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Introduction
Glaucoma is a major chronic eye disease characterized by optic 
nerve damage and visual field defects (1, 2). Its onset is often insid-
ious, with a risk of irreversible visual field loss prior to becoming 
symptomatic (3). Timely detection and treatment of glaucoma by 
lowering the intraocular pressure (IOP) could reduce the risk of dis-
ease progression (4, 5). Predicting glaucoma onset and progression 

BACKGROUND. Deep learning has been widely used for glaucoma diagnosis. However, there is no clinically validated algorithm for 
glaucoma incidence and progression prediction. This study aims to develop a clinically feasible deep-learning system for predicting 
and stratifying the risk of glaucoma onset and progression based on color fundus photographs (CFPs), with clinical validation of 
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Incidence and progression of glaucoma were determined based on longitudinal CFP images or visual fields, respectively.

RESULTS. The AI model to predict glaucoma incidence achieved an AUROC of 0.90 (0.81–0.99) in the validation set and 
demonstrated good generalizability, with AUROCs of 0.89 (0.83–0.95) and 0.88 (0.79–0.97) in external test sets 1 and 2, 
respectively. The AI model to predict glaucoma progression achieved an AUROC of 0.91 (0.88–0.94) in the validation set, and also 
demonstrated outstanding predictive performance with AUROCs of 0.87 (0.81–0.92) and 0.88 (0.83–0.94) in external test sets 1 
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CONCLUSION. Our study demonstrates the feasibility of deep-learning algorithms in the early detection and prediction of 
glaucoma progression.
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In the first task, we developed a model to diagnose possible 
glaucoma based on 31,040 CFPs. In this task, 31,040 images (split 
into 20,872 for training, 3182 for validation, 6162 for external test 
1,and 824 for external test 2) from 14,905 individuals were col-
lected from glaucoma and anterior segment disease eye clinics. 
Among these images, 10,175 (32.8%) were diagnosed with possi-
ble glaucoma. The training and validation data sets were obtained 
from individuals from glaucoma and anterior segment disease sec-
tions in the Zhongshan Ophthalmic Center in Guangzhou, China. 
External test set 1 was collected from patients in the glaucoma and 
anterior segment disease clinic in Jidong Hospital near Beijing. To 
further test the generalizability of the AI model, we validated its 
performance with CFPs obtained by smartphones from Kashi.

In the second task, we developed a model to predict future 
glaucoma incidence based on the data from 3 longitudinal 
cohorts. We included a total of 13,222 eyes (10,357 training, 1191 
validation, 955 external test 1, 719 external test 2) of 7127 partic-
ipants, all of which were diagnosed as nonglaucomatous at the 
baseline. The training and validation data sets were obtained from 
individuals who underwent an annual health check in Guangzhou, 
while external test set 1 was from individuals who underwent an 
annual health check in Beijing and external test set 2 was from a 
community cohort in Guangzhou. The mean follow-up duration 
was 47.8–56.6 months across the data sets. The incidence rate of 
glaucoma was 1.1%–2.0% across the data sets.

In the third task, we developed a model to predict glaucoma 
progression based on the CFPs from cohorts with existing glau-
coma. In this task, 4275 eyes (3003 training, 422 validation, 337 
external test 1, 513 external test 2) from 2219 glaucoma patients 
were included, all of which were already diagnosed with glauco-
matous optic neuropathy at the baseline. The training and valida-
tion data sets were obtained from 1 primary open-angle glaucoma 
(POAG) cohort in the Zhongshan Ophthalmic Center. To further 
test the generalizability of the AI model on different subtypes of 
glaucoma, external test set 1 was collected from another POAG 
cohort and external test set 2 was collected from a chronic pri-
mary angle-closure glaucoma (PACG) cohort in the Zhongshan 
Ophthalmic Center. The mean follow-up duration was 34.8–41.7 
months across the data sets, and the proportion of glaucoma pro-
gression was 6%–13.5% across the data sets (Table 1).

Design of the diagnostic (DiagnoseNet) and predictive (Predict-
Net) algorithms. First, we developed a diagnostic algorithm for 
possible glaucoma, DiagnoseNet (Figure 1B). In brief, Diagnoset-
Net is composed of 2 main modules, a segmentation module and 
a diagnostic module. The CFPs were semantically segmented by 
the segmentation module with 4 anatomical structures: retinal 
vessels, macula, optic cup, and optic disk. The diagnostic module 
generated the glaucomatous probability score.

We then designed a pipeline, PredictNet, for incidence and 
progression prediction of glaucoma. In brief, PredictNet is also 
composed of 2 main modules, the segmentation module and the 
prediction module. The segmentation module is the same as that 
in DiagnoseNet. The prediction module produces the risk score of 
glaucoma incidence or progression in the future (Figure 1D and 
Supplemental Figure 1).

