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Introduction
In the United States, prostate cancer is one of the most common 
cancers afflicting aging men (1, 2). Autopsy studies hint that as 
many as 59% of men aged 80 years and older may harbor carci-
nomas in their prostates, most of which go unrecognized (3). The 
American Cancer Society estimates that 1 in 9 men will be diag-
nosed with prostate cancer in their lifetimes, while 1 in 41 will die 
from disease progression. Yet despite (or because of) the high inci-
dence and prevalence of the disease, prostate cancer outcomes are 
plagued with health inequities. Specifically, the disease dispropor-

tionately impacts African American men. Over the last decade, 
Black men suffered a 1.78-fold higher prostate cancer incidence 
and a 2.2-fold higher prostate cancer mortality than non-Hispan-
ic White men, a disparity larger than for any other common can-
cer (4). For this reason, this Review focuses on prostate cancer in 
Black men versus White men and on heritable and environmental 
factors that modify outcomes.

Differences and disparities in prostate cancer incidence and 
mortality have long been recognized among men of varied race, 
ethnicity, socioeconomic status, and place of birth or residence 
(4). This uneven burden of disease has been attributed to inher-
ited genes influencing disease risk, to diet and lifestyle affecting 
disease pathogenesis, and to unequal access to high-quality treat-
ment undermining disease outcome (5). Despite knowledge of 
these factors, the increased prostate cancer incidence and mortal-
ity among Black men have not improved, even as prostate cancer 
mortality overall has declined. Better insights into the excess of 
life-threatening prostate cancers in Black men that lead to action-
able interventions are surely needed.

Genetics, ancestry, and prostate cancer risk
US government health statistics classify citizens self-declaring as 
White (origins in Europe, the Middle East, or North Africa), Black 
or African American (origins in any of the Black racial groups of 
Africa), American Indian or Alaska Native (origins in peoples of 
North, South, or Central America who maintain tribal affiliation), 
Asian (origins in the Far East, Southeast Asia, or the Indian sub-
continent), or Native Hawaiian or Other Pacific Islander (origins in 
Hawaii, Guam, Samoa, or other Pacific Islands). There is signifi-
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associated with a 1.6-fold increased risk of prostate cancer both 
for men with European and for men with African ancestry (13). 
However, 30% of Black men carry high-risk 8q24 alleles, while 
only 13% of White men appear to be carriers, with a population- 
attributable risk of this allele for Black men estimated at 16% (13). 
One 8q24 variant (rs72725854) strongly enriched in men of Afri-
can ancestry has been associated with family history of prostate 
cancer, early age at diagnosis, and aggressive disease behavior 
(29). For men with African ancestry (with ~6% allele frequency), 
this variant may account for 32% or more of familial prostate can-
cer risk (29). Chromatin conformation capture and dCas9-medi-
ated enhancer blocking studies place the high-risk variant within 
a prostate cancer–specific enhancer region, serving to modulate 
expression of MYC, PCAT1, PRNCR1, and other 8q24 genes impli-
cated in prostatic carcinogenesis (30).

The inherited predisposition for prostate cancer implicates 
prostate cell and tissue repair (DNA double-strand break and mis-
match repair genes) and regeneration (HOXB13 and putative MYC 
enhancer) in disease pathogenesis. Presumably, these functions 
act in response to carcinogen exposures or chronic inflammatory 
states (31). Also, African ancestry may underpin some of the dis-
proportionate prostate cancer vulnerability. To exploit knowledge 
of germline variants and prostate cancer risk, attempts are under 
way to produce genetic risk score (GRS) tools for use in clinical 
practice. To be most useful, the GWAS underlying the GRSs must 
encompass many race and ethnic groups. In a large multi-ancestry 
meta-analysis of prostate cancer GWAS, the top GRS decile provid-
ed odds ratios for disease development of 5.06 for men of European 
ancestry and 3.74 for men of African ancestry (32). The meta-anal-
ysis further revealed that compared with men of European ances-
try, men of African ancestry had a mean GRS 2.18 times higher and 
men of East Asian ancestry 0.73 times lower (32). Current guide-
lines for prostate cancer screening do not feature GRSs, instead 
focusing on serum prostate-specific antigen (PSA) testing of men 
aged 55 to 69 years. Though not recommended by the US Preven-
tive Services Task Force, many Black men are offered screening at 
a younger age. Perhaps, moving forward, GRSs could help inform 
who needs screening and at what age, or could be used in conjunc-
tion with serum PSA tests to reduce unnecessary biopsies.

