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Supplementary Figure 1. scRNA-seq analysis of 13 OSCC, 3 OLK and 8 adjacent normal samples 3 
from 17 patients. 4 
(A) The proportions of CD45+ (immune) and CD45- (non-immune) cells among live cells based on FACS 5 
of the tumor tissue cell suspension after dissociation with a tumor dissociation kit. (B) UMAP colored to 6 
indicate normal, OLK and OSCC tissues. (C) UMAP plots showing the cellular compositions of normal, 7 
OLK and OSCC tissues. (D) UMAP plot showing the distribution of all cells in all 24 samples. Pt, patients; 8 
Ca, OSCC tissue; OLK, leukoplakia; N, adjacent normal tissue. (E) Bar plot showing the distributions 9 
of major cell types among 24 samples. (F) Cells were colored according to the single-cell reagent kit. 10 
SC3E indicates the single-cell 3′ reagent kit, and SC5E indicates the single-cell 5′ reagent kit. (G) Pie 11 
charts showing the percentages of each major immune cell type among the total immune cells in normal, 12 
OLK and OSCC tissues. 13 



 14 

Supplementary Figure 2. Cellular and functional characterization of CD4+ and CD8+ T cells. 15 
(A) UMAP plot showing the distribution of the main lineages in T cells. The color represents the T cell 16 
lineage. (B) Heatmap showing the top 10 upregulated genes in each subset of T cells. Rows represent 17 
genes and columns represent cells. In the heatmap, red indicates high expression, while blue indicates 18 
low expression. Each color in the bar above the heatmap represents a T cell subset. (C) UMAP plot 19 
showing the expression levels of specifically expressed genes in CD4+ T cell subsets. The red color 20 
indicates the higher expression level. Min indicates the minimum expression level, and Max indicates 21 
the maximum expression level. (D) UMAP plot showing the expression levels of specifically expressed 22 
genes in CD8+ T cell subsets. (E) Bar plots showing the percentages of TCR expanded clonotypes in the 23 
CD8+ T cell subsets. (F) Bar plots showing the percentages of 6 CD8+ T cell subsets among the total 24 
CD8+ T cells in adjacent normal, OLK and OSCC tissues. (G) Violin plot showing the scores of the 25 
precursor and terminal exhaustion modules in terminal exhausted CD8+ T cells (CD8-C5), precursor 26 
exhausted CD8+ T cells (CD8-C8) and transitory exhausted CD8+ T cells (CD8-C9). Each color 27 
represents a cell type. The center line of the box represents the median value, the upper and lower limits 28 
of the box represent the 25th and 75th percentile points. (F and G) Kruskal-Wallis test followed by 29 
Bonferroni’s multiple-comparison test; *, P < 0.05; **, P < 0.01; ****, P < 0.0001; ns, no significant 30 
difference. 31 



 32 

Supplementary Figure 3. Percentages of myeloid cell subsets and characterization of neutrophil 33 
subsets. 34 
(A) Bar plots showing the percentage of myeloid cell subsets among the total myeloid cells in adjacent 35 
normal, OLK and OSCC tissues. Kruskal-Wallis test followed by Bonferroni’s multiple-comparison test; 36 
*, P < 0.05; **, P < 0.01; ****, P < 0.0001; ns, no significant difference. (B) UMAP plot showing the 37 
expression levels of VEGFA in neutrophil subsets. (C) Bar plot showing the results of the enrichment 38 
analysis of the set of genes highly expressed in Neutro-C4 in the Reactome database, with the horizontal 39 
coordinate representing -log10 (P-value). (D) UMAP plot showing the expression levels of CD274 in 40 
neutrophil subsets. (E) Bar plot showing the results of the enrichment analysis of the set of genes highly 41 



expressed in Neutro-C1-C3 in the Reactome database, with the horizontal coordinate representing -log10 42 
(P-value). (C and E) Hypergeometric distribution; P < 0.01. 43 
  44 



 45 

Supplementary Figure 4. Characterization and pseudotime trajectory of stromal cell subsets.  46 
(A) UMAP plot showing the distribution of major cell types among all stromal cells. Each color 47 
represents a major cell type. (B) Violin plot showing the expression levels of cell type markers in each 48 
major stromal cell subset. Each color represents a gene. (C) Stacked histogram showing the percentages 49 
of stromal cell subsets among total stromal cells of adjacent normal, OLK and OSCC tissues. (D) 50 
Heatmap showing the expression levels of the top 10 highly expressed marker genes in each subset of 51 



