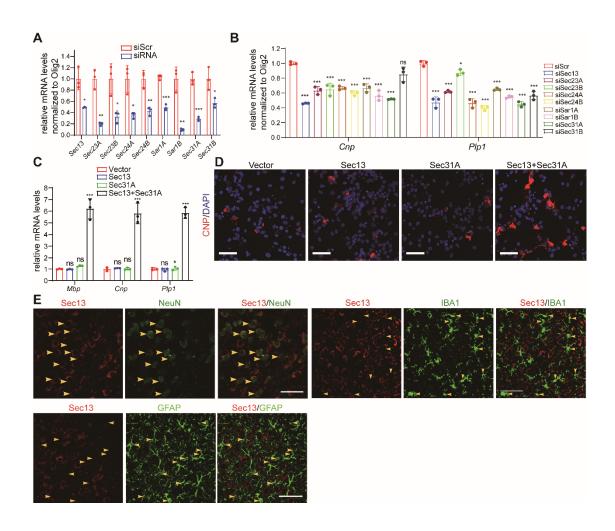
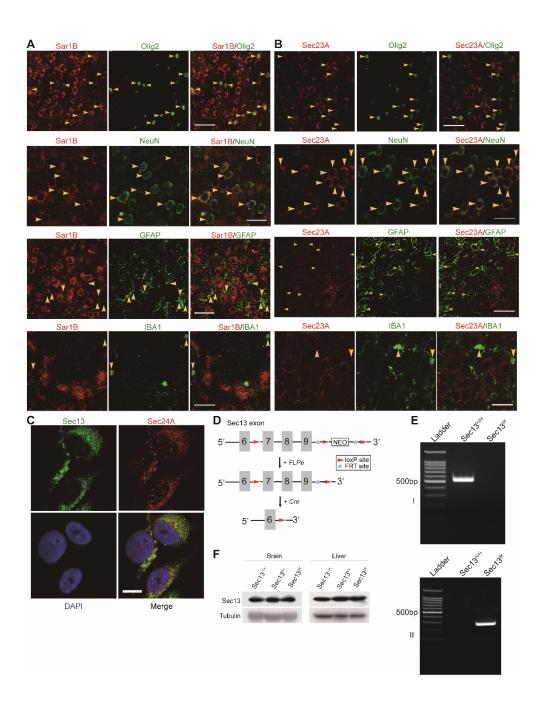
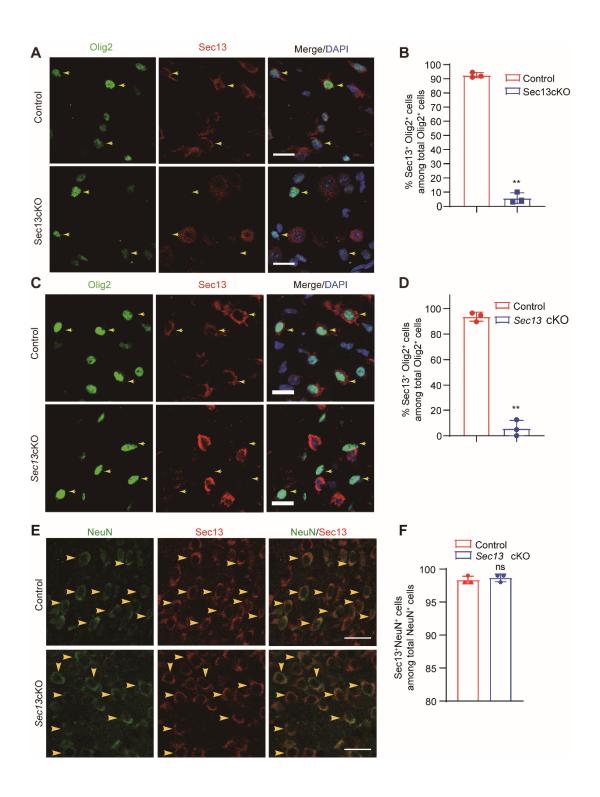

Supplemental Information


Supplemental Figure 1. COPII complex is implicated in remyelination after demyelination.