Race/ethnicity, diet and lifestyle, and prostate 
cancer risk
Diet and lifestyle together exert a dominant influence on prostatic 
carcinogenesis. Historically, prostate cancer incidence and mor-
tality were higher in the United States and Western Europe than 
in Asia and Africa (33). Yet migrants from Asia to North America, 
and descendants of sub-Saharan Africans in the United States 
and the Caribbean, exhibit incidence and mortality rates as high 
as, or higher than, those of European American men (33–37). For 
Asian immigrants to North America, the risk for prostate cancer 
increased with duration of residence and adoption of dietary hab-
its (38). This does not simply reflect differences in disease detec-
tion. Autopsies of men dying of unrelated causes in different parts 
of the world also show differences in prostate cancer prevalence 
with age, with less disease in native Africans than in US Black 
populations (39, 40). These findings suggest that environmental 
exposures likely affect prostate cancer initiation and progression, 

cant admixture in the US population — some 33.8 million people 
reported being of more than one race in the 2020 US Census. As 
such, the US government racial categories tend to be more socio-
cultural than genetic (6–8). To consider the contribution of genet-
ics to disparities in prostate cancer incidence and mortality in the 
United States between Black and White men, the role of European 
versus African ancestry must be more directly addressed.

A hereditary component to prostate cancer was first proposed 
in the 1960s and confirmed by studies of Mormon genealogies (9, 
10). Later, statistical analysis of inheritance patterns in families of 
men with prostate cancer suggested that some cases were attrib-
utable to rare high-penetrance genes (11). Nonetheless, despite an 
intensive search for such genes, and further evidence of a strong 
genetic influence on prostate cancer detected in twin studies (12), 
defined genetic risk alleles were difficult to pin down until a repro-
ducible prostate cancer risk was ascribed to chromosome 8q24 
(13). Loci at 8q24 inaugurated a list that now includes 269 genetic 
risk variants for prostate cancer (14).

Through genetic linkage studies of men of European ances-
try, variants at HOXB13, located at 17q21, were found to specifi-
cally affect prostate cancer risk (15). The frequency of a HOXB13 
G84E variant was higher among affected than unaffected men 
(1.4% vs. <0.4%) and for men diagnosed at a younger age or with 
a family history of prostate cancer. HOXB13 encodes a homeobox 
transcription factor produced in the spinal cord, hindgut, and uro-
genital sinus in developing embryos, with persistent expression 
in adult prostate tissues (16). In prostate cancer cells, HOXB13 
interacts with the androgen receptor (AR) to modulate its tran-
scriptional output (17, 18). Though HOXB13 G84E was found in 
studies of men with European ancestry, other founder mutations 
have been associated with prostate cancer in men of other ances-
tries: G132E for Japanese men (19), and G135E for Chinese men 
(20). The mutations cluster within a conserved domain in the 
HOXB13 protein responsible for binding to the homeobox cofac-
tor MEIS1, hinting that altered HOXB13-MEIS interactions might 
contribute to cancer promotion (21). More recently, a stop-loss 
mutation, HOXB13 X285K, was observed in a study of men with 
prostate cancer who were of African descent in Martinique (22). 
This African-specific variant, with an additional 95 amino acids in 
the HOXB13 homeodomain if translated, appears to be associated 
with prostate cancer at an early age in Black men (23).

There also appear to be inherited contributions to the propen-
sity to develop life-threatening prostate cancer. Aberrations at the 
DNA repair genes BRCA1, BRCA2, and ATM have been found in as 
many as 19.3% of metastatic castration-resistant prostate cancers 
(CRPCs); and among cases with biallelic inactivation of BRCA2, 
approximately half had inherited a mutated inactive copy (24, 25). 
Mutant DNA repair genes were also more common in Black men 
than in White men with prostate cancer (26). DNA double-strand 
break repair gene deficiency in CRPCs, as in breast and ovarian 
cancers, constitutes an indication for use of poly(ADP-ribose) 
polymerase (PARP) inhibitors for treatment (27); DNA mismatch 
repair gene deficiencies serve as an indication for use of immune 
checkpoint inhibitors (28).

