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Introduction
In December 2019, a novel coronavirus, severe acute respiratory  
syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan, 
Hubei Province, China, and caused the coronavirus disease 2019 
(COVID-19) pandemic. COVID-19 presentations range from 
asymptomatic infection to mild flu-like symptoms to fatal respi-
ratory failure. In addition, many patients experience long-term 
symptoms of COVID-19 persisting weeks to months after the ini-
tial onset of symptoms and extending beyond the original organ 
involvement, known as post-acute sequelae of COVID-19 (PASC) 
and more commonly called “long COVID.”

Over the past 18 months, researchers have sought to deter-
mine mechanisms by which an individual’s immune system 
may be helpful or harmful in COVID-19. In the context of vac-
cination, it is apparent that adaptive immunity can quite effec-
tively negate severe COVID-19. At the same time, it appears 
that preexisting autoimmunity may influence, often deleteri-
ously, the course of COVID-19 in certain individuals. Of par-
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Role of preexisting autoimmunity
The clinical manifestations of COVID-19 are variable, ranging 
from asymptomatic infection in many individuals to critical pneu-
monia in about 2% to 3% of patients (17). The dominant epidemi-
ological risk factor for life-threatening COVID-19 is age, with the 
risk of death doubling every 5 years from childhood onward. Male 
sex and preexisting comorbidities contribute to a lesser extent 
(odds ratios typically <1.5) (18). We now also know that genetic 
variants (such as monogenic inborn errors) and — with high rele-
vance to this Review — preexisting immunological abnormalities 
may underlie the severity of disease in some individuals (19).

The role of type I IFNs in COVID-19. Type I IFNs induce the 
expression of many IFN-stimulated genes (ISGs) that are essential 
for antiviral immunity (Figure 1A). For at least a subset of patients, 
SARS-CoV-2 induces only a limited type I IFN response, leading 
to poor control of SARS-CoV-2 replication and the transition to 
severe COVID-19 (20–22). At the same time, other studies have 
delivered a contrasting message that some patients with severe 
COVID-19 exhibit robust and sustained type I IFN responses that 
ultimately contribute to organ damage (23–26). While type I IFNs 
and ISGs are certainly helpful and protective in early stages of 
infection, additional work is needed to understand which specific  
subgroups of patients with severe disease are more likely to be 
helped or harmed by type I IFNs.

Genetics and autoantibodies that disrupt type I IFN immunity.  
In an international cohort, about 3.5% of patients with severe 
COVID-19 carried rare loss-of-function inborn errors of TLR3- 
and IRF7-dependent type I IFN immunity that have previously 
been shown to underlie critical influenza pneumonia (27, 28). For 
example, four previously healthy, unrelated adults between 25 and 
50 years of age had autosomal recessive, complete deficiency of 
the IFNAR1 chain of the type I IFN receptor (n = 2) or IFN regula-
tory factor 7 (IRF7) (n = 2; refs. 27, 28).

In the same cohort (but in other patients without these inborn 
errors), neutralizing autoantibodies against type I IFNs were 
detected in at least 10% of patients with critical COVID-19 pneu-
monia, but not in patients with asymptomatic infection (Figure 1B 
and ref. 29). Importantly, these autoantibodies may be causal and 
not a consequence of critical COVID-19, as they can be found in 
at least some patients before infection (29). The autoantibodies 
of patients with critical COVID-19 primarily targeted IFN-ω and 
IFN-α, but not IFN-β, IFN-κ, or IFN-ε (29); therefore, patients with 
these antibodies could potentially still benefit from early adminis-
tration of IFN-β (30).

Neutralizing autoantibodies against type I IFNs have been 
identified since the 1980s in patients treated with IFN-α2 and 
IFN-β (31), patients with SLE (32), patients with thymoma and/
or myasthenia gravis (33), and nearly all patients with autoim-
mune polyendocrinopathy syndrome type 1 (APS-1; refs. 34–36). 
Although these autoantibodies are typically clinically silent for 
much of life, most patients with APS-1 who were infected with 
SARS-CoV-2 developed severe COVID-19, further suggesting 
that preexisting autoantibodies against type I IFNs predispose 
to severe manifestations of COVID-19 (37). Moreover, the same 
autoantibodies against type I IFNs underlie adverse reactions to 
yellow fever live attenuated viral vaccine in about a third of cases 
(38). Notably, multiple centers have confirmed that autoantibodies 

ticular note, work to date has demonstrated that 10% to 15% 
of patients with critical COVID-19 pneumonia exhibit autoan-
tibodies against type I interferons (IFNs). Meanwhile, in other  
patients, the virus may contribute to a de novo breakdown in 
immune tolerance, triggering pathogenic autoantibodies in 
susceptible individuals. In some reports, more than 50% of 
patients hospitalized with moderate to severe COVID-19 have 
circulating autoantibodies; the extent to which these autoanti-
bodies persist after hospital discharge is a question that has for 
the most part not been addressed.