The diagnostic and predictive algorithms share the same seg-
mentation module. The segmentation module was trained based 

is a major clinical challenge. Previous studies demonstrated that 
biometric parameters, such as baseline IOP, vertical cup-to-disc 
ratio, mean deviation (in the Humphrey visual field test), and pattern 
standard deviation are helpful in predicting glaucoma incidence 
and progression (6–12). However, IOP measurement and visual field 
tests are often not available in the primary healthcare setting. In 
contrast, color fundus photography is widely available and color fun-
dus photographs (CFPs) can be rapidly acquired, with the potential 
to allow artificial intelligence–based (AI-based) diagnosis of optic 
nerve, retinal, and systemic diseases (including chronic kidney dis-
ease, diabetes mellitus; ref. 13). Smartphones can also be adapted to 
capture CFPs, making them a promising tool in disease screening in 
the future (14, 15). Thus, it would be advantageous if glaucoma inci-
dence and progression could be solely based on CFPs rather than 
relying on multiple test modalities.

Deep-learning techniques have been widely used for glau-
coma diagnosis (16–19). However, there is no clinically validated 
algorithm for glaucoma incidence and progression prediction. This 
study aimed to develop a clinically feasible deep-learning system for 
diagnosing glaucoma (Figure 1, A and B) and predicting the risk of 
glaucoma onset and progression (Figure 1, C and D) based on CFPs, 
with validation of performance in external population cohorts. Our 
AI system appears to be capable of detecting features in the baseline 
CFPs that are unrecognizable to the human eye and predict which 
patients will progress to glaucoma within 5 years. Furthermore, we 
show that the AI system could be deployed at the point of care via 
smartphone image capture to enable broadly accessible remote 
glaucoma screening in the future.

Results
Definitions of glaucoma, its incidence, and progression. The diagnos-
tic criteria for possible glaucoma based on CFPs were created fol-
lowing published population-based studies; glaucomatous optic 
neuropathy was defined by the presence of a vertical cup-to-disc 
ratio of 0.7 or greater, retinal nerve fiber layer (RNFL) defect, optic 
disc rim width of 0.1-disc diameter or smaller, and/or disc hem-
orrhage (20–22). Glaucoma incidence was defined as eyes having 
nonglaucomatous baseline CFPs but becoming possibly glauco-
matous during a follow-up period.

Humphrey visual fields performed in a standard 24-2 pattern 
mode were used for an analysis when glaucoma progression was 
suspected (23). Glaucomatous progression was defined by at least 
3 visual field test points worse than the baseline at the 5% level 
in 2 consecutive reliable visual field tests or at least 3 visual field 
locations worse than the baseline at the 5% level in 2 subsequent 
consecutive reliable visual field tests (23). Time to progression was 
defined as the time from a baseline to the first visual field test report 
that confirmed glaucoma progression following the aforemen-
tioned criteria. The gold standard definition of clinical progression 
was confirmed to have been met by unanimous agreement of 3 oph-
thalmologists who independently assessed each visual field report.

Image data sets and patient characteristics. We established 
a large data set composed of CFPs and visual fields collected in 
Guangzhou, Beijing, and Kashi, China. The demographic and clin-
ical information of the study participants is summarized in Table 
1. The data were split randomly into mutually exclusive sets for 
training, validation, and external testing of the AI algorithms.



The Journal of Clinical Investigation   C L I N I C A L  M E D I C I N E

3J Clin Invest. 2022;132(11):e157968  https://doi.org/10.1172/JCI157968

the AI model was tested on 2 external data sets. In external test set 
1, the AI model achieved an AUROC of 0.94 (0.93–0.94), a sen-
sitivity of 0.89 (0.87–0.90), and a specificity of 0.83 (0.81–0.84). 
In external test set 2, which was obtained using smartphones, the 
AI model achieved an AUROC of 0.91 (0.89–0.93), a sensitivity of 
0.92 (0.88–0.96), and a specificity of 0.71 (0.67–0.74).

Prediction of glaucoma incidence using longitudinal cohorts. We 
investigated the predictive performance of the AI model for the 
development of glaucoma in nonglaucomatous individuals over a 
4- to 5-year period. A total of 158 eyes developed glaucoma with-
in the 4- to 5-year period. The AI model achieved an AUROC of 
0.90 (0.81–0.99), a sensitivity of 0.84 (0.82–0.87), and a specific-
ity of 0.82 (0.57–0.96) for predicting glaucoma incidence in the 
validation set (Table 2 and Figure 2). The AI model demonstrat-
ed good generalizability in the external test sets, which achieved 
an AUROC of 0.89 (0.83–0.95), a sensitivity of 0.84 (0.81–0.86), 
and a specificity of 0.68 (0.43–0.87) in external test set 1, and an 
AUROC of 0.88 (0.79–0.97), a sensitivity of 0.84 (0.81–0.86), 

on manual annotations of optic disc (1853 images), optic cup (1860 
images), macula (1695 images), and blood vessels (160 images) 
independently. The segmentation module demonstrated outstand-
ing segmentation performance on the above anatomical structures 
and achieved an intersection over union (IOU) of 0.847, 0.669, 
0.570, and 0.538 for optic disc, optic cup, macula, and blood vessel 
segmentation, respectively (Supplemental Table 1). Representative 
samples of segmentation are shown in Supplemental Figure 2.