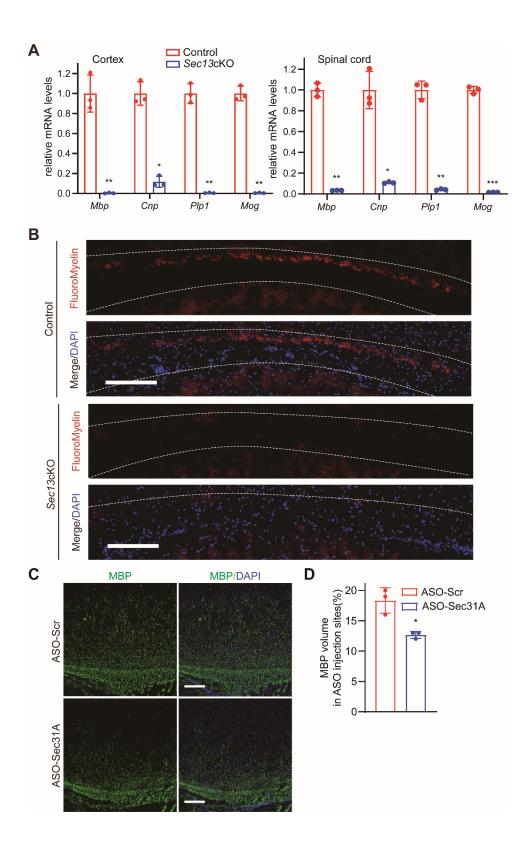
- (A) Immunostaining of Olig2 and Sec13 at 7 dpl in corpus callosum from non-lesion control and EB lesion mice. Boxed area is shown on the right. Arrowheads indicate Olig2 $^+$ cells. Scale bars represent 200 μ m in left and 80 μ m in right.
- (B) Immunostaining of Olig2, Sec31A and IBA1 at 7 dpl in corpus callosum from non-lesion control and EB lesion mice. Arrowheads indicate Olig2 $^+$ cells. Scale bars represent 100 μ m.
- (C) Histograms show fold changes of COPII components measured by densitometry after normalization with GAPDH (n= 3 independent experiments, D, day after differentiation).


Supplemental Figure 2. The number of oligodendrocyte lineage cells appear unaltered after TUDCA treatment.

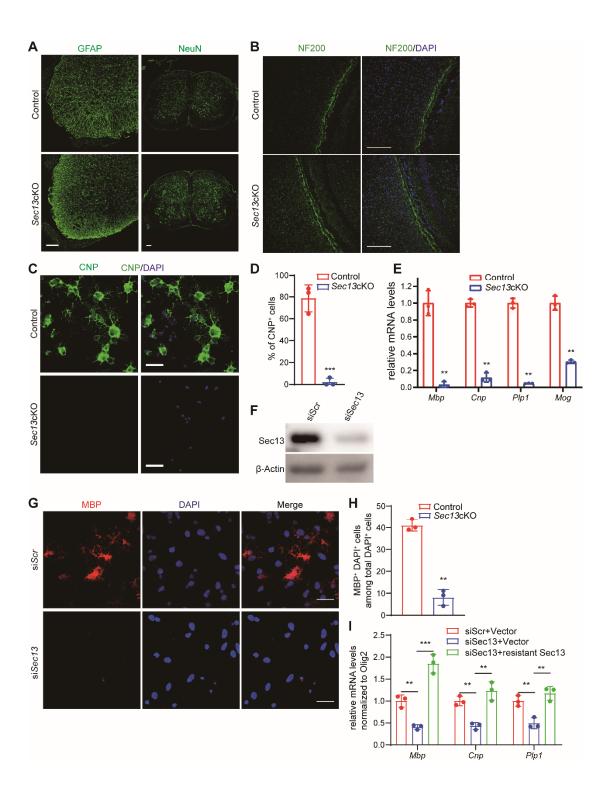
- (A) Immunostaining of PDGFR α in corpus callosum lesions of control and TUDCA-treated mice at 10 dpl. Scale bars represent 200 μm .
- (B) Quantification of PDGFRα⁺ cells in LPC lesion sites (n= 3 animals/treatment).
- (C) Quantification of lesion area in LPC lesion sites of control and TUDCA-treated mice at 10 dpl (n= 3 animals/treatment).
- (D) Immunostaining of Olig2 and IBA1 in corpus callosum lesions of control and TUDCA-treated mice at 10 dpl. Scale bars represent 50 μm .
- (E) Quantification of Olig2⁺ cells in LPC lesion sites of control and TUDCA-treated mice at 10 dpl (n= 3 animals/treatment). Data are represented mean ± SD; *P<0.05, two-tailed unpaired Student's t test.


Supplemental Figure 3. COPII components are necessary for oligodendrocyte differentiation.