Can African-ancestry genes account for any of the increased 
burden of prostate cancer among US Black men? Allele –8 of the 
microsatellite marker DG8S737 on chromosome 8q24 has been 
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timing of molecular events in prostatic car-
cinogenesis, particularly the propensity for 
gene fusions leading to AR-regulated ETS 
family oncogene expression to appear later 
than MYC activation, telomere shortening, 
and epigenetic gene silencing (55).

Dietary patterns and physical activity 
likely account for the majority of prostate 
cancers in developed countries. Fat intake, 
particularly of animal fat from red meats, 
has been consistently associated with pros-
tate cancer, while consumption of toma-
toes, soy, and other vegetables may pro-
tect against the disease (31, 56–60). Food 
preparation may also play a role: cooking 
meats at high temperatures leads to the 
formation of heterocyclic aromatic amine 
(HAA) carcinogens, both in the meats and 
in pan drippings (61). Feeding HAAs to rats 
causes prostate cancer (62). Charbroiling 

creates polycyclic aromatic hydrocarbon carcinogens that, when 
ingested, are adducted to prostate cell DNA and increase prostate 
cancer risk more prominently among Black men (63). Cooking 
and dietary practices common among Black populations through-
out the 20th century in the United States may have increased the 
risk of prostate cancers and other chronic diseases (64). In the 
southern United States, the cooking of collard greens features the 
use of drippings from the pan-frying of pork, ensuring that even 
vegetable intake includes HAA exposure. In addition, Black indi-
viduals often constitute the majority population in low-income 
urban neighborhoods with limited access to healthy food options 
(termed “food deserts”), where convenient and affordable food 
options are often less nutritious and of higher caloric density (65). 
Low physical activity, particularly in comparison with caloric 
intake, may create energy imbalance fueling the growth of estab-
lished prostate cancers (66, 67). Barriers to physical activity for 
Black individuals in urban neighborhoods with high poverty rates 
are numerous, ranging from inadequate parks and open spaces to 
worries about violence (68).

Race/ethnicity and the molecular pathogenesis 
of prostate cancers
Prostate cancers carry numerous somatic genome and epigenome 
alterations that evolve over many years as the disease progresses 
from initiation to lethal metastatic dissemination (Figure 1 and refs. 
69, 70). The earliest changes appear to be (a) activation of MYC, 
leading to enlarged nuclei and nucleoli; (b) shortened telomere 
sequences; (c) increased DNA methylation at genes such as GSTP1 
and others with reduced DNA methylation in repeat sequences; and 
(d) gene rearrangements that activate ETS family transcription fac-
tors (56, 71–74). Loss of PTEN and TP53 mutations more commonly 
appear in life-threatening metastatic disease (75–78). Genome and 
epigenome alterations differ from case to case, and between dif-
ferent foci in individual cases (70). In one study, each prostate can-
cer exhibited a mean of 3866 base mutations (range 3192–5865), 
20 non-silent coding sequence mutations (range 13–43), and 108 
rearrangements (range 43–213) (79). In another, somatic DNA 

or that conditions in lesser developed countries might hinder 
prostatic carcinogenesis (31). In support of this notion, prostate 
cancer appears to be on the rise throughout the world accompany-
ing increases in economic prosperity and income inequality, and 
along with the progressive aging of resident populations (41).

The normal prostate depends on male sex steroid hormones 
for its development and differentiated function. The major circu-
lating androgenic hormone testosterone is converted in the pros-
tate to the more potent 5α-dihydrotestosterone by 5α-reductase 
(SRD5A) (42). Both testosterone and 5α-dihydrotestosterone bind 
to intracellular androgen receptors (ARs) and trigger changes in 
conformation that allow dissociation from protein chaperones 
and translocation into the cell nucleus, where AR acts as a ligand- 
dependent transcriptional regulator for differentiation genes, 
such as KLK3 (encoding PSA) (43–45). Because prostate can-
cers have been recognized for more than 80 years as responding 
to therapeutic reductions in circulating androgens, a great deal 
of attention has been afforded to a causative role for androgens 
in prostate cancer development (46, 47). In this line of thought, 
increased prostate cancer incidence and mortality in Black versus 
White men were speculatively attributed to higher levels of circu-
lating sex steroids, to differences in AR structure and function, or 
to both differences in hormone levels and ancestry-associated AR 
variants (48–51). There are well-known differences in the lengths 
of CAG and GGN repeats in AR among race/ethnic groups associ-
ated with differences in transcriptional trans-activation and cor-
related with prostate cancer risk (49, 50, 52).