Diagnostic performance of the AI model based on CFPs captured 
by smartphones. To demonstrate the potential of deploying our 
AI model in routine healthcare, we developed and tested the AI 
model to diagnose possible glaucoma based on CFPs not only 
from fundus cameras but also from smartphones. As shown in 
Table 2, in this validation data set, the AI model achieved an area 
under the receiver operating characteristic (AUROC) curve of 0.97 
(0.96–0.97), a sensitivity of 0.98 (0.97–0.99), and a specificity of 
0.82 (0.80–0.83) for differentiating glaucomatous and nonglau-
comatous eyes. To evaluate the generalizability of the algorithms, 

Figure 1. Development and validation of the deep-learning system for glaucoma diagnosis and incidence and progression prediction. (A) Data collection 
and ground truth labeling of glaucoma diagnosis based on CFPs. (B) Pipeline for glaucoma diagnosis. (C) Data collection and ground truth labeling of glau-
coma incidence and progression. (D) Pipeline for predicting glaucoma development and progression. CFP, color fundus photograph; VF, visual field.
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of the low- and high-risk groups were achieved (both P < 0.001, 
Supplemental Figure 4).

The distribution of the risk scores and the threshold (upper 
quartile) of low- and high-risk groups across the validation and 
external test sets are presented in Supplemental Figure 5. As 
shown in the figure, the threshold (risk score of 0.3561, black dot-
ted line) well defines a boundary to separate individuals who are 
likely and unlikely to develop glaucoma in a 4- to 5-year period.

Supplemental Table 3 presents the results of subgroup anal-
yses within the validation and external test sets. The AI model 
demonstrated no statistically significant difference in perfor-
mance among the subgroups as stratified by age (≥60 vs. <60 
years), sex (male vs. female), and severity of glaucoma (mean 
deviation > –6 dB vs. < –6 dB).

Prediction of the glaucoma progression using longitudinal cohorts. 
We investigated the predictive performance of the AI model for 

and a specificity of 0.80 (0.44–0.97) in external test set 2 (Table 
2, Figure 2, and Supplemental Figure 3).

Supplemental Table 2 shows the incidence of glaucoma 
stratified by the AI model. As shown in Supplemental Table 2, 
there was a significant difference in the incidence rate of glau-
coma between the low-risk and high-risk groups. The incidence 
rates were 0.2% and 5.0%, 0.6% and 5.6%, and 0.4% and 4.1% 
in the low- and high-risk groups of the validation set, external 
test set 1, and external test set 2, respectively. We employed  
the Kaplan-Meier approach to stratify healthy individuals into  
2 risk categories (low or high risk) for developing glaucoma, 
based on 4- to 5-year longitudinal data on glaucoma develop-
ment. The upper quartile of the predicted risk scores from the 
model in the validation set was used to create the threshold for 
the high-risk and low-risk groups in the Kaplan-Meier curves and 
log-rank tests. In the external test sets, significant separations 

Table 1. Baseline characteristics of the study participants in the different data sets

Glaucoma diagnosis
Number of participants
Number of eyes
Male/Female
Age, years
Hypertension, %
Diabetes, %
Number of glaucomatous eyes, %

Training set
10,466
20,872
2570/7896
54.0 (17.5)
604 (5.8%)
989 (9.4%)
7034 (33.7%)

Validation set
1418
3182
351/1067
54.9 (16.7)
52 (3.7%)
84 (5.9%)
952 (29.9%)

External test set 1
2866
6162
732/2134
61.1 (21.1)
135 (4.7%)
197 (6.9%)
2037 (33.1%)

External test set 2
155
824
68/87
68.8 (15.8)
101 (64.7%)
141 (90.4%)
152 (18.4%)

P1A

-
-
0.28
0.36
0.03
<0.001
0.35

P2B

-
-
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

Glaucoma onset prediction
Number of participants
Number of eyes
Male/Female
Age, years
Hypertension, %
Diabetes, %
Follow-up duration, months
Mean time between CFPs, months
Median time between CFPs, months
Eyes with glaucoma incidence, %

Training set
5548
10,357
2726/2822
55.3 (13.4)
1961 (35.3%)
3156 (56.9%)
47.8 (15.8)
42.5 (14.3)
38.0
112 (1.1%)

