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Introduction
Type 2 diabetes (T2D) is characterized by pancreatic β cell func-
tion and mass abnormalities (1). The clinical features of β cell 
failure include limited adaptive potential of β cell mass (2, 3), 
increased glucagon tone (4), rapid progression in response to 
incipient hyperglycemia (5), and limited response to treatment 
(6, 7). In this regard, whether β cell failure is reversible remains 
arguably the key question bearing on the issue of disease modifi-
cation (8). Understanding islet cell dysfunction is critical to design 
mechanism-based, durable, and safe disease-modifying interven-
tions (9). Yet, the limited ability to access the endocrine pancreas 
in vivo has hindered our ability to functionally interrogate islet 
cells. To wit, despite intensive, multicenter efforts to standardize 
procurement and analysis of human islets, there is no consensus 
on a diabetic gene expression signature (10), and mechanistic 
understanding of β cell failure pathways is still lacking. Indeed, 

while these studies have demonstrated islet cell gene expression 
heterogeneity (11–14), clear definition of a diabetic islet cell signa-
ture remains elusive.

Single-cell-based expression profiling can reveal disease 
determinants, but its ability to detect subtle differences, such as 
those between a diabetic and nondiabetic cell type (15), is ham-
pered by the fact that differential gene expression may not be 
assessed for up to 80% of the genes (gene dropout), due to low 
sequencing depth (16). To address this problem, we have devel-
oped the metaVIPER algorithm — an extension to single cells of 
the VIPER algorithm (17) — which can accurately measure the 
activity of approximately 6,500 regulatory and signaling proteins 
in single cells, based on the enrichment of their transcriptional tar-
gets (regulon) in differentially expressed genes (18). metaVIPER 
can accurately identify rare cell subpopulations that otherwise 
escape detection by expression-based analyses, by measuring pro-
tein activity in single cells (19).

In this work, we applied metaVIPER to identify master regu-
latory (MR) proteins controlling the potentially noisy gene expres-
sion signature of diabetic islet cells. In a critical validation of the 
computational analysis, we show that single-cell-based, CRIS-
PR-mediated inhibition of metaVIPER-inferred MR proteins, such 
as BACH2, can effectively reverse T2D-specific β cell features. 
Moreover, immunohistopathology of diabetic pancreata demon-
strates an enrichment of BACH2-expressing cells, as predicted by 
the metaVIPER algorithm. Finally, we show that treatment with 
a BACH inhibitor improves disease phenotypes in diabetic mice 
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ARACNe — a highly validated reverse-engineering algorithm (20) 
— to build tissue-specific regulatory networks from single cells, as 
shown in Ding et al. (18). Use of single-cell data greatly exceed-
ed ARACNe’s requirements for large data sets (n ≥ 100 samples), 
resulting in a comprehensive, first-of-a-kind pancreatic islet cell 
regulatory network, assembled from 6,137 scRNA-Seq profiles 
from T2D or ND islets. The resulting network is composed of regu-
lons for 1,813 TFs, 969 co-TFs, and 3,370 signal transduction (ST) 
proteins. Since direct physical regulation of gene expression signa-
tures is implemented by TFs and co-TFs, we used the network to 
measure the differential activity of TF and co-TF proteins in each 
single cell, compared with the average of all single cells, using 
metaVIPER (ref. 18 and Figure 1A).

t-SNE (t-distributed stochastic neighbor embedding) anal-
ysis based on metaVIPER-measured protein activity effectively 
removed most donor-to-donor batch effects, resulting in 2 dis-
tinct, yet donor-independent, cell clusters (Figure 1B and Sup-
plemental Figure 1). The 2 clusters did not represent the 2 major 

and insulin secretion in diabetic islets of mice and humans, thus 
providing proof of concept of the potential translational value of 
the findings. Thus, single-cell protein-activity-based analyses can 
discover diabetes-causing phenotypes, identify their MR proteins, 
and guide their pharmacological targeting. This work highlights 
the clinical potential of disease modification as a conceptual 
advance in diabetes research.

Results
Single-cell protein activity analysis of pancreatic islet cells. To capture 
T2D-specific cellular states, we used single-cell RNA sequencing 
(scRNA-Seq) profiles from 4 nondiabetic controls (ND) and 6 T2D 
donors (Supplemental Table 1; supplemental material available 
online with this article; https://doi.org/10.1172/JCI153876DS1) to 
build islet-specific transcription regulatory networks and to iden-
tify the transcription factors (TFs) and cofactors (co-TFs) that con-
trol their differential gene expression signatures (Figure 1A). To 
measure differential TF activity in individual cells, we first used 