Subsequent reports have challenged the dogma that prostate 
cancer is caused by excess androgens or androgen action. A large 
nationally representative study indicated that serum estrogen lev-
els, but not testosterone levels, were higher among Black versus 
White men in the United States (53). Both Black men and White 
men given testosterone supplements as they aged had fewer pros-
tate cancers (54). Nonetheless, though androgens may not directly 
transform normal prostate cells, accumulating data hint that AR 
signaling may play a role in the progression of transformed pros-
tate cells to invasive carcinoma cells, as indicated by order and 

Figure 1. Diet and lifestyle and ancestry converge to produce proliferative inflammatory atrophy 
to drive the molecular pathogenesis of prostate cancer. Inherited vulnerability to cell and genome 
damage repair and response sensitizes prostate cells to infections, inflammation, and carcinogens, 
leading first to proliferative inflammatory atrophy and then to neoplastic transformation and malig-
nant progression. Gene rearrangements could occur via AR-dependent mechanisms, like TMPRSS2-
ERG, or non-AR-dependent mechanisms.
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With these limitations in mind, several studies have cata-
logued differences in somatic genotypes, epigenotypes, and phe-
notypes for prostate cancers from Black versus White men. The 
most strikingly consistent dissimilarities may be the lower fre-
quencies of TMPRSS2-ERG rearrangements, PTEN deletions, and 
SPOP mutations in prostate cancers from Black men. An initial 
study (n = 64 Black men) detected TMPRSS2-ERG gene fusions in 
prostate cancers from 50% of White men, compared with 31.3% 
of Black men and 15.9% of Japanese men (91). In another cohort 
(n = 105 Black men), differences between White and Black men 
were 42.5% versus 27.6% for ERG rearrangements, 19.8% ver-
sus 6.9% for PTEN deletions, and 10.3% versus 4.5% for SPOP 
mutations (92). In a still larger data set (n = 169 Black men), ERG 
and PTEN alterations were proportionately less frequent among 
Black men compared with their White counterparts (25% vs. 51% 
for ERG and 18% vs. 34% for PTEN) (93). Provocatively, a small 
study from South Africa (n = 6 Black men) found an absence of 
TMPRSS2-ERG rearrangements and rare PTEN losses (94). Low 
levels of ERG expression were also seen in prostate cancers from 
men in Ghana and Senegal (95).

A handful of genes other than SPOP may be mutated more 
frequently in prostate cancers from Black men. Whole exome 
sequencing of localized prostate cancers from Black men (n = 102) 
found that 5% of the cases carried loss-of-function mutations in 
ERF, an ETS transcriptional repressor (96, 97). Further analysis in 
cell culture revealed that ERF knockdown produced a gene expres-
sion signature reminiscent of oncogenic ERG activation (96). In 
a large study of acquired genetic defects (n = 171 Black men), of 
the top 22 genes mutated in prostate cancers from Black men, 
only two were found more commonly than in cancers from White 
men, ZMYM3 (11.7% vs. 2.7%) and FOXA1 (11.7% vs. 5.4%), while 
mutations at genes like SPOP and TP53 were less often present 
(98). Mutations affecting ZMYM3, encoding a regulator of BRCA1 
function, seemed to correlate with widespread unbalanced allele 
frequencies in the cancers from Black men, suggesting that loss-
es of MAP3K7, RB1, BNIP3L, THADA, and NEIL3 and gains of the 
genomic region encompassing MYC might underlie aggressive 
disease behavior (98, 99).

