Age-related changes in the TCR repertoire of human naïve and memory CD4⁺ and CD8⁺ T cells by longitudinal analysis

Xiaoping Sun^{1*}, Thomas Nguyen^{1*}, Achouak Achour^{1*}, Annette Ko¹, Jeffrey Cifello¹, Chen Ling¹, Jay Sharma¹, Toyoko Hiroi¹, <u>Yongqing Zhang²</u>, Chee W. Chia³, William Wood, III², Wells W. Wu⁴, Linda Zukley⁵, Je-Nie Phue⁴, Kevin G. Becker², Rong-Fong Shen⁴, Luigi Ferrucci⁵, and Nan-ping Weng^{1**}

¹Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA

²Gene expression and Genomics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA

³ Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA

⁴Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, MD, USA

⁵ Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA

Supplemental Figure S1: Changes of T cell counts in blood and memory T cell subsets with age.

Supplemental Figure S2: Variations of TCR α and TCR β richness of naïve and memory CD4⁺ and CD8⁺T cells isolated at the same time.

Supplemental Figure S3: CDR3 lengths of TCR α and TCR β in total, naïve and memory CD4⁺ and CD8⁺ T cells in study subject.

Supplemental Figure S4: Development of equations to predict paired $\alpha\beta$ TCR richness based on the separated TCR α and TCR β sequences.

Supplemental Table S1: Demographics of study subjects and their blood T cell subset counts

Supplemental Table S2: Summary of $\alpha\beta$ TCR repertoire of CD4⁺ and CD8⁺T cells

Supplemental Table S3: Summary of αβ TCR repertoire of naïve and memory CD4⁺ and CD8⁺ T cells

Supplemental Table S4: Overlap of TCR sequences between two visits

Supplemental Table S5: Overlap Percentages of TCR sequences between naïve and memory $CD4^+$ and $CD8^+T$ cells

Supplemental Table S6: Overlap of TCR sequences between CD4⁺ and CD8⁺ T cells

Supplemental Table S7: Oligos used in TCR library construction and sequencing

Supplemental Figure 1: Changes of T cell counts in blood and memory T cell subsets with age. A. Changes in CD4⁺ and CD8⁺ T cell counts in blood with age. Cell counts were calculated based on 1) lymphocyte counts per microliter of blood and 2) percentage of CD4⁺ and CD8⁺ T cells and naïve (CD45RA⁺CD28⁺) and memory cells in lymphocytes, calculated from flow cytometry. D. Gating of CD4⁺ and CD8⁺ T memory T cell subsets: T_{CM} (CD45RA⁻CD28⁺), T_{EM} (CD45RA⁻CD28⁻), and T_{EMRA} (CD45RA⁺CD28⁻). E-G, Numbers of CD4⁺ and CD8⁺ T_{CM}, T_{EM} , and T_{EMRA} cells in blood at each visit and their change with age.

Supplemental Figure 2: Variations of TCR α and TCR β richness of naïve and memory CD4⁺ and CD8⁺T cells isolated at the same time. A. Experimental plan. Naïve and memory CD4⁺ and CD8⁺T cells were isolated from blood (three healthy adults) by cell sort and equal number of sorted cells (0.5-1 x 10⁶) were aliquot in 3-4 tubes. TCR α and TCR β sequences in each tube were independently measured and then predicted to 10⁷ by DivE method. B. Standard deviations of projected richness of TCR α and TCR β are presented as percentages.

Supplemental Figure 3: Average age of three groups of TCR α and TCR β richness changes in in total, naïve and memory CD4⁺ and CD8⁺ T cells. A. Box-Whisker plot of average age of three groups (decrease, no change, and increase) of richness changes with age in total, naïve (N), and memory (M) CD4⁺ T cells.. B. Box-Whisker plot of average age of three groups of richness changes with age in total, naïve (N), and memory (M) CD4⁺ T cells.

С

Equations for calculating paired ab TCR richness based on separated TCRa and TCRb richness

CD4 Paired ab TCR richness = 0.138 x [(0.870 x TCRa) + TCRb] + Max (0.870 x TCRa, TCRb)

CD8 Paired ab TCR richness = 0.035 x [(0.846 x TCRa) + TCRb] + Max (0.846 x TCRa, TCRb)

Figure 4: Development of equations to predict paired $\alpha\beta$ TCR richness based on the unpaired TCR α and TCR β sequences. A. Linear relationship between 1) the paired $\alpha\beta$ TCR richnesses minus the maximum unpaired richnesses and 2) the sum of the unpaired richnesses, TCR α and TCR β , from $\alpha\beta$ TCR data of single cell analysis. 745,182 and 158,305 $\alpha\beta$ TCRs from CD4⁺ and CD8⁺ T cells, respectively, were used in this analysis. B. Percentage of T cells with a single TCR α . The values are derived via the analyses of 108 and 111 single T cell samples for CD4⁺ and CD8⁺, respectively, using published data with secondary TCR α information (see method for details). C. Equations for calculating paired $\alpha\beta$ TCR richness based on unpaired TCR α and TCR β richness of CD4⁺ and CD8⁺ T cells. TCR α richness is preceded by a factor indicating average contribution to TCR α richness by primary TCR α 's, compensating contributions to TCR α richness by secondary TCR α 's in bulk-sequencing.