ADSC-Fibro-MF cells. Rows represent genes and columns represent cells; each color of the bar above 52 
the heatmap represents a cell subset. Red indicates high expression, and blue indicates low expression. 53 
(E) UMAP plot showing the expression levels of TDO2 in all cells of adjacent normal, OLK and OSCC 54 
tissues (upper) and the expression levels of KRT5, KRT14 and TDO2 in epithelial cells of all tissues 55 
(lower). (F) The putative differentiation directions inferred from the pseudotime analysis among ADSC-56 
Fibro-MF cells (upper left). Darker shading indicates a lower pseudotime value. The branch distribution 57 
of each subset is shown. (G) The expression levels of ACTA2, CXCL10, CXCL9 and TDO2 from the 58 
results of the pseudotime analysis of ADSC-Fibro-MF cells. Each color represents a cell subset.  59 
  60 



 61 
Supplementary Figure 5. Relative proportions of ADSC-Fibro-MF cells and whole-side scan image 62 
of a mIHC slide. 63 
(A) Bar plot showing the distribution of ADSC-Fibro-MF cell subsets among 24 samples. Pt, patients; 64 
Ca, OSCC tissue; OLK, leukoplakia; N, adjacent normal tissue. (B) Scatter plot showing the correlation 65 
analysis between the relative abundance of MF-C1-TDO2 myofibroblasts and some T cell subsets. Each 66 
point color represents a tissue type. (C) A whole-side scan image of a multiplex immunohistochemical 67 
staining (mIHC) slide of Pt10_Ca on the Vectra platform. We captured 4 fields per slide, resulting in a 68 
total of 40 fields from 10 whole-side scan images for further quantitative analysis. A white box represents 69 
a 10× high-powered field. Scale bar: 1 mm. 70 
  71 



 72 
Supplementary Figure 6. MCT4 is specifically expressed on TDO2+ myofibroblasts. 73 
(A and B) UMAP plot showing the expression levels of (A) TDO2 and (B) SLC16A3 (encoding MCT4) 74 
in ADSC-Fibro-MF cells. (C) RT-qPCR results showing the relative expression level of TDO2 in MCT4+ 75 
myofibroblasts compared to the MCT4- myofibroblasts. (D) Immunofluorescence imaging results 76 
showing the spatial localization of TDO2 (red) and MCT4 (green) in myofibroblasts isolated from OSCC; 77 
scale bar (upper): 50 μm; scale bar (lower): 10 μm. (E) RT-qPCR results showing the relative expression 78 
level of CXCL9/10/11 in MCT4+ myofibroblasts compared to the MCT4- myofibroblasts. (F) The gating 79 
strategy for flow cytometry of CD4+ and CD8+ T cells. (G and H) Dot plot showing the interaction 80 
intensity between myofibroblasts (MF-C2-ELN and MF-C1-TDO2) and macrophages according to 81 
CellPhoneDB analysis. The dot color represents the interaction score and the dot size represents the -log 82 
(P-value). (G) The interaction of ligand of myofibroblasts with receptor of macrophages. (H) The 83 
interaction of ligand of macrophages with receptor of myofibroblasts. 84 



 85 
Supplementary Figure 7. Inhibition of TDO2 attenuated the inhibitory states of T cells in draining 86 
lymph nodes (dLN) in the 4NQO-induced carcinogenic murine mode.  87 
(A-C) Representative flow cytometry images (left) and statistical results (right) showing the proportions 88 
of (A) Foxp3+, (B) PD-1+ and (C) IFN-γ+ CD4+ T cells from dLN samples from the TDO2i and untreated 89 
groups. (D and E) Representative flow cytometry images (left) and statistical results (right) showing the 90 
proportions of (D) PD-1+ and (E) IFN-γ+ CD8+ T cells from dLN samples from the TDO2i and untreated 91 
groups. (F) Representative flow cytometry images (left) and statistical results (right) showing the median 92 
fluorescence intensity (MFI) of GZMB in CD4+ (upper) and CD8+ (lower) T cells from dLN samples 93 
from the TDO2i and untreated groups. (G) Representative flow cytometry images (left) and statistical 94 
results (right) showing the MFI of AhR between CD4+ (upper) and CD8+ (lower) T cells from the TDO2i 95 
and untreated groups. (A-G) *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, no significant difference; 2-96 
tailed Student’s t test. 97 
  98 