Validation set
657
1191
321/336
56.5 (15.5)
186 (28.3%)
285 (43.4%)
56.6 (13.9)
51.4 (12.8)
56.6
17 (1.4%)

External test set 1
522
955
241/281
55.4 (13.9)
184 (35.2%)
123 (23.6%)
51.4 (11.8)
46.0 (13.2)
46.0
19 (2.0%)

External test set 2
400
719
190/210
55.6 (13.3)
155 (38.8%)
113 (15.7%)
52.9 (13.5)
47.4 (13.0)
47.0
10 (1.4%)

P1A
-
-
0.20
0.85
0.97
<0.0001
<0.0001
-
-
<0.0001

P2B

-
-
0.53
0.64
0.17
<0.0001
<0.0001
-
-
0.02

 
Glaucoma progression prediction 

Number of participants
Number of eyes
Male/Female
Age, years
Intraocular pressure, mmHg
Mean deviation, dB
Pattern standard deviation, dB
Mean times of VF tests, months
Mean time between VF tests, months
Hypertension, %
Diabetes, %
Follow-up duration, months
Eyes with glaucoma progression, % 

Training set  
(POAG patients)
1558
3003
639/919
44.7 (14.3)
16.4 (3.6)
–2.6 (4.1)
3.9 (3.9)
7.2 (3.6)
6.0 (2.0)
197 (12.6%)
8 (0.5%)
41.7 (4.2)
327 (10.9%)

Validation set  
(POAG patients)
217
422
76/141
42.8 (13.2)
16.6 (3.2)
–2.6 (4.8)
3.8 (4.0)
6.5 (2.4)
6.1 (1.4)
26 (12.0%)
0 (0%)
34.8 (5.8)
57 (13.5%)

External test set 1 
(POAG patients)
172
337
76/96
41.7 (15.2)
16.2 (3.5)
–2.2 (3.6)
3.2 (3.4)
7.1 (3.5)
6.4 (2.3)
31 (18.0%)
0 (0%)
39.8 (5.9)
29 (8.6%)

External test set 2 
(PACG patients)
272
513
117/155
45.1 (13.9)
16.6 (3.7)
–2.7 (4.5)
4.2 (4.3)
6.3 (2.3)
7.6 (1.1)
35 (12.9%)
0 (0%)
38.4 (7.1)
31 (6.0%)

P1A
 

-
-
0.42
0.008
0.89
0.12
0.0009
0.67
-
0.05
0.35
<0.0001
0.20

P2B

 

-
-
0.54
0.71
0.27
0.75
0.24
<0.0001
-
0.92
0.24
<0.0001
0.80

VF, visual field; POAG, primary open-angle glaucoma; PACG, primary angle-closure glaucoma. AComparison of the demographic parameters between 
training and external test data set 1 by independent t test (age, follow-up duration, intraocular pressure, mean deviation, pattern standard deviation, 
and times of visual field tests) or χ2 test (sex, cases with hypertension, cases with diabetes, cases with glaucoma diagnosis/incidence/progression). 
BComparison of the demographic parameters between training and external test data set 2 by independent t test (age, follow-up duration, intraocular 
pressure, mean deviation, pattern standard deviation, and times of visual field tests) or χ2 test (sex, cases with hypertension, cases with diabetes, cases 
with glaucoma diagnosis/incidence/progression). All numbers within parentheses are SD.
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external test sets are presented in Supplemental Figure 9. As 
shown in the figure, the threshold (risk score of 2.6352, black dot-
ted line) well defines a boundary to separate glaucomatous eyes 
that are likely and unlikely to progress in a 3- to 4-year period.

Supplemental Table 3 presented the results of the subgroup anal-
ysis in the validation and external test sets. The AI model demon-
strated no statistical significance in all the subgroups stratified by age 
(≥60 vs. <60 years), sex (male vs. female), and severity of glaucoma 
(mean deviation > –6 dB vs. < –6 dB) except the AUROCs of severe 
and less severe subgroups in the validation set and external test set 1.

Visualization of the evidence for prediction of glaucoma incidence 
and progression. To improve the interpretability of the AI models 
and illustrate the key regions for AI-based predictions, we used gra-
dient-weighted class activation mapping (Grad-CAM) to generate 
the key regions in the CFPs for diagnosing glaucoma and predict-
ing glaucoma incidence and progression. Representative cases and 
their corresponding saliency maps of DiagnoseNet are presented 
in Supplemental Figure 10. Representative cases and their corre-
sponding saliency maps are presented in Supplemental Figure 10 
(DiagnoseNet) and Figure 4 (PredictNet). The saliency maps sug-
gest that the AI model focused on the optic disc rim and areas along 
the superior and inferior vascular arcades, which is consistent with 
the clinical approach whereby nerve fiber loss at the superior or 
inferior disc rim provides key diagnostic or predictive clues. This 
would suggest that the AI models are learning clinically relevant 
knowledge in evaluating glaucoma diagnosis and progression. 
AI-based predictions also appear to involve the retinal arterioles 
and venules, thus implicating vascular health as potentially rele-
vant to the etiology of chronic open-angle glaucoma.