In the summer of 2021, the Noel R. Rose COVID-19 and 
Autoimmunity Colloquium, organized by the American Autoim-
mune Related Diseases Association (AARDA), brought together 
researchers working at the intersection of COVID-19 and autoim-
munity to address the current state of knowledge regarding two 
important questions: Does established autoimmunity predispose 
to severe COVID-19? And, at the same time, can SARS-CoV-2 
infection trigger de novo autoimmunity? The breadth of expertise 
reflected the desire to create a colloquium that spanned multiple 
medical specialties and scientific disciplines. Participants repre-
sented diverse fields, including biobanking, cardiovascular med-
icine, clinical informatics, immunology, pathology, and rheuma-
tology, among others. This Review highlights the current state of 
knowledge regarding the intersection of COVID-19 and autoim-
munity, including work and ideas discussed during the COVID-19 
and Autoimmunity Colloquium.

Immunopathology of severe COVID-19
A cardinal histopathological feature of severe COVID-19 is 
pulmonary microangiopathy with evidence of fibrin thrombi, 
activated platelets, and neutrophil extracellular traps within 
vessels (1, 2). Furthermore, infiltrating neutrophils, monocytes, 
and macrophages are observed in additional organs beyond the 
lungs, including the heart, central nervous system, and liver  
(2–4). In addition to cell activation and infiltration, local and 
systemic complement activation likely contributes to the micro-
angiopathy. In patients with severe COVID-19, exaggerated 
complement deposition has been detected in various tissues, 
including the lungs (5). Meanwhile, systemic detection of alternative  
complement pathway activation has also been appreciated in 
severe disease (6).

A subset of patients with COVID-19 develop hyperinflamma-
tion with high cytokine and chemokine levels in a pattern that is 
similar to, but still distinct from, the autoinflammatory macro-
phage activation syndrome that complicates various autoimmune 
diseases, such as systemic juvenile idiopathic arthritis and sys-
temic lupus erythematosus (SLE) (7–9). It is notable that immuno-
modulatory medications, especially dexamethasone (10), appear 
to improve survival in severe COVID-19. Trials of more targeted 
therapies have also been conducted in COVID-19. These include 
inhibitors of cytokines (or their receptors), such as IL-6 (11), IL-1 
(12), and granulocyte-macrophage colony-stimulating factor 
(13). Small molecules that block cytokine-mediated signaling, 
for instance, Janus kinase (JAK) inhibitors (14, 15), have also been 
studied. The efficacy of these targeted therapies is less proven 
than that of dexamethasone and is likely highly dependent on the 
timing of administration and patient selection (16).
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pholipid syndrome, inflammatory arthritis, SLE, and anti-MDA5 
syndrome (52–55). In addition, there are numerous case reports 
of patients developing classifiable autoimmune diseases, such 
as rheumatoid arthritis, psoriatic arthritis, and type 1 diabetes, 
concomitantly with or immediately following SARS-CoV-2 infec-
tion (56–64). These various observations have led investigators 
to question whether de novo autoimmunity may contribute to at 
least a subset of patients who experience a more severe course 
with COVID-19.

Other examples of virus-associated autoimmunity. Viruses 
such as cytomegalovirus, parvovirus B19, and Epstein-Barr virus 
(EBV) have been postulated to be environmental triggers of auto-
immunity in genetically predisposed individuals (65). As one 
example, serological evidence of EBV reactivation tracks not 
only with the transition to SLE, but also with increased disease 
activity in individuals with established SLE (66, 67); indeed, anti-
bodies against EBV nuclear antigen-1 cross-react with the SLE- 
associated antigens Sm and Ro (68–70), and levels of anti-EBV 
antibodies correlate with SLE-associated autoantibodies (66, 
71–73). Viruses that trigger autoimmunity exhibit several char-
acteristic features (Table 1), including a tendency to cause ubiq-
uitous and/or persistent infection, as well as an ability to tip the 
host immune response toward loss of tolerance via production of 
autoreactive lymphocytes. Mechanistically, viruses may contrib-
ute to autoimmunity-prone immune responses in various ways. 
Examples include molecular and functional mimicry, superanti-
gen activity, and stimulation of inflammatory signaling, including 
production of type I IFNs (74–76).