Supplemental Methods 99 

Tissue dissociation and single-cell suspensions  100 

Fresh samples were trimmed, washed with Dulbecco’s phosphate-buffered saline (D-101 

PBS; ThermoFisher Scientific, Waltham, MA), minced, and dissociated using a Human 102 

Tumor Dissociation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) according to 103 

the manufacturer guidelines. Cell suspensions were filtered by a 70 mm nylon mesh 104 

filter (ThermoFisher Scientific), and dissociated cells were pelleted and lysed with BD 105 

Pharm Lyse (BD Biosciences, Franklin Lakes, NJ). Samples were then stained with 106 

Zombie Fixable Viability Dye (Biolegend, San Diego, CA) at a 1:100 dilution for 15 107 

minutes at room temperature (RT), and washed with PBS with 2% fetal bovine serum 108 

(FBS; ThermoFisher Scientific). Cells were then stained for sorting by incubation with 109 

FITC-conjugated mouse anti-human CD45 (clone: HI30; Biolegend) at a 1:100 dilution 110 

for 30 minutes at 4 ℃, spun down at 500 × g for 5 minutes, washed with cold PBS, and 111 

re-suspended with PBS for single-cell sorting. Live cells were sorted from 100 μm flow 112 

cytometry nozzle by BD FACS AriaFusion (BD Biosciences) and the proportions of 113 

CD45+ cells were recorded. Single cells were collected in pure FBS. Then all the cells 114 

were processed in less than one hour after sorting. Sorted cells were washed and re-115 

suspended in cold PBS (containing 0.04% BSA) at 7–12 × 105 cells/mL before loading 116 

into a Chromium Single Cell Controller. 117 

Preparation of scRNA-seq libraries and sequencing 118 

Single cell transcriptome sequencing was performed using the droplet-based 10X 119 

Genomics platform. Briefly, the single cell suspension was added to each channel in a 120 

Chromium Single Cell Controller, and cells were captured using Gel Bead Kit V3 or 121 



V2 reagents based on microfluidic technology. Gel beads in emulsion (GEM) were 122 

encapsulated in oil droplets, with each GEM containing a cell, a unique cell barcode, a 123 

unique molecular identifier (UMI) and a reverse transcription reaction mixture (RT-124 

qPCR). The captured cells were lysed in GEM. The RNA released from the cells was 125 

processed by reverse transcription in a single GEM with the addition of a barcode and 126 

UMI, with each cell possessing a unique barcode and each gene in the cell possessing 127 

a unique UMI. Subsequent reverse transcription was performed at 53 °C for 45 min, 128 

followed by 5 min at 85 °C, and then the temperature was maintained at 4 °C. The 129 

resulting cDNA was amplified and then assessed for quality using an Agilent 4200 130 

according to the manufacturers instructions. For 14 samples, single cell transcriptome 131 

libraries were constructed using Chromium Single Cell 3′ Library kits. For 10 samples, 132 

single cell transcriptome libraries were constructed using 5′ Library kits, and TCR-133 

enriched libraries were generated with aliquots from each of the aforementioned 134 

cDNAs using the Chromium Single Cell V(D)J Enrichment kit. The libraries were 135 

sequenced using the Illumina NovaSeq 6000 sequencing platform.  136 

Raw data processing and quality control of scRNA-seq data 137 

Raw sequencing data from the 10x Genomics platform were converted to fastq format 138 

using ‘CellRanger mkfastq’ (v.4.0.0). Next, scRNA-seq reads were aligned to the 139 

GRCh38 reference genome using ‘CellRanger count’ (v4.0.0). 140 

To analyze the results from the above pipeline using ‘CellRanger’, we used the 141 

Seurat package (v.3.2.2) in R (v.3.6.3) to visualize the scRNA-seq data (1). Our initial 142 

dataset contained 153,035 cells. Stringent data quality control was conducted during 143 



the downstream analysis. Only genes detected in at least 0.1% of cells were retained. 144 