Discussion
More than 60 million people in the world suffer from glaucoma, 
and the number is predicted to increase to 110 million by 2040 
(24). Due to its insidious onset and variable progression, diagnosis 
of glaucoma and monitoring of treatment can be challenging and 
clinically time consuming. Glaucoma screening is not universal 
around the world, thus leading to a delayed diagnosis and severe 
irreversible sight loss. Therefore, there is a high clinical demand 
for an efficient and reliable AI model to help identify high-risk 
individuals for glaucoma development and progression within the 
population in order to facilitate early intervention.

glaucoma progression in glaucomatous eyes over a 3- to 4-year 
period. A total of 444 POAG eyes had progression within the 3- to 
4-year period. The AI model achieved an AUROC of 0.91 (0.88–
0.94), a sensitivity of 0.83 (0.79–0.87), and a specificity of 0.79 
(0.66–0.89) for predicting glaucoma progression in the validation 
set (Table 2 and Figure 3). To validate the generalizability of the AI 
model in predicting progression in multiple-mechanism glauco-
ma, we further tested its predictive performance in 2 independent 
cohorts of PACG (external test set 1) and POAG (external test set 
2). The AI model achieved excellent predictive performance, with 
an AUROC of 0.87 (0.81–0.92), a sensitivity of 0.82 (0.78–0.87), 
and a specificity of 0.59 (0.39–0.76) in external test set 1, and an 
AUROC of 0.88 (0.83–0.94), a sensitivity of 0.81 (0.77–0.84), and a 
specificity of 0.74 (0.55–0.88) in external test set 2 (Table 2, Figure 
3, and Supplemental Figure 6).

We also trained a predictive model using baseline clinical 
metadata (age, sex, intraocular pressure, mean deviation, pattern 
standard deviation, and hypertension or diabetes status) alone to 
predict progression, which led to an AUROC of 0.76 (0.70–0.82), 
0.73 (0.66–0.79), and 0.44 (0.33–0.54) in the validation set, exter-
nal test set 1, and external test set 2, respectively (Supplemental 
Figure 7). The performance of the AI model was significantly bet-
ter than that of the predictive model based on baseline metadata 
in the above data sets (all P < 0.001).

Supplemental Table 4 shows the risk of glaucoma progression 
stratified by the AI model. As shown in Supplemental Table 4, there 
was a significant difference in the proportion of eyes with glaucoma 
progression in the low-risk and high-risk groups. The incidence rates 
were 3.8% and 42.4%, 4.5% and 23.9%, and 2.0% and 19.8% in the 
low and high-risk groups of the validation set, external test set 1, and 
external test set 2, respectively. We then performed Kaplan-Meier 
analysis to stratify glaucomatous eyes into 2 risk categories (low 
or high risk) for glaucoma progression, based on 3- to 4-year lon-
gitudinal data on glaucoma progression. The upper quartile of the 
predicted risk scores from the model in the validation set was used 
to create the threshold for the high-risk and low-risk groups in the 
Kaplan-Meier curves and log-rank tests. In the external test sets, sig-
nificant separations of the low- and high-risk groups were achieved 
(both P < 0.001, Supplemental Figure 8).

The distribution of the risk scores and the threshold (upper 
quartile) of low- and high-risk groups across the validation and 

Table 2. Performance of the deep-learning models in the validation and external test sets

Glaucoma diagnosis
Validation set
External test set 1
External test set 2

AUROC (95% CI)
0.97 (0.96–0.97)
0.94 (0.93–0.94)
0.91 (0.89–0.93)

Sensitivity (95% CI)
0.98 (0.97–0.99)
0.89 (0.87–0.90)
0.92 (0.88–0.96)

Specificity (95% CI)
0.82 (0.80–0.83)
0.83 (0.81–0.84)
0.71 (0.67–0.74)

Precision (95% CI)
0.99 (0.98–0.99)
0.94 (0.93–0.94)
0.97 (0.95–0.99)

Glaucoma incidence prediction
Validation set
External test set 1
External test set 2

AUROC (95% CI)
0.90 (0.81–0.99)
0.89 (0.83–0.95)
0.88 (0.79–0.97)

Sensitivity (95% CI)
0.84 (0.82–0.87)
0.84 (0.81–0.86)
0.84 (0.81–0.86)

Specificity (95% CI)
0.82 (0.57–0.96)
0.68 (0.43–0.87)
0.80 (0.44–0.97)

Precision (95% CI)
1.00 (0.99–1.00)
0.99 (0.98–1.00)
1.00 (0.99–1.00)