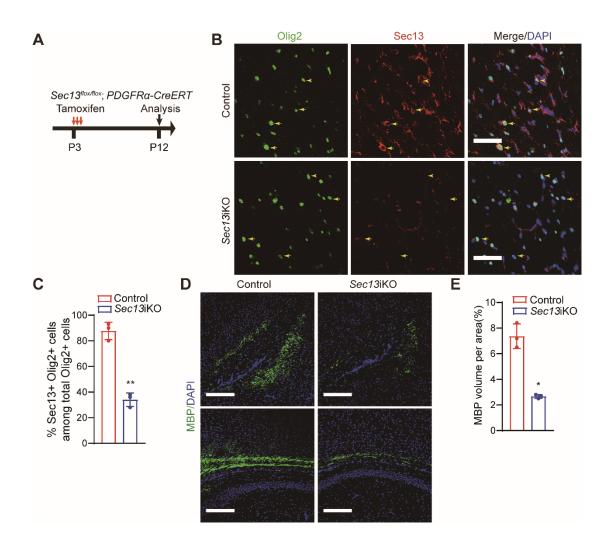
- (A) Real-time PCR analysis of COPII components in primary rat OPCs following treatment with scrambled or indicated siRNAs, respectively (n=3 independent experiments). Data were analyzed by two-tailed unpaired Student's *t* test.
- (B) Real-time PCR analysis of *Cnp* and *Plp1* expression in primary rat OPCs under differentiation conditions following treatments with indicated siRNAs (n=3 independent experiments). Data were analyzed by 1-way ANOVA with Tukey's correction for multiple comparisons.
- (C-D) Real-time PCR analysis of myelination-associated genes (C) and immunostaining of CNP (D) in primary rat OPCs under differentiation conditions following transfection with Sec13 or Sec31A or Sec31A construct (n=3 independent experiments). Scale bars represent 50 μ m. Data were analyzed by 1-way ANOVA with Tukey's correction for multiple comparisons.
- (E) Immunostaining of Sec13, neuron marker NeuN, astrocyte marker GFAP and microglia marker IBA1 in the cortex adjacent to corpus callosum (Sec13/NeuN) or corpus callosum (Sec13/GFAP/IBA1) of mice at P14. Scale bars represent 30 μ m. Data are represented mean ± SD. *P<0.05, **P<0.01, ***P<0.001.


Supplemental Figure 4. COPII components are expressed in neurons and oligodendrocytes, but not in astrocyte and microglia.

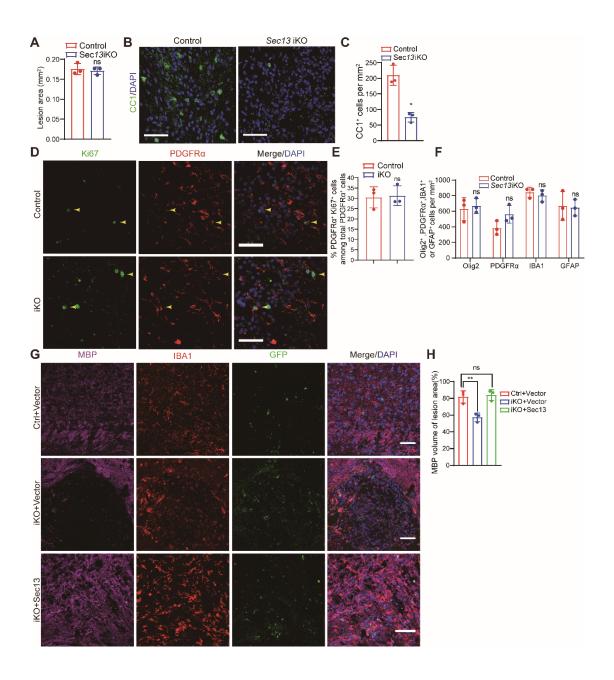
- (A-B) Immunostaining of Sar1B (A) or Sec23A (B) with NeuN, GFAP and IBA1 in the cortex adjacent to corpus callosum (NeuN) or corpus callosum (GFAP/IBA1) of mice at P14. Scale bars represent 30 μ m.
- (C) Co-immunostaining of Sec13 with Sec24A in primary rat differentiating immature oligodendrocytes. Scale bars represent 10 μ m.
- (D) Schematic diagram depicting the strategy used to remove NEO cassette with FLPe-mediated excision and Cre-mediated excision of the floxed *Sec13*. LoxP sites flanking exon 7 and 9 of *Sec13* are indicated.
- (E) Genotyping was performed with primer sets that detect: (I) the allele containing NEO cassette; (II) the allele deleted of NEO cassette.
- (F) Immunoblotting of indicated proteins in brain and liver lysate from adult P120 wild-type, Sec13^{flox/+}, and Sec13^{flox/flox} mice.


Supplemental Figure 5. Sec13 is efficiently ablated in oligodendrocyte lineage.