We filtered the cells with the following parameters to exclude outliers: maximum 145 

percentage mito=20%, maximum number of UMIs=60,000, minimum number of 146 

nGene=300, and maximum number of nGene=7,500. Then, double cell scoring was 147 

performed using the R package scDblFinder (v.1.4.0) to remove cells that were 148 

considered to be double cells in each sample (2). 149 

After discarding poor-quality cells, a total of 131,702 cells were retained for 150 

downstream analysis. To normalize the library size effect in each cell, we scaled UMI 151 

counts using scale.factor=10,000. Following log-transformation of the data, other 152 

factors, including “percent.mt” and "nCount_RNA", were corrected for variation 153 

regression using the ScaleData function. To eliminate batch effects, the top 3,000 154 

variable genes were extracted for run fastMNN based on the mutual nearest neighbors 155 

(MNN) method that was included in Seurat (3). We performed PCA using variably 156 

expressed genes under the ‘‘mnn’’ assay mode. The top 30 PCs were used for 157 

subsequent clustering and uniform manifold approximation and projection (UMAP) 158 

visualization. Forty initial clusters were identified with the FindClusters function using 159 

shared nearest neighbor modularity optimization with the clustering resolution set to 160 

1.5.  161 

Cell type annotation 162 

We first searched for the top differential markers for each identified cluster/sub-cluster 163 

using the FindAllMarkers function. The test method used for FindAllMarkers was the 164 

Wilcoxon rank sum test. For each cell type, we used multiple cell-type-165 



specific/enriched marker genes that were previously described in the literature to 166 

determine cellular identity. These include, but were not limited to, CD3E, CD3D and 167 

CD3G for T cells (4); LYZ, CD14 and C1QB for myeloid cells (5); DCN, COL1A1 and 168 

COL3A1 for stromal cells (6); TM4SF1, PECAM1 and VWF for endothelial cells (7); 169 

CXCL8, G0S2 and CSF3R for neutrophils (8); MS4A1, CD79A and CD79B for B cells 170 

(9); ACTA1, MYL1 and MYH2 for myocytes (10); MZB1, DERL3 and IGKC for plasma 171 

cells (11); TPSB2, TPSAB1 and CPA3 for mast cells (12); and KRT14, KRT5 and KRT17 172 

for epithelial cells (10). Cells with expression of double-lineage genes, such as 173 

LYZ+DCN+ cells and LYZ+VWF+ cells, were excluded to eliminate potential doublet 174 

capture bias. We then arranged all of the identified cell types into 10 major cell sets 175 

based on their expression profiles, lineages, and functions. 176 

Subclustering of T cells, myeloid cells, neutrophils and stromal cells 177 

For major cell types (T cells, myeloid cells, neutrophils and stromal cells), cells were 178 

extracted from the integrated dataset first. Next, we performed PCA using the variably 179 

expressed genes for each of the major cell type objects under the ‘‘mnn’’ assay mode. 180 

The top 30 PCs were used for subsequent clustering and UMAP visualization. The 181 

FindClusters function of the R package Seurat was utilized with suitable resolution to 182 

identify sub-clusters within major cell types. For T cells, we removed the low quality 183 

clusters again, as their majority of cells having greater than 15% mitochondrial RNA, 184 

under 1,000 detected transcripts, or under 400 unique genes. 185 

Scored cell state signature 186 

Precursor exhausted and terminal exhausted modules of CD8+ T cells were scored using 187 



the AddModuleScore function of the R package Seurat. The precursor exhausted and 188 

terminal exhausted signatures were derived from previous studies (13). The precursor 189 

exhausted signature consisted of the genes COLQ, OAF, F2RL1, GZMM, AQP3, 190 

GALNT14, SLC2A6, FAM81A, SAMD3, P2RX7, SH3BP5, TBC1D4, SSPO, IL18, 191 

LRIG1, TESPA1, SH2B3, FAM160A1, S1PR5, KLF3, CD83, XCL1, CXXC5, 192 

TNFRSF13B, ST8SIA1, SELL, DHRS3, DTX1, CD40LG, KCNMB1, WNT10A, 193 

SOSTDC1, SYNPO, TREML2, LIF, S1PR1, TNFSF8, TNFSF14, ART3, MAPK11, 194 

HECTD2, TNFRSF25, CD22, SLAMF6, ID3, DAPL1, CXCR5, AFF3, TCF7, and CCR6. 195 

The terminal exhausted signature consisted of the genes DSC2, RASD2, LTF, CCR1, 196 

