 12 6 4 1 1 0

20 17 13 8 3 1 0

0 12 24 36 48 60 72

+



https://doi.org/10.1172/JCI159579

] -

CLINICAL MEDICINE

Figure 7. Immune effector dysfunction scores correlate with immune
infiltration and separate survival in pediatric AML cohorts. (A) Leukemia
burden in COG-TARGET AML cases (n = 145) with above-median and
below-median IED172 scores. Data were compared using the Mann-Whit-
ney U test for unpaired determinations. BM, bone marrow; PB, peripheral
blood; IED, immune effector dysfunction. (B) WBC count at diagnosis in
COG-TARGET AML cases with above-median and below-median IED172
scores. Data were compared using the Mann-Whitney U test for unpaired
determinations. (C) IED172 scores at time of AML diagnosis and response
assessment (bulk RNA-Seq data from matched BM samples available

in 31 COG-TARGET AML cases). (D) Kaplan-Meier estimate of relapse-

free survival (RFS) in patients from the COG-TARGET AML cohort with
above-median and below-median prognostic index (P124) scores. Survival
curves were compared using a log-rank test (survminer package in R). HR,
hazard ratio. (E) Kaplan-Meier estimate of overall survival (OS) in patients
from the COG-TARGET AML cohort with above-median and below-
median P124 scores. (F) Correlation between the IED68 score and previ-
ously published immune traits (n = 45) in the CHOP AML series (n = 40).
Signature scores are available through the original publications (2, 42). (G)
IED68 scores in samples from the CHOP AML series collected at time of
diagnosis and response assessment (n = 14 matched BM samples). Data
were compared using the Wilcoxon's matched-pairs signed-rank test. (H)
Kaplan-Meier estimates of RFS in patients from the CHOP AML cohort
with above-median and below-median PI20 scores. (I) Kaplan-Meier
estimate of OS in patients from the CHOP cohort with above-median and
below-median PI20 scores.

addition, the interaction between the 2 continuous variables was
statistically significant (P = 0.013), indicating that a higher PI20
value will increase the association between the LSC17 score and
OS. Taken together, these analyses suggest that the PI20 score and
its integration with the LSC17 score could provide accurate prog-
nostic risk stratification.

IED scores predict survival in independent pediatric AML cohorts.
Microenvironmental immune gene sets are known to be differen-
tially expressed between children and adults with AML (2, 60),
which may in part be due to differences in pediatric versus adult
AML biology (61-64). Furthermore, immunosenescence, a process
of remodeling of immune functions upon chronic antigen expo-
sure, is associated with physiologic aging (65, 66). We thus exam-
ined the relevance and applicability of the IED score to childhood
AML and first analyzed diagnostic BM samples from 145 pediat-
ric patients with de novo AML in the Children’s Oncology Group-
TARGET (COG-TARGET) AML cohort for whom RNA-Seq data
are publicly available (61). The IED172 score correlated inverse-
ly with leukemia burden (Figure 7, A and B) and was significantly
higher at time of relapse (n = 31 paired BM samples; Figure 7C).
Importantly, an above-median PI24 score predicted significant-
ly worse RFS (P = 0.0044) and OS (P = 0.018; Figure 7, D and E).
We then retrieved NanoString transcriptomic data from an addi-
tional cohort of pediatric participants with AML (CHOP series, n =
40 patients: GSE134589) (2). In line with previous results in adult
AML, the IED68 score was higher in children with an immune-
infiltrated /activated AML (Figure 7F) and in BM samples obtained
at time of response assessment compared with disease onset (Fig-
ure 7G). Finally, the PI20 score separated patients into subgroups
with different RFS and OS probabilities (Figure 7, H and I). These
data support the applicability of IED scores in childhood AML.

IED scores ave increased at time of response assessment. To
further examine the effect of induction chemotherapy on IED

The Journal of Clinical Investigation

scores, we generated nCounter gene expression data using seri-
al BM samples from a large number of donors with newly diag-
nosed AML (the Studien Allianz Leukdmie [SAL] and Johns
Hopkins University 2 [JHU2] cohorts), totaling 90 patients and
183 BM specimens that were longitudinally collected at time of
diagnosis and response assessment) (Supplemental Table 1). The
IED68 scores were significantly higher after chemotherapy, both
in patients who achieved CR and in those who experienced PIF
or had an early relapse of AML (relapse before 6 months after
the achievement of CR; Figure 8, A and B). As expected, the PI120
score separated both RFS (P = 0.011; Figure 8C) and OS (P =
0.0015; Figure 8D) in this cohort.

