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HIV infection and medications contribute to drive risk remains unknown. In this issue of the JCI, Correa-Macedo and Fava
et al. investigated alveolar macrophages (AMs) from people living with HIV (PLWH). To mimic the earliest event in
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production were assessed. M. tuberculosis–stimulated AMs from PLWH and from healthy individuals on PrEP showed
blunted responses compared with healthy controls. While HIV infection is the major risk factor for TB, these findings
suggest that ART may modulate AM responses and potentially contribute to residual risk of aTB in fully treated HIV.
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Mimicking the earliest events 
following pathogen encounter
The intersecting global pandemics of HIV 
and tuberculosis (TB) present a formida-
ble public health challenge. Among people 
living with HIV (PLWH), TB is the leading 
cause of death (1). The overlap of pathol-
ogy caused by these two pathogens also 
presents scientific challenges. Coinfection 
increases the risk of active TB (aTB) but 
the molecular determinants of this syner-
gism are unclear. Proposed mechanisms 
for the higher risk of aTB include deple-
tion of CD4+ T cells and multiple pathways 
of macrophage dysfunction in progressive 
HIV-1 infection (2). Antiretroviral therapy 
(ART) ameliorates but does not eliminate 
the enhanced risk of aTB, but the under-
lying mechanisms responsible for this 
persistent risk remain unknown. As the 
TB field increasingly turns to host-direct-

ed therapeutics (HDTs), the mechanisms 
of immunologic susceptibility to aTB 
need to be precisely identified. Defining 
the impact of HIV-1 infection on poten-
tial therapeutic targets must be a high 
priority of active basic and translational 
research (3, 4) and a substantial portion of 
that effort will need to focus on the innate 
immune response.

In this issue of the JCI, Correa- 
Macedo and Fava et al. (5) interrogated the 
functional competence of alveolar macro-
phages (AMs) from PLWH. The research-
ers isolated AMs from broncheoalveolar 
lavage (BAL) and challenged them with 
M. tuberculosis to mimic the earliest events 
following pathogen encounter, a key 
strength of their approach. The authors 
showed that stimulated AMs isolated from 
individuals with HIV on ART have a more 
closed epigenetic profile as compared with 

healthy controls, which they link to blunt-
ed transcriptional responses and cyto-
kine production. Of note, the authors also 
investigated phenotypes in HIV-seronega-
tive individuals currently on preexposure 
prophylaxis (PrEP) to prevent HIV infec-
tion. Interestingly, they identify blunted 
epigenetic plasticity in the AMs from PrEP 
subjects, which were more similar to AMs 
from PLWH than to those from healthy 
controls. This work addresses important 
gaps in the understanding of TB-HIV coin-
fection and raises provocative questions 
about the potential role of ART itself.

Prior studies have suggested that there 
are phases to the impact of HIV infection. 
In the nonhuman primate model of SIV 
infection, an initial heightened inflamma-
tory response in AMs following system-
ic SIV infection transitioned to a blunt-
ed response phenotype during chronic 
infection (6). This transition is thought to 
reflect the environment associated with 
HIV infection and not the direct infec-
tion of AMs, as although AMs can sup-
port HIV infection (7), it occurs in only 
a minority of AMs in the lungs of PLWH. 
Despite low amounts of infected AMs, 
those collected from the lungs of PLWH 
not on ART showed reduced induction 
of apoptosis after in vitro infection with 
M. tuberculosis that was linked to higher 
expression of IL-10 and suppression of the 
TNF-α response (8). Studies have sought 
to determine whether peripheral mono-
cytes could model AM responses in the 
lung environment, with mixed results. In 
a comparison of the airway inflammatory 
profiles in PLWH not on ART and HIV- 
seronegative individuals, despite elevated 
inflammatory cytokines in the peripheral 
blood of PLWH, there were no differences 
in the BAL cytokine profiles (9). Howev-
er, work on peripheral monocyte–derived 
macrophages offers critical insights into 
the heterogeneity of cellular responses to 
M. tuberculosis and the central role of the 
differentiation environment (10). This 
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high TB endemicity do not reveal differ-
ences in TB incidence rates between the 
active drug and placebo arms. However, 
interpretation of these data is limited by 
the low adherence to PrEP by study par-
ticipants (20, 21). In settings where aTB 
diagnosis remains rare, it will be harder to 
assess whether PrEP leads to an increase 
in risk of latent TB infection reactivation 
or acquisition. The epidemiological data 
definitively point to the importance of pre-
venting HIV infection among those at risk 
for TB infection. HIV infection remains the 
strongest individual risk factor for devel-
opment of aTB (2). Given the high effica-
cy of PrEP when used in patients with the 
appropriate risk profile, a theoretical risk of 
impaired response to TB exposure would 
not shift the weight of evidence away from 
favoring PrEP for individuals at risk.