HTRA3, LGI2, MGAT3, GLIS1, FCRL6, HAVCR2, CD244, RASSF6, GZMB, FILIP1, 197 

CDKN2A, ADAM8, CDH17, FCER1G, EPDR1, CHL1, IL1R2, CCL3, SPP1, ACOXL, 198 

ENTPD1, NEB, LY6G5B, UPP1, AOAH, MREG, P2RY14, ADORA3, EPAS1, PLXND1, 199 

CDKN1A, NPNT, FGL2, ASB2, PPP1R3B, IL10, GPR35, ADRB1, LAT2, RASL12, 200 

SLC13A3, SLC16A10, PRF1, MYO10, CD14, and CDKN2B. For the ADSC-Fibro-MF 201 

subsets, we scored AhR activation module, which consisted of the genes IDO1, IDO2, 202 

TDO2, IL4I1, KYNU, and AHR (14, 15). The module scores were calculated using the 203 

default parameters. The R package ggplot2 (v3.3.2) was used to visualize the results. 204 

Inferring the differentiation trajectories of CD4+ and CD8+ T cells using scVelo 205 

To infer the differentiation trajectories of CD4+ and CD8+ T cells, we used scVelo 206 

(v0.2.2) to analyze the RNA velocity in individual cells (16). scVelo performs 207 

calculations of transcriptional dynamics based on the ratio of “unspliced” pre-mRNA 208 

and “spliced” mRNA of each gene in each cell to obtain a gene expression change rate 209 



(17). Application of this method allows researchers to estimate in which direction the 210 

gene expression profile of a given cell might switch, inferring possible developmental 211 

relationships between different cell types in a tissue sample. 212 

Briefly, we used the Python module ‘velocyto run10x’ (v0.17.17) to analyze the 213 

BAM files (the output files from ‘CellRanger count’) to obtain loom files, and the loom 214 

files of all samples were merged by the Python module loompy (v3.0.6). Next, we 215 

integrated Seurat meta-data with the loom files. We used the Python module anndata 216 

(v0.7.4) to import the loom files and Seurat meta-data. We extracted CD4+ T cells and 217 

CD8+ T cells for the RNA velocity analysis. The UMAP coordinates of CD4+ and CD8+ 218 

T cells were mapped to the anndata object, and RNA velocity analysis was performed 219 

in “stochastics” mode using Python module scVelo. Finally, the results of the RNA 220 

velocity analysis were visualized using the matplotlib (v3.3.1) module. The direction 221 

of the arrow indicated the possible future differentiation direction of the cells. 222 

TCR analysis 223 

Single-cell V(D)J sequencing data were aligned to the vdj-GRCh38 reference genome 224 

using ‘cellranger vdj’ (v4.0.0). The cellranger vdj pipeline performs V(D)J sequence 225 

assembly and paired cell-by-cell clonotype calling. The outputs of cellranger vdj 226 

include the productive nucleotide sequences and translated amino acid sequences of the 227 

CDR3 region for TCRs (α and β chains). A clonotype was defined as the identical CDR3 228 

sequences of an α-β TCR pair. Cells with the same clonotype were identified as clonal 229 

TCRs. 230 

Cells with the same clonotype ID within a CD4+ or CD8+ T cell subtype were 231 



counted for each sample. The percentage of each expanded clonotype (Pexp) was 232 

calculated as follows: 233 

Pexp=∑ 𝑛𝑛𝑖𝑖𝑚𝑚
𝑖𝑖=1
𝑁𝑁

∗ 100%, in which 234 

m: clonotype ID with attributed cell number ≥ 2;  235 

ni: attributed cell number for clonotype i;  236 

N: total cell number in a subtype for a sample.  237 

The mean Pexp value for each subtype from adjacent normal, OLK and OSCC 238 

samples was calculated and used for heatmap plotting. 239 

Cell-cell interaction analysis 240 

We analyzed the cell-cell interactions of myeloid cell subsets with CD4+ and CD8+ T 241 

cells in adjacent normal, OLK and OSCC tissues, as well as the cell-cell interactions of 242 

myofibroblast subsets with CD4+ T cells, CD8+ T cells and macrophages in OSCC 243 

tissues, using the Python module cellPhonedb (v.2.0) (18). The Seurat counts file and 244 

cell type annotations were input into ‘cellphonedb method statistical_analysis’. The 245 

average expression values of a receptor by a cell type and a ligand by another cell type 246 

were considered to be the ligand-receptor interaction intensity between the 2 cell types. 247 