Hypermethylation of a CpG island at the GSTP1 promoter 
leading to loss of GSTP1 expression in prostate cancer was one of 
the first examples of epigenetic gene silencing in human cancers 
(100). Since its first report, GSTP1 silencing has remained the ear-
liest and most frequent gene function defect in prostate cancer, 
affecting more than 90% of cases (101). Now, GSTP1 hypermeth-
ylation assays are approved and marketed as adjuncts to prostate 
cancer diagnosis, both for Black and for White men (102). Absence 
of GSTP1 sensitizes prostate cancer cells to mutagenic damage 
by HAA carcinogens, and confers improved survival, despite 
increased genome damage, in response to chronic oxidant stress 
(103, 104). Recently, attention has focused on prostate cancer cas-
es in which GSTP1 expression is retained (105). In prostatectomy 
tissues from Black and White men, GSTP1+ prostate cancer was 
overrepresented among tumors from Black men (9.5% vs. 3.2%) 
(105). As has been seen with somatic genetic alterations, different 
changes in CpG dinucleotide methylation across the epigenome 
have been reported for more aggressive versus more indolent pros-
tate cancer behavior in Black men (n = 76) (106). Provocatively, an 

hypermethylation was found at 5408 regions, with 73% of the sites 
located near genes (5′, 3′, or intron-exon junctions) and the remain-
ing 27% of the sites at conserved intergenic sequences (80). DNA 
hypermethylation was maintained through metastatic dissemina-
tion up to the time of death (81).

Rearrangements between TMPRSS2, encoding an andro-
gen-regulated protease, and ERG, an ETS transcription factor, are 
among the most common somatic alterations in human prostate 
cancers (70). TMPRSS2-ERG and other rearrangements in pros-
tate cancer cells may result from a molecular accident accompa-
nying AR recruitment of the topoisomerase TOP2B to regulatory 
sequences near target genes during transcriptional activation 
(73, 82). TOP2B untangling appears to be needed for transcrip-
tional regulatory sequences to adopt a looped conformation in 
response to AR activation by ligand binding (73). TOP2B acts by 
catalyzing breakage and rejoining reactions where enzyme sub-
units transiently link to broken DNA ends; untangling occurs as 
double-strand DNA molecules pass through the transient breaks. 
However, under certain conditions, TOP2B-linked breaks can be 
processed to generate free ends competent for recombination via 
non-homologous end joining (NHEJ) (83). TMPRSS2-ERG rear-
rangements arise near TOP2B binding sites at each gene (73). 
Sequencing of TMPRSS2-ERG rearrangement junctions revealed 
sequence microhomologies consistent with NHEJ (84).

Despite the frequent occurrence of rearrangements involving 
AR-regulated genes in prostate cancers, other sites of DNA breakage 
and recombination are evident in many cases. An extreme example 
may be chromothripsis, a chromosome “shattering” phenomenon in 
which large numbers of rearrangements arise preferentially in cases 
without ETS gene fusions (85). These rearrangements may not nec-
essarily involve TOP2B, and may instead be driven by inflammatory 
oxidant stress, bacterial toxin exposure, and/or dietary carcinogens 
(74, 86). This suggests that there may be at least two dominant influ-
ences on prostatic carcinogenesis, one involving androgen signaling 
and the other promoted by inflammatory genome damage.

Most somatic genome defects are shared between prostate 
cancers from Black and White men (87). Nonetheless, there have 
been several reports highlighting potential differences segregat-
ing with self-reported race. Such studies have opportunistically 
exploited biospecimen collections featuring both Black and White 
cases suitable for genetic, epigenetic, and gene expression analy-
ses, largely comprising prostate biopsy materials, radical prostatec-
tomy specimens, and prostate cancer tissues harvested at autopsy. 
As a result, the studies present considerable methodologic chal-
lenges. Foremost may be biases associated with differences in how 
prostate cancers are detected and diagnosed among Black versus 
White men, with Black men less likely to have been diagnosed as 
a result of screening and more likely to have presented at a higher 
stage of disease, i.e., to have undergone biopsy or operation later in 
the natural history of the disease (88). Illustrative of this phenom-
enon, some somatic genetic changes reported at higher frequency 
among early-stage prostate cancers in Black men were reminiscent 
of genetic changes seen in more-advanced-stage prostate cancers 
in White men (89). Another methodologic impediment is the poor 
representation of prostate cancer cases in biospecimen collections, 
despite a willingness of Black men to consent to biospecimen use in 
prostate cancer biorepositories (90).
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with dietary influences on prostate cancer initiation and progres-
sion, though the mechanisms by which augmented lipid metabo-
lism promotes malignant phenotypes remain to be elucidated.