Profiling the autoantigenome of COVID-19. To determine 
whether COVID-19 promotes autoantibody production, several 
groups have endeavored to comprehensively profile the autoan-
tigenome of COVID-19. Using established antigen arrays, Chang 
et al. identified autoantibodies associated with rheumatological 
diseases in 49% of patients hospitalized with COVID-19, com-
pared with less than 15% of healthy controls (77). Many of these 
autoantibodies are traditionally associated with rare autoim-
mune diseases, such as autoimmune myositis (77). In addition, 
60% to 80% of patients hospitalized with COVID-19 had at least 
one anti-cytokine autoantibody with the potential to modulate 

against type I IFNs underlie at least 10% of cases of life-threaten-
ing COVID-19 pneumonia in the general population (29, 39–48).

More recently, autoantibodies neutralizing lower, more phys-
iological concentrations of type I IFNs were found in at least 15% 
of patients with critical COVID-19 pneumonia, including 20% of 
patients older than 80 years (49). Furthermore, these autoanti-
bodies were found in about 20% of COVID-19 deaths across all 
ages (49, 50). Analysis of more than 34,000 uninfected individu-
als demonstrated that these autoantibodies were present in 0.18% 
of individuals between 18 and 69 years of age, rising to 4% in indi-
viduals older than 70 years (49), a pattern that likely contributes to 
the age-associated risk of life-threatening COVID-19.

In parallel to this recent work, a genome-wide, unbiased 
approach found that about 1% of male patients younger than 60 
years of age with critical COVID-19 pneumonia had X-linked 
recessive TLR7 deficiency (51). Plasmacytoid dendritic cells iso-
lated from these patients produced negligible amounts of type I 
IFNs in response to SARS-CoV-2 (51). When combined with the 
autosomal inborn errors of TLR3-dependent type I IFN immunity  
that likely impact pulmonary epithelial cells (28), inborn errors 
may underlie critical COVID-19 in 3% to 4% of patients, especially 
in those younger than 60 years (whereas autoantibodies are more 
commonly involved in patients older than 60 years). Collectively, 
inborn errors (5%) and autoantibodies associated with type I IFN 
signaling (15%) could account for about 20% of cases of critical 
COVID-19 pneumonia.

A two-step model seems likely whereby some patients 
demonstrate inadequate type I IFN immunity during early 
infection (whether mediated by inborn errors, autoantibodies, 
or other unknown factors). This contributes to unrestrained 
viral replication and spread, resulting in pulmonary and sys-
temic hyperinflammation (Figure 1B and ref. 18). Therefore, the 
timing of therapies enhancing type I IFN signaling is likely to 
be crucial, and they should be administered in the first few days  
of SARS-CoV-2 infection.

Role of de novo autoimmunity
Some clinical features of moderate to severe COVID-19 are rem-
iniscent of those seen in autoimmune diseases such as antiphos-

Figure 1. Some patients with severe COVID-19 exhibit autoantibodies antagonizing type I IFN immunity. (A) Type I IFNs bind to the IFN-α/β receptor 
(IFNAR) to induce the expression of IFN-stimulated genes (ISGs) that are essential for antiviral immunity. (B) Anti-IFN autoantibodies block IFN binding 
to its receptor, preventing the upregulation of ISG expression and impairing antiviral immunity. Uncontrolled replication of SARS-CoV-2 may then result in 
hyperinflammation and tissue damage.
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engage B cell receptor signaling in autoreactive B1 cells and there-
by induce autoantibody production (79–81). Self-proteins with 
affinity to DS are therefore more likely to be autoantigens. Wang 
et al. identified autoantigens with DS affinity from different cell 
lines and compared them with proteins altered at the protein or 
transcript level in SARS-CoV-2 infection (82–84). Notably, many 
of the SARS-CoV-2–altered proteins with DS affinity were associ-
ated with COVID-19 disease manifestations, such as neurological 
symptoms, thrombosis, and possibly PASC (82–84).