Differential expression analysis revealed upregulation of
genes involved in T and NK cell biology (CD3G, CD8A, CD8B,
CD28,GZMK, and GZMB), cosignaling molecules (KLRC2, KLRBI,
TIGIT, CD40L, and ICOS), myeloid (LCN2, LTF, and SI00A12)
and dendritic cell differentiation (CHITI, CLEC4C), and in che-
moattraction (CXCL5, CXCLI12, CCL2, PPBP, and XCL2) after
chemotherapy (Figure 8E). As expected, genes associated with
AML proliferation (FLT3, KIT), leukemia stem cells (CD34, CD38,
and ILIRAP), and candidate genes overexpressed in AML (CD99,
CD200, and LAMP2) were downregulated after chemotherapy,
consistent with recent scRNA-Seq and immunohistochemistry
data (31). GSEA on the C2 (curated) and C7 (immunologic signa-
ture) gene sets from the MSigDB revealed overrepresentation of T
cell subsets, NK cells, and antigen-presenting cell signatures (Fig-
ure 8F) and clearance of leukemia signatures after chemotherapy
(Supplemental Figure 24A). Furthermore, oncogenic pathways
were downregulated, while immune signatures were enriched at
time of response assessment (Supplemental Figure 24B).

IED genes define ICB-unresponsive TMEs in AML. We assessed
the relevance of IED scores in relation to therapeutic response
to ICB. We profiled primary BM samples from 33 adult patients
with newly diagnosed or relapsed/refractory AML who were
treated with AZA+Pembro (ClinicalTrials.gov NCT02845297);
Supplemental Table 9; GSE178926). We examined differential-
ly expressed genes (DEGs) at baseline between patients who
subsequently achieved CR and those who were nonresponders.
Using unsupervised hierarchical clustering of DEGs (Figure 7A),
we observed 2 patient clusters. Cluster 1 (C1 in Figure 7A) was
enriched for patients who achieved CR (approximately 63%) and
for patients with PI20 scores below the median (approximately
63%). In contrast, only approximately 14% of patients in Cluster
2 (C21in Figure 9A) achieved CR, and approximately 21% of them
had below-median PI20 scores (AUROC = 0.823; Figure 9B).
Notably, patients with low PI20 scores experienced prolonged OS
(median of 15.6 months compared with 4.1 months in patients with
high PI20 scores; P = 0.01; optimal cut point = 2.44; Figure 9C).
We also observed heightened expression of type I and type II IFN
signaling genes (IRF8, IFNA1, IFNA17, CXCL10, and CCL20) in
the PI* group, prompting us to examine the ability of a published
IFN signature to predict OS (2). As shown in Figure 9D, high IFN
scores were associated with prolonged OS (P = 0.01; optimal cut-
point = 6.39). The analysis of scRNA-Seq data from 8 patients with
relapsed/refractory AML treated with AZA + nivolumab (36) con-
firmed enrichment of IED68 scores on CD4* and CD8* T cells, NK
cells, and NK/T cell precursors (Supplemental Figure 25A). Inline
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Figure 8. Immune effector dysfunction scores increase at time of
response assessment and predict outcomes in additional external AML
cohorts. (A) Expression of the IED68 genes in patients from the SAL
and JHU cohorts (n = 183 BM samples from 90 patients). The heatmap
annotation track shows sample collection time points (baseline and
post-chemotherapy response assessment). (B) IED68 score at time of
diagnosis and response assessment (Kruskal-Wallis test with correction
for multiple comparisons). Nonsignificant P values are not shown. CR =
complete remission; PIF = primary induction failure; ER = early relapse
(<6 months after the achievement of CR); LR = late relapse (>6) months
after the achievement of CR); IED = immune effector dysfunction. (C)
Kaplan-Meier estimate of relapse-free survival (RFS; data available in 56
subjects) in higher-than-median and lower-than-median PI20 groups.
HR = hazard ratio. (D) Kaplan-Meier estimate of overall survival (0S; data
available in 90 subjects) in higher-than-median and lower-than-median
PI120 groups. (E) Volcano plot showing differentially expressed genes
(DEGs) between samples collected at baseline and post-chemotherapy
(post-CT) response assessment (EnhancedVolcano package in R). Genes
discussed in the paper are named. (F) Graphical summary of over-rep-
resentation analysis (clusterProfiler package in R) showing the overlap
between DEGs (post-chemotherapy versus baseline) and curated cell
type signature gene sets (C8 collection), which were retrieved from the
MSigDB (http://www.gsea-msigdb.org/gsea/index.jsp). Gene ratio =
gene count divided by set size.