- (A) Immunostaining of Olig2 and Sec13 in the spinal cord of control and Sec13cKO mice at P14. Arrowheads indicate the Olig2⁺ cells. Scale bars represent 50 μ m.
- (B) Quantification of Sec13⁺ Olig2⁺ cells as a percentage of total Olig2⁺ cells in the spinal cord at P14 (n= 3 control and 3 mutant animals).
- (C) Immunostaining of Olig2 and Sec13 in the corpus callosum of control and Sec13cKO mice at P14. Arrowheads indicate the Olig2+ cells. Scale bars represent 20 μm .
- (D) Quantification of Sec13⁺ Olig2⁺ cells as a percentage of total Olig2⁺ cells in the corpus callosum at P14 (n= 3 control and 3 mutant animal).
- (E) Immunostaining of NeuN and Sec13 in the cortex adjacent to corpus callosum of control and Sec13cKO mice at P14. Arrowheads indicate the NeuN⁺/Sec13⁺ cells. Scale bars represent 200 μ m.
- (F) Quantification of Sec13⁺ NeuN⁺ cells as a percentage of total NeuN⁺ cells in the cortex adjacent to corpus callosum of control and mutant mice at P14 (n= 3 control and 3 mutant animal). Data are represented as mean \pm SD; **P<0.01, two-tailed unpaired Student's t test.


Supplemental Figure 6. COPII components is required for myelination.

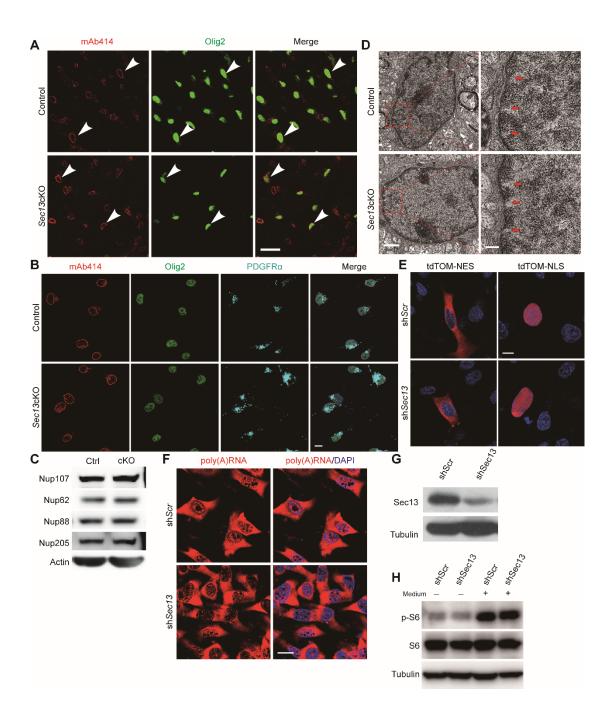
- (A) Real-time PCR analysis of myelination-associated genes in cortex (left) and spinal cord (right) of control and *Sec13*cKO at P14 (n= 3 control and 3 mutant animals).
- (B) Images of corpus callosum stained with FluoroMyelin-red in control and Sec13cKO at P14. Scale bars represent 200 μ m.
- (C) Immunostaining of MBP in corpus callosum and cortex of ASO-Scr and ASO-Sec31A injected mice at P14. Scr=scramble. Scale bars represent 200 μ m.
- (D) Quantification of MBP⁺ volume in ASO-Scr and ASO-Sec31A injected mice (n= 3 animals/treatment). Data are represented as mean \pm SD; *P<0.05, **P<0.01, ***P<0.001, two-tailed unpaired Student's t test.


Supplemental Figure 7. Sec13 deletion in the OL lineage does not affect the development of other neural cell types in the brain, but inhibits OL differentiation.

- (A-B) Immunostaining of astrocyte marker GFAP, neuron marker NeuN in the spinal cords of control and *Sec13*cKO at P14. Scale bars represent 100 μm.
- (B) Immunostaining of NF200 in the corpus callosum of control and Sec13cKO mice at P14. Scale bars represent 200 μ m.
- (C-D) Immunolabeling (C) and quantification (D) of CNP in control and Sec13cKO primary OPCs under differentiation conditions for 96h (n= 3 animals/treatment). Scale bars represent 50 μ m. Data were analyzed two-tailed unpaired Student's t test.
- (E) Real-time PCR analysis of myelination-associated genes in control and *Sec13*cKO primary OPCs under differentiation conditions (n= 3 independent experiments). Data were analyzed two-tailed unpaired Student's *t* test.
- (F) Immunoblotting validation of knockdoown efficiency of Sec13 in primary rat OPCs treated with scrambled or *Sec13* siRNAs.
- (G-H) Immunolabeling (G) and quantification (H) of MBP in primary rat OPCs under differentiation conditions for 72hours following treatments with scrambled or Sec13 siRNAs (n= 3 independent experiments). Scale bars represent 25 μ m. SCR, scrambled. (I) Real-time PCR analysis of myelination-associated genes in primary rat OPCs under differentiation conditions for 48hours following treatments with scrambled or Sec13 siRNAs with control vector or vectors overexpressing resistant Sec13 (n= 3 independent experiments. Data were analyzed by 1-way ANOVA with Tukey's correction for multiple comparisons. Data are represented as mean \pm SD; *P<0.05, *P<0.01, **P<0.001.