Glaucoma progression prediction
Validation set
External test set 1
External test set 2

AUROC (95% CI)
0.91 (0.88–0.94)
0.87 (0.81–0.92)
0.88 (0.83–0.94)

Sensitivity (95% CI)
0.83 (0.79–0.87)
0.82 (0.78–0.87)
0.81 (0.77–0.84)

Specificity (95% CI)
0.79 (0.66–0.89)
0.59 (0.39–0.76)
0.74 (0.55–0.88)

Precision (95% CI)
0.96 (0.93–0.98)
0.95 (0.92–0.98)
0.98 (0.96–0.99)
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Deep-learning algorithms have been widely used in glaucoma 
diagnostic studies (16–19), and have achieved outstanding diag-
nostic performance in detecting glaucomatous eyes. However, 
few studies have explored the efficacy of deep learning in glau-
coma onset and progression prediction (25–29). In this study, our 
AI model showed excellent glaucoma diagnostic performance on 
CFPs, including photographs captured with smartphone cameras 
using an adaptor, which could significantly broaden its applica-
tion at a point-of-care setting. Compared with traditional sta-
tistical models (30–33), such as glaucoma probability score and 
Moorfields regression analysis, several studies using deep-learn-
ing models achieved comparable or even better predictive per-
formance (25–27). Thakur et al. developed AI models to predict 
glaucoma development approximately 1 to 3 years before clinical 
onset and achieved a highest AUROC of 0.88 (25). However, these 
deep-learning models had some limitations. First, the application 
was limited to onset prediction without progression prediction, the 
latter being an essential part of glaucoma management. Second, 
the data mostly came from hospitals or clinical trials rather than 
community populations, including many eyes that were diagnosed 
with ocular hypertension (elevated intraocular pressure without 
optic neuropathy) rather than glaucoma (25). Third, there is a lack 
of external validation data to demonstrate the generalizability of 
the model in the community.

Compared with previous studies, our study has the following 
advantages. First, we developed AI models for glaucoma diagno-
sis and incidence and progression prediction. In the external test 
sets, the models achieved excellent predictive performance in 
identifying high-risk individuals for developing glaucoma or hav-
ing glaucoma progression. Secondly, data in glaucoma incidence 
prediction came from community screening settings, which better 
reflects the distribution characteristics of glaucoma in the popula-
tion and facilitates the generalizability of the model. The results 
in the external data sets show the AI model achieved an excellent 
predictive performance of glaucoma development, demonstrating 
strong generalizability and reliability of the AI model. Third, all 
the patients in the glaucoma cohorts of the progression prediction 
task have received IOP-lowering medications since enrollment 
and their IOP values were all controlled within a normal range. 
This indicates that our predictive model could identify high-risk 

patients who will undergo glaucoma progression even with rea-
sonably controlled IOPs and facilitate timely interventions such as 
antiglaucoma surgeries to save vision. Fourth, the AI model based 
on structural data from CFPs achieved a high predictive accura-
cy of glaucoma progression, as determined by the gold standard 
of visual field test results. Visual field tests can reveal functional 
damage of the optic nerve and are the clinical gold standard in 
monitoring glaucoma progression (34). As demonstrated in the 
task of glaucoma progression prediction, the AI model succeeded 
in identifying the high-risk eyes of progressive functional deterio-
ration from baseline CFPs with high sensitivities. In addition, the 
AI model showed a similar predictive performance in different 
subtypes of glaucoma, including POAG and PACG, which share 
similar structural and functional damage of the optic nerve.

Our study has the following limitations. First, the input data 
of our AI models are only CFPs. Clinical glaucoma evaluation 
generally requires integrated analysis of multiple modalities (e.g., 
clinical examination, optic nerve head imaging, and visual field 
testing) to determine the glaucoma subtypes and any progression. 
Our study chose CPFs as the only input due to their high feasibili-
ty and widespread availability. Future studies may consider incor-
porating other data modalities to further improve the predictive 
performance of the algorithms. Second, only high-quality CFPs 
were included in the study, which limits the application of the AI 
models in eyes with media opacities that prevent obtaining clear 
CFPs. Third, limited by the prevalence of glaucoma in the gen-
eral population (around 1% to 1.5% in those 40 to 65 years old) 
(35), there was a relatively small number of cases of glaucoma.  
To address this issue, we used a deep-learning model with rela-
tively few parameters. Fourth, the AI models presented varied 
sensitivity and specificity across the data sets, although they 
had high AUROC values. High sensitivity is more important for 
screening, and we may further improve the predictive perfor-
mance of the AI models with more training data in the future. 
Fifth, all the data were from the Chinese population and further 
validation is needed in other populations.