with findings in the AZA+Pembro cohort, the IED68 score was
significantly lower at baseline in responders to nivolumab-based
immunotherapy; Supplemental Figure 25B). Compared with base-
line, CD8* T cells, CD4" T cells, and conventional and plasmacy-
toid DCs from on-treatment BM samples expressed significantly
lower IED68 scores (Supplemental Figure 25C). Taken together,
these data reveal the unique ability of IED genes to define both
chemotherapy- and ICB-unresponsive AML TMEs. By contrast,
IFN-y-related genes have been previously shown to be associated
with chemotherapy resistance while also predicting response to T
cell engagers (2, 8).

We sought to identify genes at the intersection of respons-
es to chemotherapy and AZA+Pembro. We examined DEGs
between matched posttreatment (available in 31 patients after
cycle 2) and pretreatment BM samples in the immunotherapy
cohort. Treatment with AZA+Pembro resulted in upregulation
genes associated with immune effectors (GZMA, GZMB, PRFI,
KLRDI, and NCRI), T cell and NK cell cosignaling molecules
(CTLA4,KLRBI,KLRCI1,KLRC2,and KLRKI), cytokine receptors
(IL7R, IL2RB), IFN responsiveness (ISG20), and T cell signaling
(CD274, ITK, CD7, and ZAP70) (Figure 9E). As with the chemo-
therapy cohort (Figure 8E), AZA+Pembro treatment was associ-
ated with downregulation of leukemia-associated genes (FLT3,
CD34). We identified 43 genes that were significantly differen-
tially expressed in both postchemotherapy and post-AZA+Pem-
bro BM samples (Figure 9F), and we then assessed the semantic
distance between gene ontologies (GOs) corresponding to these
43 genes using the GOSemSim Bioconductor R package (67).
This procedure measures GO and gene similarity, thereby mini-
mizing the redundancy of GO categorization. It identified shared
nodes that included GO terms linked to immune functions as
well as a prominent “macro-cluster” unique to the chemothera-
py setting; and encompassed GO terms and genes related to IFN
and cytokine receptor signaling (Figure 9F).
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IED genes define ICB-unresponsive TMEs in melanoma. To
investigate whether these findings can be generalized for ICB-
responsive solid tumor types, we conducted an exploratory anal-
ysis of IED and its correlation with response to ICB in melanoma.
We calculated the PI24 value for patients in the TCGA Pan-Cancer
Atlas profiling project (441 subjects with resected primary and/or
metastatic melanoma who received no previous systemic therapy)
(68). The P124 score was not correlated with patient age or tumor
mutation count (Supplemental Figure 26, A and B) and was low-
er in patients with an immune-enriched (IE) TME, as defined by
Bagaev et al. (25), and with high expression of immune-associated
functional gene signatures (Supplemental Figure 26, C and D). As
observed above in AML, PFS and OS rates were lower for mela-
noma cases with high PI24 scores (Figure 10, A and B). Interest-
ingly, the PI24 score refined the ability of the IE, ICB-responsive
TME profile — but not the depleted TME subtype (25) — to strat-
ify patient survival (Supplemental Figure 26, E and F; optimal cut
points = 1.33 and 0.9, respectively). Compared with PI24% cases,
patients in the PI124% group had lower numbers of lymphocyte clus-
ters and tumor infiltrating lymphocyte (TIL) patches and higher
myeloid/macrophage RNA scores (Supplemental Figure 27, A and
B; ref. 69). Furthermore, TIL spatial patterns were significantly
different between PI24" and PI24° melanoma samples, with the
latter showing diffusely infiltrative TILs scattered throughout 30%
or more of the tumor area (referred to as a “brisk, diffuse” subtype
(69); P = 0.0006, Fisher’s exact test; Supplemental Figure 27C).
These data are consistent with the established role of TILs in con-
trolling tumor growth in untreated melanoma (70). The analysis
of scRNA-Seq profiles from malignant, immune, and stromal cells
isolated from 19 melanoma samples (71), indicated that P124 genes
were predominantly expressed by NK and T cells but also by a clus-
ter of “undefined” cells with fibroblast-associated genes (LGALSI,
CALDI, TIMP1, EGRI, and SPARC; Supplemental Figure 28, A-C).