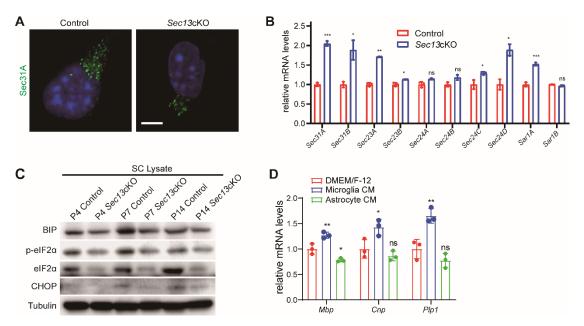
Supplemental Figure 8. Sec13 is required for myelination in CNS.

- (A) Diagram showing tamoxifen administration to induce Sec13 deletion.
- (B) Immunostaining of Olig2 and Sec13 in the corpus callosum of control and Sec13iKO mice at P12. Scale bars represent 50 μ m.
- (C) Quantification of Sec13⁺Olig2⁺ cells as a percentage of total Olig2⁺ cells in the corpus callosum of control and *Sec13*iKO mice at P12 (n= 3 control and 3 mutant animals).
- (D-E) Immunostaining (D) and quantification (E) of MBP in the corpus callosum of control and Sec13iKO mice at P12 (n= 3 control and 3 mutant animals). Scale bars represent 200 μ m. Data are represented mean \pm SD; *P<0.05, **P<0.01, two-tailed unpaired Student's t test.

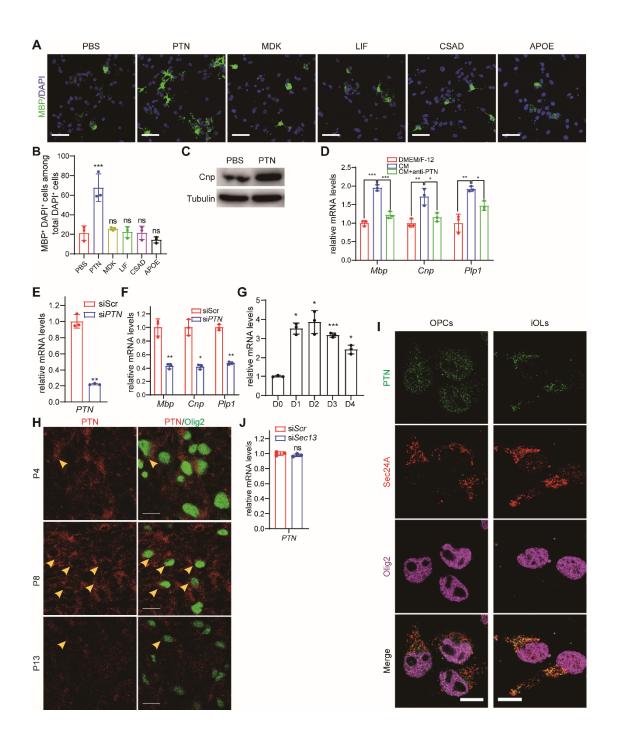


Supplemental Figure 9. Sec13 is critical for adult remyelination after demyelination.