In conclusion, our study demonstrates the feasibility of 
deep-learning systems for disease onset and progression predic-
tion. It offers the possibility of building a virtual glaucoma screening 
system in the future.

Figure 2. Area under the receiver operating characteristic (AUROC) curves of the AI model for prediction of glaucoma onset. (A–C) Predictive perfor-
mance of the AI model in the validation set (n = 1191), external test set 1 (n = 955), and external test set 2 (n = 719).
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Methods

Data set characteristics
Glaucoma diagnosis cohorts. In these initial cohorts, we were specifi-
cally looking for patients visiting ophthalmologists who subspecial-
ize in both glaucoma and anterior segment diseases. The population 
of patients seen by these ophthalmologists was highly enriched with 
POAG patients (36, 37). We purposely chose these initial cohorts to 
ensure that we were able to collect sufficient POAG patients as well 
as nonglaucomatous control patients (such as cataract patients) who 
were otherwise appropriately matched for developing an AI-based 
diagnosis of POAG (Table 1). The training and validation data in 
glaucoma diagnosis were collected from community cohorts and eye 
clinics in Guangzhou. To test the generalizability of the AI model, 2 
independent data sets obtained from Beijing and Kashi were used as 
external test sets. The external test set 1 was collected from patients 
who underwent an annual health check in Beijing city, while the exter-
nal test set 2 was obtained by smartphones from local eye clinics in 
Kashi in the Xinjiang Autonomous Region.

Glaucoma incidence prediction cohorts. The training and valida-
tion data in the prediction of glaucoma incidence were collected from 
community cohorts in Guangzhou. To test the generalizability of the  
AI model, 2 independent data sets obtained from Beijing and Guang-
zhou communities were used as external test sets. Our longitudi-
nal cohorts for POAG incident prediction had POAG frequencies of 
around 1% to 2%, which is well within the norm of the prevalence of 
POAG in the general population.

Glaucoma progression prediction cohorts. The training and valida-
tion data in predicting glaucoma progression were collected from 1 
POAG cohort in the Zhongshan Ophthalmic Center, Guangzhou. To 
test the generalizability of the AI model, 2 independent cohorts com-
posed of PACG and POAG eyes from the Zhongshan Ophthalmic Cen-
ter were used as external test sets.

Image quality control and labeling
Supplemental Figure 11 describes the data sets used in this study  
and the process of image quality control. All of the images were first 
deidentified to remove any patient-related information. Fifteen  

ophthalmologists with at least 10 years of clinical experience were 
recruited to label the CFPs. First, they were asked to exclude the 
images with poor quality. The criteria include (a) optic disc or macula 
was not fully visible and (b) blurred images due to refractive media. 
A fraction of the CFPs (7.1%) was excluded due to poor quality. Sec-
ond, the graders were asked to assign glaucoma or nonglaucoma 
labels to each CFP. Third, each glaucomatous eye with longitudinal 
follow-up data was further analyzed to determine whether there was 
a progression based on the visual field reports during follow-up vis-
its. Visual fields with fixation loss lower than 20%, a false positive 
rate lower than 15%, and a false negative rate lower than 33% were 
included. Each CFP or visual field report was evaluated by 3 ophthal-
mologists independently and the ground truths were determined by 
the consensus of 3 ophthalmologists.

Criteria of glaucoma diagnosis and progression
Glaucoma was diagnosed using the criteria in previous popula-
tion-based studies (20–22). Glaucomatous optic neuropathy was 
defined as the presence of vertical cup-to-disc ratio of 0.7 or greater, 
RNFL defect, optic disc rim width of 0.1-disc diameter or smaller, 
and/or disc hemorrhage. An eye would be labeled as possible glauco-
ma if one of the above criteria was met.

Glaucoma progression was determined based on the changes 
in the visual fields (23). The Humphrey Field Analyzer was used to 
perform all the visual field tests in 24-2 standard mode (Carl Zeiss 
Meditec). At least 3 visual field locations worse than baseline at the 
5% level in 2 consecutive reliable visual fields, or at least 3 visual field 
locations worse than baseline at the 5% level in 2 consecutive reliable 
visual fields, were considered as progression (23). The time of progres-
sion was defined as the time from baseline to the first visual field that 
confirmed progression. Three ophthalmologists examined each visual 
field report separately to determine progression.

Manual segmentation of anatomical structures
We randomly selected 2000 CFPs for manual segmentations of ana-
tomical structures, including optic disc, optic cup, macula, and blood 
vessels. Two ophthalmologists independently annotated the CFPs 
at pixel level, and the final standard reference of annotations was 
determined by the mean of these 2 independent annotations.