We analyzed publicly available RNA-Seq data from 73 melano-
ma patients treated with standard-of-care single-agent nivolumab
or pembrolizumab (n=41) or combination anti-PD-1+anti-CTLA-4
(n = 32; PRJEB23709; Supplemental Table 10) (72). In this series,
patients with above-median PI24 scores showed enrichment in
melanocyte-associated markers (MLANA, TYR, and PMEL; Fig-
ure 10C) and poor response to ICB based on response evaluation
criteria in solid tumors (RECIST) (Figure 10D). The ability of PI24
genes to predict lack of response to ICB (AUROC = 0.93) is shown
in Figure 10E. As with TCGA Pan-Cancer Atlas data, patients
with below-median PI24 scores expressed high levels of immu-
noglobulin genes, CD8A, and chemokine genes (CCL4, CCL5,
and CXCLI0), and had significantly higher PFS and OS rates (P =
0.00041 and P = 0.0011, respectively; Figure 10F).

Finally, an unsupervised analysis of scRNA-Seq profiles of
immune cells isolated from 48 tumor biopsies taken either at
baseline or during treatment with ICB (73) confirmed enrichment
of PI24 scores in immune cells (NX cells, effector memory, and
central memory CD4* and CD8' T cells) from pretherapy lesions
of nonresponders, i.e., patients with progressive or stable disease,
compared with responders (complete or partial response; Supple-
mental Figure 29, A and B). Overall, these findings suggest that
signatures of IED might also be applied as potential biomarkers of
response to ICB in melanoma.
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Figure 9. Immune effector dysfunction scores predict response to
AZA+Pembro in clinical trial NCT02845297. (A) Differentially expressed
genes (DEGs) at baseline associated with complete response (CResp) to
AZA+Pembro (n = 33 patients). The heatmap annotation track shows the
prognostic index (PI20) group and response status (complete remission
[CR] and nonresponder [NR]) after 2 cycles of azacitidine and pembroli-
zumab. Complete response was defined as CR, CR with partial hematologic
recovery (CRh), CR with incomplete hematologic recovery (CRi), or mor-
phological leukemia-free state (MLFS) at the end of cycle 2. Patients with
partial response (PR; >50% decrease in bone marrow blasts from baseline
to 5%-25% at the end of cycle 1) were categorized as NRs. C, cluster. (B)
Area under the receiver operating characteristic (AUROC) curve measuring
the predictive ability of IED68 genes for response to AZA+Pembro. Cl,
confidence interval. (C) Kaplan-Meier estimate of overall survival (OS) in
patients with above-median and below-median PI20. Survival curves were
compared using the Gehan-Breslow-Wilcoxon’s test, a generalization of
the Wilcoxon's rank-sum test that attributes more weight to deaths at
early time points. HR, hazard ratio. (D) Kaplan-Meier estimate of OS in
patients with above-median and below-median IFN scores, which were
computed as previously published (2). Survival curves were compared
using the Gehan-Breslow-Wilcoxon's test. (E) Volcano plot showing DEGs
between baseline and end-of-cycle 2 (E02) bone marrow samples. The top
20 DEGs are named. (F) The overlap between DEGs post-reatment versus
baseline in the chemotherapy (CT; SAL and JHU2) and AZA+Pembro patient
series is shown as a Venn diagram. Nonredundant, enriched gene ontolo-
gies in DEGs between the CT and AZA+Pembro cohorts were visualized as
a network diagram (cnetplot) with color nodes using the cnetplot function
of the GOSemSim package in R (67).