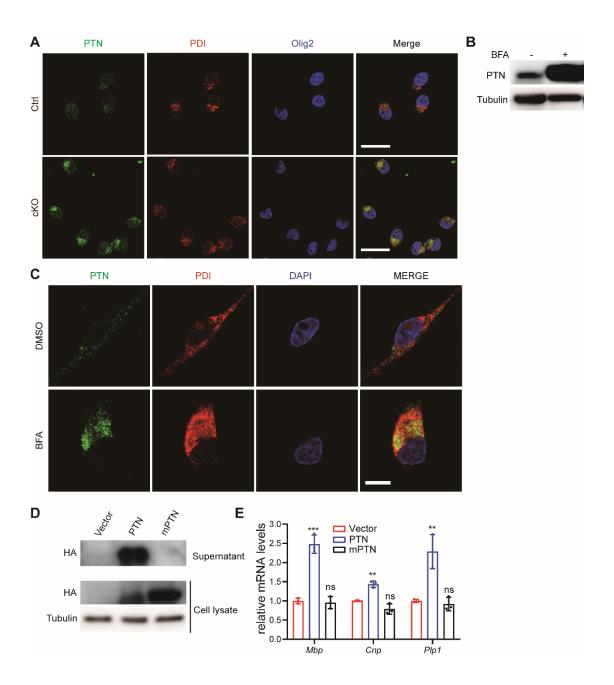
- (A) Quantification of lesion area in corpus callosum lesions of control and *Sec13*iKO mice at 14 dpl (n= 3 control and 3 mutant animals). Data were analyzed two-tailed unpaired Student's *t* test.
- (B and C) Immunostaining (B) and quantification (C) of CC1 $^+$ cells in corpus callosum lesions of control and Sec13iKO mice at 14 dpl (n= 3 control and 3 mutant animals). Scale bars represent 50 μ m. Data were analyzed two-tailed unpaired Student's t test. (D) Immunostaining of Ki67 and PDGFR α in corpus callosum lesions of control and Sec13 iKO mice at 14 dpl. Arrowheads indicate the Ki67 $^+$ PDGFR α $^+$ cells. Scale bars
- (E) Quantification of PDGFR α^+ Ki67⁺ cells as a percentage of total PDGFR α^+ cells in the corpus callosum lesions of control and *Sec13* iKO mice at 14 dpl (n= 3 control and 3 mutant animals). Data were analyzed two-tailed unpaired Student's t test.


represent 50 µm.

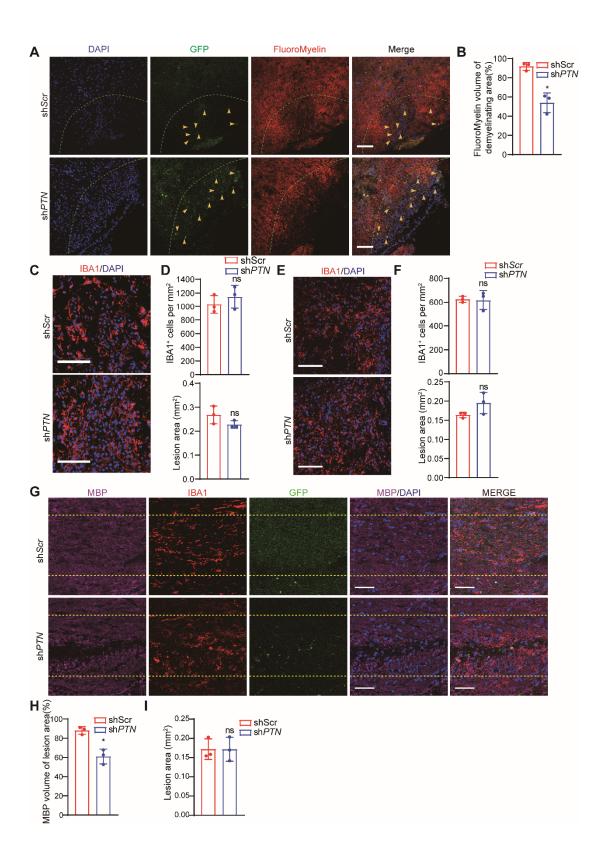
- (F) Quantification of Olig2⁺, PDGFR α ⁺, IBA1⁺, and GFAP⁺ cells in the corpus callosum lesions of control and *Sec13*iKO at 14 dpl (n= 3 control and 3 mutant animals). Data were analyzed two-tailed unpaired Student's *t* test.
- (G) Immunostaining of MBP, IBA1, and GFP in corpus callosum lesions of control and Sec13 iKO mice injected with lentivirus expressing GFP or Sec13-GFP at 14 dpl. Lentivirus and LPC were focal injected at the same time. Scale bars represent 50 μ m. (H) Quantification of MBP+ volume in corpus callosum lesions of control and Sec13 iKO mice injected with lentivirus expressing GFP or Sec13-GFP at 14 dpl (n= 3 animals/treatment). Data were analyzed by 1-way ANOVA with Tukey's correction for multiple comparisons.Data are represented mean \pm SD; *P<0.05, **P<0.01.


Supplemental Figure 10. Ablation of Sec13 does not affect nucleocytoplasmic transport.