Other functional autoantibodies. Abnormal coagulation, along 
with microvascular and macrovascular thrombosis, is associated 
with not only severe COVID-19 (85, 86), but also the autoimmune 
thromboinflammatory disease antiphospholipid syndrome. Anti-
phospholipid syndrome is characterized by the presence of anti-
phospholipid autoantibodies (aPLs), which promote thrombosis 
by activating endothelial cells and platelets while also stimulating 
neutrophils to release neutrophil extracellular traps (NETs) (Fig-
ure 2A and refs. 87–90). Patients hospitalized with COVID-19 
exhibit elevated levels of NETs (91), which correlate with disease 
severity and thrombosis (92). In one study, approximately half of 
patients hospitalized with COVID-19 had at least one type of aPL, 
while positive aPL testing was associated with neutrophil acti-
vation, more NET release, reduced oxygenation efficiency, and 
more severe disease (93). Importantly, total IgG fractions from 
patients with COVID-19 who were positive for aPLs triggered 
NET release from healthy neutrophils (93), activated endothelial 
cells to upregulate cell adhesion molecules (94), and accelerated 
thrombosis when transferred into mice (93). All these phenotypes 
are similar to those associated with IgG fractions from individuals 
with established antiphospholipid syndrome.

Patients with antiphospholipid syndrome and other rheuma-
tological diseases have elevated levels of antibodies that bind to 
NETs, impairing NET degradation and likely activating comple-
ment (95, 96). Levels of anti-NET antibodies are also increased 
in patients hospitalized with COVID-19, with the highest levels 
in patients requiring mechanical ventilation (97). Anti-NET 
antibodies correlate with NET remnants in blood, COVID-19 
severity, and platelet count and inversely correlate with oxy-

immune responses (77).
Wang et al. used a more unbiased approach and screened for 

autoantibodies against extracellular and secreted proteins, which 
were theorized to be the main targets for functional autoantibod-
ies. Using rapid extracellular antigen profiling (REAP), in which 
barcoded human extracellular and secreted proteins are displayed 
on the surface of yeast (78), they identified a wide range of anti-
bodies targeting immune-related antigens, such as cytokines and 
chemokines, in the plasma of patients with COVID-19 (42). Mouse 
surrogates of these autoantibodies increased disease severity in a 
mouse model of SARS-CoV-2 infection (42). Furthermore, patients 
with COVID-19 exhibited autoantibodies against tissue-associat-
ed antigens that correlated positively with disease severity (42). 
Importantly, some autoantibodies were clearly induced following 
SARS-CoV-2 infection, suggesting that COVID-19 contributes to 
loss of tolerance (42, 77).

Autoantigens can form affinity complexes with the glycos-
aminoglycan dermatan sulfate (DS). These complexes may then 

Figure 2. Potential downstream mechanisms of autoantibodies identified in patients with severe COVID-19. (A) A subset of patients with severe 
COVID-19 have anti-phospholipid antibodies (aPLs) and/or anti–neutrophil extracellular trap (anti-NET) autoantibodies. aPLs may activate endothelial 
cells and platelets and stimulate neutrophils to release NETs. Anti-NET antibodies bind to NETs, impairing NET degradation by DNase. Together, these 
autoantibodies may activate complement and promote thrombosis. (B) In some patients with severe COVID-19, antibodies can prevent the expression of 
ISGs by antagonizing signaling through the type I IFN receptor in an FcγRIIb-dependent fashion, impairing antiviral immunity.

Table 1. SARS-CoV-2 shares some characteristic features with 
other viruses that trigger autoimmunity 

Features of other viruses Evidence for SARS-CoV-2
Precedes autoimmunity Case reports of patients developing classifiable 

autoimmune diseases following SARS-CoV-2 
infection (56–64)

Induces type I IFNs SARS-CoV-2 induces robust type I IFN responses  
in a subset of patients (23–26)

Breaks tolerance SARS-CoV-2 induces autoantibody production  
in patients with severe COVID-19 (42, 77)

Superantigen activity SARS-CoV-2 spike protein contains a  
superantigen motif and patients with severe 
COVID-19 exhibit TCR skewing consistent with 

superantigen activation (109)
Inhibits apoptosis of infected cells No evidence to date
Interferes with its own destruction No evidence to date
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prevent autoreactivity and, as such, is more prone to generating 
autoantibodies (100). In SLE, a large proportion of antibody- 
secreting cells originate from naive B cells (as opposed to mem-
ory B cells), which are activated via the extrafollicular pathway 
in a TLR7-dependent manner (101, 102). These extrafollicu-
lar B cells, known as double-negative (DN2) B cells, lack IgD, 
CD27, CXCR5, and CD21. They are poised to become antibody- 
secreting cells, tend to produce pathogenic autoantibodies, and 
are enriched in patients with active SLE, including patients with 
lupus nephritis (102).