Discussion
An unanswered question in AML is whether deranged T cell
functions affect the likelihood of therapeutic response to che-
motherapy and/or immunotherapy. Our prior efforts to charac-
terize the AML immune TME using transcriptomic and spatial
profiling approaches led to the discovery of an IFN-y-dominant
and inflamed BM miilieu (2, 8, 74). In the present study, features
of deranged T cell function were identified in multiple indepen-
dent cohorts of adult and pediatric patients with AML (n = 1,896)
and were found to be associated with leukemia stemness and with
poor response to induction chemotherapy. OS prediction afford-
ed by validated clinical cytogenetic categories and experimental
LSC17 signatures (1, 52) was improved by the derived IED gene
set, which also defined ICB-unresponsive microenvironments.
Determining how dysfunctional T cell states modulate ther-
apeutic response or resistance in AML remains a challenge, part-
ly due to a lack of selective markers that parse exhaustion from
senescence (11, 13). We previously detected increased numbers
of circulating senescent-like T cells in AML, which were associ-
ated with a low likelihood of response to induction chemotherapy
(10). Some reports suggest that tumors induce T cell senescence
via cancer cell-derived soluble molecules, while other studies
implicate CD4" regulatory T cells in this process (75, 76). Here-
in, we found that AML blasts influence T cell activation and pro-
liferation through direct contact and bystander effects, whereas
induction of CD8* T cell senescence appears primarily depen-
dent on the latter. These mechanisms are particularly relevant
for hematologic malignancies such as AML, since leukemia blasts
are proximate to circulating T cells and, as such, their potential to
promote T cell senescence is expected to be greater than periph-
erally located solid tumors.
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It has also been shown that chemotherapy-induced senes-
cence confers higher tumor-initiating potential to AML and solid
tumor cell lines compared with nonsenescent tumor cells (77, 78).
While we observed an association between stemness and effector
senescence programs, an important question to be addressed is
whether crosstalk between senescent-like AML cells and immune
effectors could amplify immunosuppressive circuits, leading to
failed control of residual disease. Senescent-like cells are known
to secrete inflammatory chemokines, cytokines, and growth
factors in a paracrine fashion, promoting the reprogramming of
neighboring cells (79-81). Furthermore, the humoral commu-
nication via senescence-associated secretory phenotype fac-
tors might accelerate tumor progression by maintaining chronic
inflammation (82). In accord with this model, we show that IED
signatures that are shared between central memory and effec-
tor memory CD4* and CD8* T cells and functionally matured
NK cells are enhanced after chemotherapy, both in bulk and in
scRNA-Seq data sets. In contrast to T cell exhaustion, immunose-
nescence states are maintained by intrinsic signaling induced by
DNA damage or other stress responses (75, 83, 84). While a sub-
set of the IED signature comprised exhaustion genes, the overlap
between the IED score and published T cell exhaustion gene sets
was minimal (34, 85).

Enhancing T cell-mediated clearance of AML is an attrac-
tive therapeutic strategy, but some ICB trials and BiTE con-
struct trials have met with only limited success (86-88). Multiple
mechanisms have been proposed to explain AML resistance to
therapeutic attempts to reverse T cell exhaustion by ICB. These
include upregulation of alternative checkpoint receptors or
diminished T cell infiltration in patients with advanced disease
(3, 89). Our data suggest that senescent-like T cells in pretreat-
ment BM samples are unable to lyse AML blasts when activat-
ed with the CD3/CD33 BiTE construct. Consistent with this, a
higher proportion of senescent-like CD8* T cells in the BM and
blood was associated with lower response rates to pembrolizum-
ab sequenced after high-dose cytarabine in relapsed/refractory
AML (7). Therefore, this T cell population may underpin resis-
tance to immunotherapy.

Our study also shows that the initially defined immunosenes-
cence signature in AML also predicts worse outcomes in patients
receiving AZA+Pembro or nivolumab immunotherapy, and sug-
gests that senescence reversal could be pursued as a strategy to
functionally reinvigorate T cells and to improve response rates to
ICB and other T cell-targeting immunotherapies (7, 8). The poten-
tial clinical utility of senolytics is currently being tested in animal
models (82). By analyzing the immune transcriptome of pretreat-
ment samples from the AZA+Pembro cohort, we identified gene
sets and biological functions that were enriched in responders. In
contrast to the IED score, the [FN-y signature score was associated
with response to ICB. A plausible explanation for this observation
is that stemness states negatively affect type I IFN signaling and
anticancer immunity, ultimately leading to poor AML cell kill-
ing (49). In melanoma — a tumor type known to derive durable
clinical benefit from ICB (72, 90-92) — the IED-related gene set
was also expressed by a cluster of cells with fibroblast features, in
addition to CD8*, CD4", and NK cells. Furthermore, it predict-
ed long-term outcomes and objective responses to single-agent
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Figure 10. Immune effector dysfunction (IED) scores predict immuno-
therapy response in melanoma. (A) Progression-free survival (PFS) in