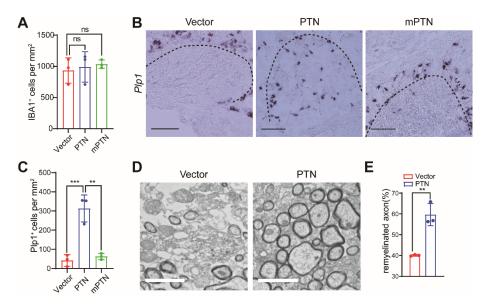
- (A) Immunostaining of mAb414 and Olig2 in spinal cord of P14 control and *Sec13*cKO mice. Arrowheads indicate mAb414⁺/ Olig2⁺ cells. Scale bars represent 25 μm.
- (B) Immunostaining of mAb414, Olig2, and PDGFR α in primary control and *Sec13*cKO OPCs. Scale bars represent 10 μ m.
- (C) Immunoblotting of indicated proteins in the spinal cords lysate of control and Sec13cKO at P7. Ctrl: control; cKO: Sec13cKO.
- (D) Electron microscopy images of oligodendrocytes from control and *Sec13*cKO optic nerves. Boxed image is shown in the right. Arrows indicate NPCs. Scale bars represent 1 μ m in left panel and 0.2 μ m in right panel.
- (E) Immunofluorescence of tdTomato-NES and tdTomato-NLS signals in Oli-neu cells transduced with scrambled or *Sec13* shRNA. NES, nuclear export signal; NLS, nuclear localization signal. Nuclei are stained with DAPI. Scale bars represent 10 μm.
- (F) Oligo-dT *In situ* hybridization followed by fluorescence microscopy in Oli-neu cells transduced with scrambled or Sec13 shRNA. Nuclei are stained with DAPI. Scale bars represent 20 μ m.
- (G) Immunoblotting validation of knockdown efficiency of Sec13 in Oli-neu cells. shSCR, scrambled shRNA; shSec13, Sec13 shRNA.
- (H) Immunoblotting of indicated proteins in Oli-neu cells transduced with scrambled or *Sec13* shRNA following amino acid-induced activation of mTORC1.


Supplemental Figure 11. Loss of Sec13 affect other COPII components.

- (A) Immunostaining of Sec31A in control and Sec13cKO primary OPCs. Scale bars represent 5 μ m.
- (B) Real-time PCR analysis of COPII components in control and *Sec13*cKO primary OPCs (n=3 independent experiments). Data were analyzed by two-tailed unpaired Student's *t* test.
- (C) Immunoblotting of indicated proteins in spinal cord lysate of control and *Sec13*cKO at P4, P7, and P14.
- (D) Real-time PCR analysis of myelination-associated genes in primary rat OPCs under differentiation conditions following treatments with DMEM/F-12 or microglia CM or astrocyte CM (n=3 independent experiments). Data were analyzed by 1-way ANOVA with Tukey's correction for multiple comparisons. Data are represented mean \pm SD; *P<0.05, **P<0.01, ***P<0.001.


Supplemental Figure 12. PTN promotes OPC differentiation.

- (A-B) Immunolabeling (A) and quantification (B) of MBP in primary rat OPCs under differentiation conditions without T3 for 96 hours following treatments with indicated recombinant proteins (n= 3 independent experiments). Scale bars represent 50 μ m.
- (C) Immunoblotting of indicated proteins in primary rat OPCs treated with recombinant PTN.
- (D) Real-time PCR analysis of myelination-associated genes in primary rat OPCs under differentiation conditions following treatments with DMEM/F-12, or CM, or CM depleted of PTN via immunoprecipitation with anti-PTN antibody (n= 3 independent experiments).
- (E) Real-time PCR analysis of *PTN* in primary rat OPCs treated with scrambled or *PTN* siRNAs (n=3 independent experiments).
- (F) Real-time PCR analysis of myelination-associated genes in primary rat OPCs under differentiation conditions following treatment with scrambled or *PTN* siRNAs (n=3 independent experiments).
- (G) Real-time PCR analysis of *PTN* in primary rat OPCs and differentiating oligodendrocytes after T3 treatment. D, day (n=3 independent experiments).
- (H) Immunostaining of PTN with Olig2 in corpus callosum of wild-type mice at P4, P8, and P13. Scale bars represent 30 μm .
- (I) Immunostaining of PTN with Olig2 and Sec24A in primary rat OPCs (left) or differentiating immature oligodendrocytes (iOLs, right). Scale bars represent 10 μm.
- (J) Real-time PCR analysis of *PTN* in primary rat OPCs treated with scrambled or *Sec13* siRNAs (n=3 independent experiments).
- (E, F and J) Data were analyzed by two-tailed unpaired Student's *t* test. (B, D and G) Data were analyzed by 1-way ANOVA with Tukey's correction for multiple comparisons. Data are represented mean ± SD; *P<0.05, **P<0.01, ***P<0.001.