In all, the molecular characterization of prostate cancer genes 
and gene function hints that several distinct molecular subsets 
(ERG+ vs. ERG–, PTEN+ vs. PTEN–, GSTP1+ vs. GSTP1–) may be 
more or less prevalent among prostate cancer cases in Black versus 
White men. Immunologic differences associated with self-report-
ed race are also repeatedly observed in localized prostate cancers. 
Perhaps highly inflamed prostate tissues spawn prostate cancers 
less likely to contain rearrangements involving AR target genes, 
a hypothesis and correlation that should be tested. Nonetheless, 
whether the reported findings reflect differences in disease patho-
genesis attributable to inherited African-ancestry genes or to dif-
ferences in lifestyle and exposures has not been ascertained.

Inflammation as a driver of prostatic 
carcinogenesis
Prostate inflammation is as ubiquitous among aging men in the 
United States as prostate cancer. Inflammatory processes affect 
both the transition zone of the gland, where symptomatic benign 
prostatic hyperplasia arises, and the peripheral zone, where pros-
tate cancers appear (108). Yet since peripheral zone prostatitis 
and early prostate cancer tend to be asymptomatic, epidemiology 
studies of the two conditions have proven difficult. Since inflam-
matory damage to the prostate epithelium and prostate cancer can 
both raise serum PSA levels, when prostate biopsies conditioned 
on serum PSA elevations are used to test correlations between 

analysis of 190 metabolites across prostate cancer versus non-can-
cerous prostate tissues from African ancestry–verified Black men 
(n = 33) identified increases in methionine and homocysteine that 
could affect biologic methylation reactions, a phenomenon evident 
in the plasma and more prominent than for White men with pros-
tate cancer (107). Whether the observed increases can explain the 
reported differences in DNA methylation has not been ascertained.

In comparative gene expression studies, a reproducible find-
ing has been increased expression of immune-related genes in 
tumors from Black compared with White men. Chronic or recur-
rent prostate inflammation is likely an important driver of neo-
plastic transformation and malignant progression in the gland (31, 
108). The repeated finding of gene expression differences involv-
ing immune response genes hints that there may be an even great-
er contribution of inflammatory processes to prostatic tumorigen-
esis in Black men than in White men (109–115). This hypothesis 
is supported by studies demonstrating a distinct immune tumor 
microenvironment present in prostate cancers arising in Black 
men, characterized by an increase in plasma cells, evidence of NK 
cell activity, and higher IgG expression (116). However, more work 
is needed to clarify mechanisms by which these inflammatory pro-
cesses promote or protect against prostate cancer pathogenesis 
and progression to life-threatening metastatic disease.

Another pathway in prostate cancers from Black men illuminat-
ed by gene expression analysis is lipid metabolism (111). Both fatty 
acid synthase (FASN) and its upstream regulator MNX1 appear 
to be preferentially upregulated in tumors from Black men versus 
White men (111, 117). This clearly provides tantalizing associations 

Figure 2. Pro-carcinogenic prostate microenvironment. Prostate epithelium is assaulted by inflammatory ROS and reactive nitrogen species (RNS), by 
activated dietary carcinogens, and by inflammatory cytokines. The result is cell and genome damage leading to activation of stress response pathways, 
reduced terminal differentiation, and regenerative proliferation characteristic of the prostate cancer precursor proliferative inflammatory atrophy. Adapted 
with permission from the New England Journal of Medicine (31).
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prostatitis and prostate cancer, the inferred associations are prone 
to “collider stratification” bias (118). This type of bias can either 
falsely hint at an association or even incorrectly suggest an inverse 
association (118). To minimize this methodologic hindrance, study 
cohorts in which men underwent prostate biopsy without a clini-
cal indication per se have been examined, such as in the placebo 
arms of the Prostate Cancer Prevention Trial (PCPT) and ensuing 
Selenium and Vitamin E Cancer Prevention Trial (SELECT) (119, 
120). In PCPT, prostate inflammation was correlated with prostate 
cancer, at an odds ratio of 1.78 for total prostate cancer and 2.24 
for high-grade disease (121). For men in the placebo arm of PCPT 
without prostate cancer on the end-of-study biopsy who enrolled 
in SELECT, the odds of developing prostate cancer on a second 
biopsy a mean of 5.9 years later were increased 1.6-fold, depend-
ing on the amount of inflammation seen on the first biopsy (122).