A null distribution of the mean of the average ligand and receptor expression in the 248 

interacting clusters was generated by randomly permuting the cluster labels of all cells 249 

with 1000 iterations. The P value for the likelihood of cell-type specificity of a given 250 

ligand-receptor complex was calculated on the basis of the proportion of the means that 251 

were as high as or higher than the actual mean. The significance threshold of cell-cell 252 

interactions was P value < 0.05. We used the R ggplot2 package (v3.3.2) to visualized 253 



the results. 254 

Functional enrichment of differentially expressed genes (DEG) 255 

The enrichment analysis of the DEGs among the neutrophil subsets was performed 256 

using the Metascape webtool (www.metascape.org) (19). The gene sets used for the 257 

analysis were obtained from the Reactome database. P-values are calculated based on 258 

the accumulative hypergeometric distribution. Terms with a P-value < 0.01 are 259 

collected and grouped into clusters based on their membership similarities. 260 

Gene set variation analysis (GSVA) 261 

The Gene Set Variation Analysis R package (GSVA, v1.40.1) was applied to identify 262 

differentially expressed genes between the 2 myofibroblast subsets (20). Firstly, the 263 

gene set scores per cell were calculated for myofibroblasts by GSVA. Subsequently, the 264 

significantly enriched gene sets between the 2 myofibroblast subsets were identified 265 

and arranged using the R package limma (v3.48.0). The REACTOME gene sets in the 266 

R package msigdbr were used for GSVA analysis. Only significant genes (adjusted P < 267 

0.05) were used for further analysis. 268 

Pseudotime analysis 269 

The putative differentiation trajectories among ADSCs, fibroblasts and myofibroblasts 270 

(ADSC-Fibro-MF subsets) were constructed using the R package Monocle2 (v2.20.0) 271 

(21). Firstly, the top 2000 high variable genes (HVGs) in ADSC-Fibro-MFs were 272 

extracted using the function FindVariableFeatures in Seurat v3 and set as the ordering 273 

genes for ADSC-Fibro-MF subsets. Next, the CellDataSet (CDS) of ADSC-Fibro-MF 274 

subsets was constructed using the ordering genes, and the size factors of each cell were 275 

http://www.metascape.org/


calculated using the estimateSizeFactors and estimateDispersions functions with 276 

default parameters. Next, dimension reduction of the CDS was performed using the 277 

reduceDimension function with the DDRTree method, in which the size factors and 278 

UMI of each cell were normalized by the residualModelFormulaStr algorithm. After 279 

dimensionality reduction, the cells were ordered using the orderCells function with 280 

default parameters.  281 

H&E staining, immunohistochemistry and immunofluorescence  282 

Parts of the dissected murine tongue lesions were harvested and fixed in 10% formalin 283 

for 24 hours, followed by sectioning into 4-μm thick slices. The slices were then stained 284 

with H&E. The TMAs were a series of tumor samples from 142 OSCC patients, among 285 

which one 1.5 mm core of representative region from each tumor sample was selected 286 

by two certified pathologists for the construction of TMAs. The TMAs were 287 

deparaffinized and rehydrated, after which the samples were permeabilized with 0.2% 288 

Triton X-100 and incubated in 3% H2O2 for 10 minutes. Next, antigen retrieval was 289 

performed under high temperature and high pressure for 15 minutes in EDTA buffer. 290 

The TMAs were then incubated with rabbit anti-human TDO2 primary antibodies at 291 

4 °C overnight. After washing the TMAs 3 times with PBS, it was incubated with goat 292 

anti-rabbit secondary antibodies for 1 hour, stained with DAB for 3 minutes, and finally 293 

counterstained with hematoxylin. The images of TMAs were captured and deposited by 294 

an Axio Scan.Z1 side scanner (Zeiss). TDO2 expression on TMAs were quantitated 295 

using H-score. H-scores were quantified following the method previously described 296 

(22). Briefly, the total percentage of TDO2 positive cells and the intensity of the TDO2 297 



staining (1+, 2+, or 3+), where H-score= (%1+ ×1) + (%2+ ×2) + (%3+ ×3). H-scores 298 

range from 0-300, as 0 representing no cell staining with the marker and 300 299 

representing every cell staining with 3+. For the cohort in the TMAs, the OSCC patients 300 

of TMAs (n =142) were classified equally into TDO2-high (H-scores ≥ 86.5; n=71) and 301 

TDO2-low (H-scores < 86.5; n=71) groups based on the median value of H-score. 302 

For immunofluorescence (IF), the samples were incubated with mouse anti-human 303 