427 patients with melanoma from the TCGA Pan-Cancer Atlas profiling
project. Participants were stratified based on an optimal cut point of the
prognostic index (P124) (value, 0.862). Survival curves were compared using
a log-rank test. RNA-Seq and outcomes data were retrieved through the
cBioPortal for Cancer Genomics (https://www.cbioportal.org/). HR, hazard
ratio. (B) Overall survival (OS) in patients with melanoma from the TCGA
Pan-Cancer Atlas cohort. (C) Volcano plot showing differentially expressed
genes (DEGs) between patients with P124" or P124" in the PRJEB23709
immunotherapy cohort (73 participants with melanoma treated with stan-
dard-of-care single-agent nivolumab or pembrolizumab (n = 41) or combi-
nation anti-PD-1 + anti-CTLA-4 (n = 32; Supplemental Table 10). RNA-Seq
and outcome data were retrieved through the original publication (72) and
the Tumor Immune Dysfunction and Exclusion (TIDE) portal (http://tide.
dfci.harvard.edu/login/) (58). The top 15 DEGs are named. (D) Number of
responders and nonresponders with above-median and below-median
P124 scores in the PRJEB23709 immunotherapy cohort. Fisher’s exact test.
CR = complete response; PR, partial response. In the original publication
(72), responders are defined as individuals with complete response, partial
response, or stable disease of greater than 6 months with no progres-

sion, whereas nonresponders are defined as progressive disease or stable
disease for less than or equal to 6 months before disease progression. (E)
AUROC curve measuring the predictive ability of PI24 genes for response to
ICB-based therapies in the PRJEB23709 cohort. Cl, confidence interval. (F)
PFS and 0OS in patients with melanoma in the PRJEB23709 immunotherapy
cohort. Patients were dichotomized based on an optimal cut point of PI24
values (0.12 and 0.344 for PFS and OS, respectively).

nivolumab or pembrolizumab, or to combination anti-PD-1 + anti-
CTLA-4. Prospective immunotherapy clinical trials are warranted
to validate the translational relevance of the IED signature in solid
tumors other than melanoma.

One limitation of our study is that we focused primarily on
gene sets pertaining to immune biology. However, efforts to link
immunology with genomic subtypes, therapeutic response, and
clinical outcomes in AML are in their infancy (2, 30, 47, 93, 94).
In contrast, genome-wide transcriptomic approaches and high-di-
mensional single-cell analyses have been extensively employed to
resolve the molecular heterogeneity and clonal diversity of malig-
nant AML cells (31, 95-98). Both scDNA-Seq and scRNA-Seq
studies would be required to explore the relationships among T
cell differentiation stages, clonal complexity, and AML hierarchies
(31, 98); however, a major challenge is the difficulty of acquiring
adequate numbers of T cells from the TMEs in which cells of the
myeloid lineage are predominant. Future studies will also have to
comprehensively characterize the molecular mechanisms under-
lying the induction of T cell senescence in the AML TME.

Overall, our findings indicate that IED scores offer advantages
over signatures of T cell exhaustion which are solely predictive of
response to ICB (58,73, 99). Our approach elucidates the immune
contexture of AML in both chemotherapy and ICB settings,
enables refinement of risk stratification, and generates hypothe-
ses for further investigation and clinical exploration of strategies
to overcome T cell senescence.

Methods
Full details are provided in Supplemental Methods.

Study approval. Primary specimens (nonpromyelocytic AML) and
associated clinical data were obtained with written informed consent
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from the donors in accordance with the Declaration of Helsinki on
research protocols approved by the Ethics Committee of TU Dresden
and Studienallianz Leukdmie, Germany (EK98032010), and by the
Institutional Review Boards of the Children’s Hospital of Philadelphia
(no.10-007767) and Johns Hopkins University.
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