Reminiscent of SLE, higher levels of both circulating DN2 B 
cells and circulating plasma cells associate with greater disease 
severity and poor outcomes in COVID-19 (Figure 3 and ref. 100). 
In addition, patients who succumb to COVID-19 lack Bcl6+ germi-
nal centers (103), consistent with a predominantly extrafollicular 
response. Patients with severe COVID-19 also exhibited higher  
numbers of unmutated SLE-associated, autoimmune-prone 
IGHV4-34 antibody–secreting cells in circulation (100, 104). The 
mechanisms contributing to extrafollicular pathway activation in 
severe COVID-19 are unknown; however, TLR7 drives DN2 cell 
differentiation (102), and TLR7 recognizes viral single-stranded 
RNA genomes, such as that of SARS-CoV-2 (105). Furthermore, 
patients with severe COVID-19 exhibit elevated plasma IL-6  
levels (106), which correlate with DN2 cell expansion (107). Nota-
bly, patients with high extrafollicular responses exhibit high titers 
of neutralizing antibodies against the receptor-binding domain 
of the SARS-CoV-2 spike protein (100), suggesting that a lack of 
protective antibodies is not the main driver of disease severity 
in these patients. Together, these studies indicate that autoim-
mune-prone extrafollicular B cells dominate the B cell response 
in many patients with severe COVID-19, likely contributing to the 
loss of tolerance and dysregulated humoral immunity in patients 
with severe disease.

Some viruses possess superantigen activity, enabling broad 
nonspecific T cell activation via MHC class II or the T cell receptor 
(TCR) and contributing to hyperinflammation and autoimmunity 
(108). Using computational modeling, Cheng et al. demonstrated 
that the SARS-CoV-2 spike protein contains a high-affinity motif 
similar to bacterial superantigens that directly interacts with the 
TCR and may form a ternary complex with MHC class II (109). 
Interestingly, the authors found that some patients with severe 
COVID-19 have a skewed TCR repertoire consistent with supe-
rantigen activity (109). Multisystem inflammatory syndrome in 
children (MIS-C) is a severe inflammatory syndrome with multi-
organ involvement that occurs in a small percentage of children 
following SARS-CoV-2 infection (110). One study of 16 children 
with severe MIS-C found significant expansion of TCR β chain 
variable gene 11-2 (TRBV11-2), TRBV24-1, and TRBV11-3 in MIS-C 
patients relative to febrile control patients, such that up to 24% of 
the clonal T cell space was taken up by clones using TRBV11-2 
(111). In silico modeling indicated that polyacidic residues in the 
Vβ chain encoded by TRBV11-2 strongly interact with the super-
antigen-like motif of SARS-CoV-2 spike glycoprotein, suggest-
ing that unprocessed SARS-CoV-2 spike may directly mediate 
TRBV11-2 expansion. Another study found that 24 of 32 patients 
(75%) with MIS-C (and none in other clinical groups) displayed 
TRBV11-2 (also known as Vβ21.3+) expansions (112). Notably, 

genation efficiency and NET clearance (97). Taken together, 
these findings suggest a potential role in COVID-19–associated 
thrombosis (Figure 2A).

Another study by Combes et al. found that immune cells from 
patients with mild COVID-19, including neutrophils and mono-
cytes, expressed a strong ISG signature (98). In contrast, and 
in line with some of the studies mentioned above (20, 21), ISG- 
expressing cells were less likely to be found in patients with severe 
COVID-19 requiring intubation and intensive care (98). In the 
study, one of seven patients with severe COVID-19 exhibited 
autoantibodies against IFN-α (98). In the remaining six patients, 
total IgG fractions antagonized signaling through the monocyte 
type I IFN receptor in FcγRIIb-dependent fashion (Figure 2B and 
refs. 98, 99). Although the antigen specificity of these antibodies 
remains to be determined (which would allow this concept to be 
tested more broadly in additional cohorts), these data suggest that 
therapies inhibiting FcγRIIb may have the potential to restore type 
I IFN responses in some patients with severe COVID-19.