Supplemental Figure 13. PTN is secreted through COPII regulation.

- (A) Immunostaining of PTN, PDI, and Olig2 in primary control and *Sec13*cKO differentiating immature oligodendrocytes. Scale bars represent 20 μm.
- (B) Immunoblotting of indicated proteins in primary rat OPCs treated with BFA (0.5 μ g/ μ L) for 24h.
- (C) Immunostaining of PTN and PDI in primary rat differentiating immature oligodendrocytes in the presence or absence of BFA (0.5 $\mu g/\mu L$) for 24h. Scale bars represent 10 μm .
- (D) Immunoblotting of indicated proteins in culture medium (upper, supernatant) and cell lysate (lower) from primary rat OPCs transfected with HA-PTN or HA-PTN mutant (L18&20R) construct.
- (E) Real-time PCR analysis of myelination-associated genes in primary rat OPCs under differentiation conditions following PTN or PTN mutant (L18&20R) over expression (n=3 independent experiments). Data were analyzed by 1-way ANOVA with Tukey's correction for multiple comparisons. Data are represented mean ± SD; **P<0.01, ***P<0.001.

Supplemental Figure 14. Loss of PTN impaired remyelination.

- (A) Representative images of GFP and FluoroMyelin in spinal cord lesions of mice after injection of lentivirus expressing scrambled or *PTN* shRNA at 21 dpl. Arrowheads indicated GFP⁺ cells. Scale bars represent 100 μm.
- (B) Quantification of FluoroMyelin volume in spinal cord lesions of mice injected with lentivirus expressing scrambled or *PTN* shRNA at 21 dpl (n= 3 animals/treatment).
- (C) Immunostaining of IBA1 in spinal cord lesions of mice injected with lentivirus expressing scrambled or *PTN* shRNA at 14 dpl. Scale bars represent 100 μm.
- (D) Quantification of IBA1⁺ cells (left panel) and lesion area (right panel) in spinal cord lesions of mice injected with lentivirus expressing scrambled or *PTN* shRNA at 14 dpl (n= 3 animals/treatment).
- (E) Immunostaining of IBA1 in spinal cord lesions of mice injected with lentivirus expressing scrambled or *PTN* shRNA at 21 dpl. Scale bars represent 100 μm.
- (F) Quantification of IBA1⁺ cells (left panel) and lesion area (right panel) in spinal cord lesions of mice injected with lentivirus expressing scrambled or *PTN* shRNA at 21 dpl (n= 3 animals/treatment).
- (G) Representative images of MBP, IBA1, and GFP in corpus callosum lesions of mice after injection of lentivirus expressing scrambled or PTN shRNA at 14 dpl. Scale bars represent 50 μ m.
- (H) Quantification of MBP volume in corpus callosum lesions of mice after injection of lentivirus expressing scrambled or *PTN* shRNA at 14 dpl (n= 3 animals/treatment).
- (I) Quantification of lesion area in corpus callosum lesions of mice after injection of lentivirus expressing scrambled or PTN shRNA at 14 dpl (n= 3 animals/treatment). Data represent mean±SD; *P <0.05; two-tailed unpaired Student's t test.

Supplemental Figure 15. PTN accelerate remyelination after demyelinating injury.

- (A) Quantification of IBA1⁺ cells in corpus callosum lesions of mice after injection of retrovirus expressing PTN or PTN mutant (L18&20R) at 10 dpl (n= 3 animals/treatment). Data were analyzed by 1-way ANOVA with Tukey's correction for multiple comparisons.
- (B-C) *In situ* hybridization (B) and quantification (C) of *Plp1* in the spinal cord LPC lesions of mice after injection of retrovirus expressing PTN or PTN mutant (L18&20R) at 10 dpl (n= 3 animals/treatment). Scale bars represent 100 μ m. Data were analyzed by 1-way ANOVA with Tukey's correction for multiple comparisons.
- (D) Electron microscopy of LPC lesion from corpus callosum of mice after injection of retrovirus expressing PTN at 10 dpl. Scale bars represent 2 μm .
- (E) Quantification of remyelinated axons in LPC-induced lesion in corpus callosum of mice after injection of retrovirus expressing PTN at 10 dpl (n=3 animals/treatment). Data were analyzed by two-tailed unpaired Student's *t* test. Data are represented mean ± SD; **P<0.01, ***P<0.001.