Inflammation likely promotes prostatic carcinogenesis via the 
generation of proliferative inflammatory atrophy (PIA) lesions, 
distinct precursors to prostatic intraepithelial neoplasia (PIN) 
and prostate cancer (Figure 2 and refs. 123–125). PIA cells typi-
cally exhibit arrested differentiation, activation of stress response 
pathways, and regenerative proliferation, and often share genet-
ic and epigenetic alterations with prostate cancer (126–134). The 
most compelling evidence for PIA involvement in prostatic car-
cinogenesis may be the consistent finding of PIA lesions arising 
before prostate cancer in rodent models of the disease induced 
by exposures, including estrogens and dietary carcinogens (108). 
Production of inflammatory cytokines, like IL-1β, IL-6, and IL-8, 
frequently appears in and around PIA lesions (135, 136). Mice 
engineered to produce IL-1β in the prostate exhibited acute and 
chronic inflammation, epithelial changes reminiscent of human 
PIA, and production of downstream proinflammatory cytokines 
(137). One such cytokine may be macrophage inhibitory cyto-
kine-1 (MIC-1), reported to be increased in the serum and urine of 
African American men with prostate cancer (138).

Though the inflamed microenvironment that begets PIA, PIN, 
and prostate cancer has not been fully characterized, both innate 

and adaptive immune infiltrates are evident. CD4+ T cells recov-
ered from the prostate tissues skew toward a Treg or a Th17 pheno-
type, while oligoclonal CD8+ T cells express PD-1 (139, 140). Some 
infiltrating T cells recognize peptides derived from prostate pro-
teins, including PSA and prostate stem cell antigen (PSCA), though 
the full spectrum of antigens driving T cell responses has not been 
determined (141–143). The contributions of these T cells to the 
maintenance of chronic prostate inflammation, or to the “immu-
noediting” of neoplastic cells spawned by PIA lesions, have not been 
elucidated. In one mouse prostate cancer model, supplementation 
of CD4+ Tregs reduced inflammatory cytokine production in the 
prostate and led to fewer prostate cancers, while CD4+ Treg deple-
tion had the opposite effect (144). Inflamed prostate tissues contain 
abundant immune cells, including neutrophils, macrophages, and 
mast cells, that express 1L-17 (145, 146). Neutrophils appear to be 
the source of the numerous corpora amylacea in inflamed prostate 
tissues readily familiar to prostate pathologists: a proteomics analy-
sis revealed the microscopic bodies to be composed of calprotectin, 
myeloperoxidase, and α-defensins, all characteristically present in 
neutrophil granules (147). Corpora amylacea have been described 
along with PIA-like lesions in aging rats prone to chronic inflamma-
tion and prostate cancer (148). In one study of more than 1300 cas-
es cataloguing immune cell infiltrates in prostate cancers, increased 
numbers of plasma cells, IgG expression, and NK cell activity were 
found in the tumor microenvironment in Black versus White men, 
findings that portended improved recurrence-free survival after 
prostate surgery for localized disease (116).

Prostate infections have long been proposed as stimuli for 
prostatic inflammation and, in turn, as risk factors for prostate 
cancer. Several microorganisms (bacterial, viral, and parasitic) 
have been investigated in relation to prostate cancer risk (149–
151). A notable limitation to linking microorganisms in the pros-
tate at the time of cancer diagnosis to the risk of prostate cancer 
development is that the initiating infection may have occurred 
many years previously (152). Likewise, contrary to the dogma of 
Koch’s postulates requiring a pathogen to be present with the dis-