The second possibility, highlighting 
the challenge of interpreting epigenetic 
data with clinical outcome correlates, also 
requires some careful thought. There is an 
absence of any defined clinical associa-
tion between use of ART for PrEP and an 
increase in incidence of respiratory infec-
tions. It is possible that the epigenetics and 
transcriptional blunting observed have a 
negligible clinical consequence, or that 
clinical effects only manifest when there is 
an interaction with an unmeasured impact 
of HIV infection itself. Notably, in the set-
ting of uncontrolled HIV-1 with concurrent 
aTB, initiation of ART is associated with a 
risk of immune reconstitution inflamma-
tory syndrome (IRIS) in as many as 15% of 
individuals with known TB at the time of 
starting ART (22). These data suggest that 
the immune suppressive impact of viremia 
is much more substantial than the impact of 
ART, but leaves unanswered the question 
of residual risk of aTB in fully treated HIV, 
when the impacts described in Correa- 
Macedo and Fava et al. (5) may have a 
greater role in susceptibility. Given the data 
that antiretroviral treatments may affect 
host metabolism and epigenetics, future 
studies will need to be considered within 
this context, interrogating whether chang-
es are the result of infection, medication, or 
the intersection of the two factors.
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where context is critical to interpretation. 
The importance of considering timing 
during the course of HIV infection, and 
also whether the cells are directly HIV- 
infected, exposed to HIV-derived innate 
stimuli, or if the effects are mediated by 
the metabolic and cytokine milieu condi-
tioned by active HIV viremia. Population 
level differences, for example in the fre-
quency of smoking or illicit drug use, may 
also contribute to environmental influ-
ences. Correa-Macedo and Fava and their 
colleagues (5) assessed environmental fac-
tors given the imbalance of smokers across 
their groups and did not see a marked 
shift in the results. Environmental factors 
should continue to be considered as key 
variables in future studies.

Future studies should interrogate how 
changes conditioned by ART may lead to 
changes in M. tuberculosis growth dynam-
ics through impacts on nutrient utilization 
or other key determinants of M. tubercu-
losis survival. For example, M. tuberculosis 
circumvents nutrient limitation via endog-
enous production of tryptophan and then 
exploits the concurrent immunotolerant 
environment (15, 16). While it is unlikely 
that antiretroviral drugs directly impact 
M. tuberculosis replication, the potential 
for multilayer disruptions in host cell func-
tions may have unexpected consequences 
for the host–pathogen interaction. Recent 
studies have also highlighted interac-
tions between antiretroviral treatment, 
endogenous retroviruses and the immune 
response (17–19). It is unknown whether 
similar immunological dynamics driven 
by endogenous retroelements may have 
contributed to the observations made by 
Correa-Macedo and Fava et al. (5).

Clinical implications
There are at least two ways to consider the 
clinical implications of the study (5) pre-
sented by Correa-Macedo and Fava and 
their colleagues: (a) as a cautionary point 
on the use of PrEP and (b) as a caution-
ary point in the interpretation of epigen-
etic data and its correlation with clinical 
outcomes. In the current clinical litera-
ture, there is no clear evidence to suggest 
an increased risk of diagnosis with aTB 
among individuals using PrEP. However, 
it is not clear that this possibility has been 
investigated. The large-scale PrEP trials in 
sub-Saharan African women in a region of 

research opens possibilities for more accu-
rately modeling the AM responses. The 
work presented by Correa-Macedo and 
Fava et al. (5) supplies important data on 
the phenotype of cells at the first point of 
contact. Their experimental approach pro-
vides data to inform future studies with 
more accessible cell populations including 
those from the periphery, establishing a 
benchmark of the tissue specific response 
profiles to validate other model systems.

Considerations and future 
studies
One additional dimension of Correa- 
Macedo and Fava et al. (5) was the inclu-
sion of individuals on PrEP for prevention 
of HIV infection. This control allowed the 
comparison of individuals exposed to ART 
both with and without concurrent HIV 
infection. The suggestion that ART itself 
may impact innate immune function is not 
without precedent. Previous studies have 
shown that some antiretroviral drugs can 
enhance activation of p90RSK, a kinase 
regulated by reactive oxygen species 
(11). Activation of this pathway was also 
observed in monocytes in a cohort of peo-
ple living with HIV, most of whom were 
taking ART. In separate work analyzing 
lymphocytes, antiretroviral exposure was 
linked to altered immunometabolic pro-
files (12). Importantly, in Correa-Macedo 
and Fava et al. (5), all PrEP participants 
received tenofovir disproxil and emtricit-
abine, whereas there was a heterogeneous 
mix of agents in those participants with 
HIV on ART. While the overall phenotype 
was consistent between the two groups, it 
is unclear whether all ART agents would 
have the same impact.

A limitation of the study was the 
inability to assess the role of HIV itself, as 
all participants with HIV had viral suppres-
sion. Prior work suggests that exposure to 
HIV single-stranded RNA can change his-
tone acetylation at the TNF-α promoter in 
AM cell lines (13). In contrast, studies of 
peripheral blood monocytes from people 
with chronic HIV infection identified a 
closed TNF-α promoter during high viral 
load, with a rise in histone 4 acetylation 
following HIV viral suppression that asso-
ciated with increased capacity for TNF-α 
production (14). These findings from prior 
studies, although discordant, are consis-
tent with the studies referenced above, 
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