Potential mechanisms of de novo autoimmunity in COVID-19. 
Effector B cell responses can be activated through the germinal 
center or extrafollicular pathways. Unlike germinal center reac-
tions, extrafollicular maturation lacks certain checkpoints to 

Figure 3. Potential mechanisms of de novo autoimmunity in COVID-19. 
Naive B cells can be activated via both the germinal center and the extra-
follicular pathway. The extrafollicular pathway lacks some tolerance check-
points that prevent the activation and maturation of autoreactive B cells 
and is, therefore, more prone to generating autoantibodies. Patients with 
severe COVID-19 exhibit higher levels of extrafollicular B cells lacking IgD, 
CD27, CXCR5, and CD21 (known as double-negative [DN2] cells) and plasma 
cells. They may also lack germinal centers. Red arrows indicate increased 
or reduced levels in patients with severe COVID-19 compared with patients 
with mild COVID-19.
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TRBV11-2 T cells correlate with MIS-C cytokine storm and were 
enriched in a cluster of patients with autoimmunity-associated 
immunoglobulin heavy chain variable region genes and increased 
autoantibodies targeting tissue-specific autoantigens (113). There-
fore, superantigen-like T cells may trigger hyperinflammation and 
the production of autoantibodies following SARS-CoV-2 infec-
tion, contributing to de novo autoimmunity. The extent to which 
SARS-CoV-2 spike–mediated superantigen activity contributes to 
autoimmunity in adults with severe COVID-19 is a topic worthy of 
further research.

Does autoimmunity play a role in PASC?
Whether autoimmunity contributes to PASC is only beginning to 
be addressed. Furthermore, as definitions of PASC are still being 
established, any available data will need to be interpreted in rela-
tion to the definition used by the authors. One recent study of 
96 patients detected antinuclear antibody (ANA) titers ≥1:160 in 
43.6% of patients at 12 months after COVID-19 symptom onset 
(114). In the cohort, the frequency of neurocognitive symptoms 
(such as concentration problems) was significantly higher in the 
group with ANA titers ≥1:160 compared with the group with titers 
less than 1:160 (107). Outstanding questions that should be sys-
tematically considered in the coming months and years include the 
following: Do preexisting autoantibodies predispose someone with 
COVID-19 to develop PASC? How commonly do de novo autoan-
tibodies persist beyond the acute phase of SARS-CoV-2 infection, 
and will these patients transition to a classifiable autoimmune 
disease? Meanwhile, does virus-induced autoreactivity underlie 
at least some of the wide spectrum of clinical phenotypes asso-
ciated with PASC? If so, can patients with acute disease or PASC 
be immunologically profiled to identify those who might benefit 
from immune-modulating therapies? Answering these questions 
will require the generation of multiethnic biospecimen reposito-
ries from COVID-19 patients, such as the Collaborative Cohort 
of Cohorts for COVID-19 Research (C4R), which includes infor-
mation from before, during, and after SARS-CoV-2 infection that 
can potentially enable the necessary longitudinal investigations 
(115). Analysis of large-scale electronic health record (EHR) data 
(116–118) will likely also be needed to determine clinical asso-
ciations with COVID-19, such as autoimmune manifestations. 
This approach has already been used to identify hospitalization 
trends and clinical and laboratory features and to predict sever-
ity in patients with COVID-19 (119–121) through initiatives such 
as the international Consortium for Clinical Characterization of 
COVID-19 by EHR (4CE; https://covidclinical.net) and the Nation-
al COVID Cohort Collaborative (N3C; https://ncats.nih.gov/n3c).

Conclusions
Many of the studies discussed above leveraged patient sam-
ples obtained in the early months of the COVID-19 pandemic, 
before the regular use of dexamethasone, and certainly before 
the advent of vaccination. Understanding the extent to which 
these interventions (and hopefully additional interventions to 
come) change how SARS-CoV-2 interacts with the immune sys-
tem is one important future direction. It will also be valuable to 
see additional studies that use affinity purification to character-
ize downstream mechanisms of specific autoantibody species. 
Furthermore, longitudinal cohorts that capture patient samples 
at the time of acute illness and then in follow-up will be import-
ant; establishing cohorts that also include pre-COVID samples 
will be even more valuable.

In conclusion, data to date strongly suggest that some severe 
COVID-19 cases can be explained by preexisting autoantibodies 
(which, interestingly, confer a risk similar to that conferred by 
rare inborn genetic errors in the same pathways). With regard to 
de novo autoantibody formation, a variety of such antibodies are 
detected when patients are hospitalized with severe COVID-19; 
however, there is still work to be done to determine whether these 
antibodies are important contributors to severe disease or an epi-
phenomenon of the marked inflammation. Going forward, the 
COVID-19 pandemic would seem to provide a once-in-a-lifetime 
opportunity to more precisely determine how a viral infection can 
be exacerbated by, and even trigger, autoimmunity.
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