Figure 3. Movement toward a proactive prostate cancer risk stratification approach to disease control for improvement of prostate cancer mortality 
and elimination of disparities. (A) Guidelines differ as to when men in the general US population should undergo prostate cancer screening via PSA test 
and digital rectal examination; and how Black men should best be screened has also been debated (165–167). Screening detects prostate cancer at an early 
stage, at a cost of significant overdiagnosis and overtreatment. The use of active surveillance approaches for low-risk prostate cancer to mitigate this 
problem is not evenly distributed between White and Black men or among men of higher versus lower socioeconomic status (167). (B) A future paradigm 
might feature risk stratification, using germline genetic testing (for risk alleles associated with European or African ancestry), midlife PSA testing, and an 
inventory of diet, lifestyle, and family history. Men at high risk could be steered toward more vigilant prostate cancer screening regimens and coached to 
pursue substantive dietary modification, weight loss, and exercise, while men at low risk might not need such aggressive intervention. Prostate cancer 
screening itself is somewhat limited by health care access, and this new precision paradigm of risk ascertainment and intervention could be even more 
sensitive to social determinants of health and health care inequities.
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ease, the collateral damage caused by a prostate infection may be 
what promotes cancer, with the offending pathogen cleared many 
years before cancer became evident. With this in mind, prostate 
infection and inflammation raise PSA levels in young men, and 
Black men aged 20 to 45 years have been reported to have higher 
PSA levels than White men (149, 153). PSA values in midlife are a 
harbinger of future life-threatening prostate cancer (154).

Ancestry, inequity, and biology modify prostate 
cancer outcomes
Confronting disparities in prostate cancer outcomes for Black men 
versus other race/ethnic groups in the United States, prostate can-
cer researchers have long grappled with whether they reflect genet-
ic predisposition from African ancestry, environmental conditions 
disproportionately affecting Black men, or lower quality and acces-
sibility of health care available to various minority groups and 
low-income populations generally. The findings presented in this 
Review hint that the impact of inheritance, the environment, and 
sociology on the etiology of prostate cancer and its propensity to 
threaten life has progressively converged on a unifying mechanism. 
Diet and lifestyle promote prostate inflammation, generating PIA 
lesions poised to birth prostatic adenocarcinomas (108). Genetic 
predisposition, particularly variants in genes for genome damage 
and repair and/or cell and tissue damage and regeneration, aug-
ments the consequences of the molecular mayhem inflicted on the 
prostate by ROS and carcinogens. The resultant gene-environment 
interactions conspire to produce more prostate cancers and more 
disease virulence. These mechanisms are amplified by inequities 
associated with poverty and a history of racism.

The Centers for Disease Control and Prevention defines social 
determinants of health as “conditions in the places where people 
live, learn, work, and play” (155). With the dominant influence of 
diet and lifestyle on the molecular pathogenesis of prostate cancer, 
the social determinants of health collude to promote disparities in 
prostate cancer between Black and White men and to undermine 
health care access, quality, and equity for Black men. An accu-
mulating body of evidence suggests that health care quality has a 
significant impact on outcomes of all cancers in vulnerable popu-

lations in the United States (156). Prostate cancer is no exception: 
when prostate cancer care is received at a Veterans Health Admin-
istration facility or as part of a clinical trial, Black men and White 
men exhibit similar outcomes when receiving the same treatment 
for the same stage of disease (157–161). And, in a study of prostate 
cancer–specific survival among Black and White men in Detroit, 
though Black men exhibited worse outcomes, adjustment for 
socioeconomic status eliminated the survival differences (162).

Implications
To overcome the excess burden of prostate cancer mortality among 
Black versus White men in the United States, the social determi-
nants of health and health equity must be more deliberately and 
directly targeted — a strategy likely to reduce prostate cancer death 
rates for men of all races/ethnicities. Prostate cancer risk reduction 
should involve promoting and delivering healthier diets through-
out life, particularly among low-income people in both rural and 
urban areas. Prostate cancer screening, detection, diagnosis, and 
treatment will likely all benefit from the introduction of a growing 
body of precision medicine tools, including germline gene testing 
and better measures of environmental exposures, able to stratify 
the right man for the right intervention at the right time (Figure 3). 
Risk-stratified prostate cancer screening must be made available to 
all men in the United States. The onus of prostate cancer care pro-
viders is to ensure that these precision medicine tools are available 
equitably, such that they ameliorate, rather than exacerbate, the 
existing disparities borne by Black men (163, 164).
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