α-SMA, rabbit anti-human TDO2 or mouse anti-human MCT4 primary antibodies, 304 

followed by incubation with goat anti-mouse (dyelight 488) or goat anti-rabbit (dyelight 305 

549) secondary antibodies according to the experimental design. The samples were 306 

finally counterstained with DAPI and the results were captured and analyzed by an 307 

FV3000 Confocal Laser Scanning Microscope from Olympus Life Science Solutions. 308 

The staining and analysis results of the H&E, IHC and IF were checked by 2 certified 309 

pathologists. 310 

Multiplex immunohistochemistry 311 

For mIHC staining, 4-μm thick FFPE sections of OSCC tissues were stained with the 312 

Opal 7-colour fluorescent IHC Kit (PerkinElmer, Massachusetts, USA). First, 313 

deparaffinization, rehydration and permeabilization were performed on all slides, 314 

followed by 20 minutes of 10% formalin fixation and 15 minutes of Tris-EDTA antigen 315 

retrieval under high temperature and high pressure. Afterwards, the slides were 316 

incubated with primary antibodies, secondary-HRP antibodies, and Opal TSA dyes for 317 

16 hours (4 °C), 10 minutes (RT) and 20 minutes (RT), respectively. Subsequent rounds 318 

of staining consisted of antigen retrieval, primary antibodies, secondary-HRP 319 



antibodies, and Opal TSA dyes. The following proteins were detected with Opal 320 

fluorophores: CD8 (opal-690), pan-CK (opal-620), α-SMA (opal-540), TDO2 (opal-321 

520), CD4 (opal-650), Foxp3 (opal-570) PD-1 (opal-570), and TIM3 (opal-650). DAPI 322 

was used for nuclear counterstaining. The slides were finally mounted with antifade 323 

reagent (AR1109, BOSTER, Wuhan, China). TissueFAXS Imaging software (v7.134) 324 

was used to capture the images and identify all markers of interest. Tumor sections from 325 

10 different patients (Pt01_Ca, Pt04_Ca, Pt06_Ca, Pt07_Ca, Pt08_Ca, Pt09_Ca, 326 

Pt10_Ca, Pt12_Ca, Pt13_Ca and Pt14_Ca) were stained. The 4 representative fields of 327 

the whole-slide scan images (n=10) were selected and quantitatively analyzed by 328 

StrataQuest software (TissueGnostics, v7.0.0). For the mIHC staining of murine tumors, 329 

the tumors (4MOSC2) were dissected from C57BL/6 mice and repeated the protocols 330 

above. A total of 7 tumors (4 in untreated group and 3 in TDO2i group) were used for 331 

mIHC staining. The staining protocols were performed as follows: CD8 (opal-690), 332 

pan-CK (opal-620), α-SMA (opal-540), TDO2 (opal-520), CD4 (opal-650), Foxp3 333 

(opal-570), GZMB (opal-520) and TIM3 (opal-570). Three to four representative fields 334 

from the images were selected for further statistical analysis. The staining and analysis 335 

results of the mIHC were also checked by 2 certified pathologists.  336 

Isolation and culture of myofibroblasts from OSCC 337 

To isolate primary myofibroblasts from OSCC, OSCC tissues were immersed in PBS 338 

with an antibiotic and an antimycotic for 10 minutes. The isolation and culture 339 

processes were performed according to previously described protocols (23). In brief, 340 

the peripheral or necrotic tissues were removed and the remaining tissues were minced 341 



into pieces with an average volume of 1–2 mm3 using surgical scissors under sterile 342 

conditions. Tumor pieces were placed in uncoated plastic tissue culture flasks and 343 

allowed to adhere to the bottom for 2–3 minutes. Dulbeccos Modified Eagles Medium 344 

(DMEM) with 10% FBS was added to the flasks, after which they were placed in a 5% 345 

CO2 incubator at 37 °C. The culture medium was replaced the next day and 346 

subsequently changed every 3 days. The myofibroblasts growing from the tumor pieces 347 

adhered to the bottom of each flask. After the myofibroblasts covered more than 80% 348 

of the bottom of each flask, the flasks were trypsinized gently and the myofibroblasts 349 

were transferred to new flasks, in which passaging was continued. The remaining tissue 350 

samples were cultured and isolated repeatedly. All myofibroblasts used in the 351 

experiments were passaged fewer than 6 times.  352 

  353 
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