Figure 3. Area under the receiver operating characteristic (AUROC) curves of the AI model for prediction of glaucoma progression. (A–C) Predictive 
performance of the AI model in the validation set (n = 422), external test set 1 (n = 337), and external test set 2 (n = 513).
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and anatomical attention–based images are fed into 2 convolutional 
neural networks, namely ConvNet-based models 1 and 2. Each Con-
vNet-based model consists of a feature extraction network and a classi-
fication network module. The feature extraction network consists of 3 
convolutional blocks, which are composed of a Convolution2D layer, a 
Batch Normalization layer, a LeakReLu layer, and a MaxPooling2D lay-
er in series, while the classification network consists of 2 Dense layers 
in series. The GlobalMaxPooling2D layer is used to connect the feature 
extraction network and the classification network module. The final 
prediction is obtained by integrating the 2 ConvNet-based models in 
a linear combination. In the final step, PredictNet will generate a prob-
ability (P) of glaucoma incidence or progression between 0 and 1. P 
was transformed into a z score with the formula z score = (P – P′)/(stan-
dard deviation of P), where P′ is the mean P of each data set. Then, we 
obtained the final standard score by adding 1 to all the z scores, because 
some of the z scores were below zero.

The models were developed with Python (version 3.8.6; https://
www.python.org/) and TensorFlow (version 2.1.0; https://github.com/
tensorflow/tensorflow). The curves of training loss for each model 
were generated using TensorBoard (https://github.com/tensorflow/
tensorboard) and are presented in Supplemental Figure 12. The key 
hyperparameters and average running time of each model are summa-
rized in Supplemental Table 5.

Interpretation of the AI model
Grad-CAM (39) was used to highlight the class-discriminative region in 
the images for predicting the decision of interest. We created heatmaps 

Model design of glaucoma prediction and ocular disease diagnosis
First, we developed an AI model, DiagnoseNet, to identify CFPs as 
glaucoma or nonglaucoma. DiagnoseNet is a pipeline composed of 
modules for segmentation and diagnosis. The fundus images were 
first semantically segmented in the segmentation module using 
U-Net (38) to produce 4 anatomical structures: retinal vessels, mac-
ula, optic cup, and optic disk. The segmentation data were then 
merged into a 1-channel by element-wise bit or operation over the 4 
anatomical structure–focusing attention layers, which took the place 
of the CFPs’ blue channel to form a new CFP image. The diagnostic 
module’s backbone is EfficientNet-B0, with the last fully connected 
layer replaced by a Dense layer of 2 output units initialized with a 
random value, and the other layers’ initial weights determined from 
ImageNet’s pretrained settings (Figure 1B).

Then, we created a pipeline, PredictNet, to predict glaucoma onset 
and progression. PredictNet preprocesses and analyzes the CFP data 
(Supplemental Figure 1). First, in the preprocessing stage, the original 
fundus images are enhanced with contrast-limited adaptive histogram 
equalization (CLAHE) and color normalization (NORM). Important 
retinal structures, including optic disc, optic cup, macula, and blood 
vessels are semantically segmented with trained U-Net (38). The mul-
tiple-channel anatomical masks generated by U-Net are merged into 
a 1-channel mask and then fused with the green and red channels of 
CLAHE images to form CLAHE Normalization Attention–based imag-
es. NORM images are fused with the green and red channels of the 
original images to form anatomical attention–based images. Second, 
in analyzing stage, CLAHE Normalization Attention–based images 

Figure 4. Saliency maps of the deep-learning models. Visual explanation of the key regions the models used for diagnostic predictions. (A and B) The 
heatmaps of the typical samples of eyes with (A) and without (B) glaucoma development. (C and D) The heatmaps of the typical samples of eyes with 
(C) and without (D) glaucoma progression. In both tasks, the saliency maps suggest that the AI model focused on the optic disc rim and areas along the 
superior and inferior vascular arcades, which are consistent with the clinical approach whereby nerve fiber loss at the superior or inferior disc rim provides 
key diagnostic clues. AI-based predictions also appear to involve the retinal arterioles and venules.
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Code availability
The deep-learning models were developed and deployed using stan-
dard model libraries and the TensorFlow framework (version 2.3.0). 
Custom codes were specific to our development environment and 
used primarily for data input/output and parallelization across com-
puters and graphics processors. The codes are available for research 
purposes from the corresponding authors on reasonable request.
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The demographic characteristics of study participants are presented 
as mean ± SD for continuous data, and frequency (percentage) for 
categorical variables. AUROCs with 95% confidence interval (CI), 
sensitivity, and specificity were implemented to assess the perfor-
mance of the algorithms. Sensitivity and specificity were determined 
by the selected thresholds in the validation sets. The survival curves 
were constructed for different risk groups, and the significance 
of differences between groups was tested by log-rank tests. The 
predictive performance of the AI model and metadata model was 
performed using DeLong’s test. All the hypotheses tested were 2- 
sided, and a P value of less than 0.05 was considered significant. All 
statistical analyses were performed using R (version 4.0; https://
www.r-project.org/).
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