Figure 1. metaViper analysis buffers donor-to-donor variability. (A) 
Schematic workflow of islet-specific regulatory network generation 
(ARACNe) and protein activity analyses (metaVIPER) at the single-cell 
level from sc-RNA-Seq data. (B) Single cells from human ND and T2D 
islets were projected onto 2D t-SNE space based on protein activity 
inferred from islet-specific regulatory networks. Each dot represents a 
single cell, color coded according to donor. (C) INS (insulin) and GCG (glu-
cagon) mRNA expression plotted in t-SNE at the single-cell level.  RPM, 
reads per million mapped reads. (D) Computationally inferred MAFA and 
IRX2 protein activity plotted in t-SNE at the single-cell level.
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Figure 2. iterClust classifies ND and T2D islet cells into different biological states. (A) iterClust analyses performed using ND and T2D islet cells. The resulting 
cluster architecture was visualized as a heatmap. Each subgroup is color coded. Each bar denotes a single cell. Black bars represent T2D cells and white bars 
ND cells. KRT19, AMY2A, PPY, SST, GCG, and INS mRNA expression is plotted at the single-cell level. metaViper-inferred protein activity for β or α cell factors, 
metabolic inflexibility, endocrine progenitor, and stemness markers is plotted at the single-cell level. RPM, reads per million mapped reads. (B) Violin plots 
showing the distribution of cells in each cluster based on integrated activity of β cell factors (top), α cell factors (middle), or stemness markers (bottom). (C) 3D 
plot showing integrated β cell factor, α cell factor, and stemness activity on the x, y, and z axes, respectively, at the single-cell level. (D) 3D plot as in C but based 
on the average cell behaviors of each cluster. Red arrows indicate T2D-enriched clusters, MI+2 (T2D-β-like) and MI–4 and MI–5 (both T2D-α-like).
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activity of a protein is measured from the differential expression 
of 50 or more of its transcriptional targets, akin to a highly multi-
plexed gene reporter assay, thus allowing reliable protein activity 
assessment even from low-depth profiles (18, 22).

MI+ cells showed clear evidence of a metabolic stress response 
(30), denoted by high FOXO1, HIF1α, HSF1, and TP53 activity 
(Supplemental Figure 3, A and B); endocrine progenitor features, 
denoted by high RFX6 (31, 32) and RFX7 activity (Figure 2A and 
Supplemental Figure 3C); and cell stemness, denoted by high 
NANOG, MYCL, and POU5F1 activity in a subset of RFX6/7-pos-
itive MI+ cells (Figure 2A and Supplemental Figure 3D). Thus, the 
2 main functional clusters in ND and T2D islets are defined by 
differential activity of metabolic inflexibility/stress-response and 
endocrine progenitor/stem-cell-like markers (25, 27).

Iterative clustering further divided the MI+ cluster into 5 
distinct subclusters — labeled MI+1 to MI+5 — and the MI– clus-
ter into 6 distinct subclusters — labeled MI–1 to MI–6. However, 
MI–6 appeared to contain KRT19-positive pancreatic ductal cells 
and was thus excluded from further analyses. Four clusters (MI+2, 
MI+4, MI–1, and MI–2) displayed β cell features. Specifically, MI–1 
contained the healthiest β cells, as indicated by the highest lev-
els of INS expression and β cell–specific TF activity, as well as by 
inactive metabolic inflexibility/stress response, progenitor/stem 
cell, and α cell identity (Figure 2, A–D); MI–2 had similar, yet less 
pronounced features, while MI+2 and MI+4 differed from the other 
2 clusters based on activation of metabolic inflexibility/stress-re-
sponse and progenitor/stem cell features (Figure 2, A–D, and Sup-
plemental Videos 1 and 2).

In contrast, 6 clusters (MI+1, MI+3, MI+5, MI–3, MI–4, and MI–5) 
had α cell or α cell–like features. Specifically, MI+5 showed the 
strongest α cell identity, with high GCG expression and IRX2 activ-
ity, and slight activation of metabolic inflexibility/stress response 
(Figure 2, A–D); MI+3 had similar features but stronger activation 
of metabolic inflexibility/stress response, while MI+1, also showed 
high progenitor/stem cell activities (Figure 2, A–D, and Supple-
mental Videos 1 and 2). Finally, MI–5, MI–4, and MI–3 showed grad-
ually decreasing α cell activity, despite preserved GCG expression 
and absence of metabolic inflexibility/stress response or progeni-
tor cell features (Figure 2, A–D).

canonical islet populations (β and α cells), as shown by integra-
tive assessment of INS (insulin) and GCG (glucagon) mRNA 
levels (Figure 1C), as well as MAFA and IRX2 protein activity 
(Figure 1D). Yet, INS and GCG mRNA expression aligned per-
fectly with metaVIPER-measured MAFA and IRX2 activity, 
respectively, confirming metaVIPER’s accuracy in marker activ-
ity measurement.

Statistically significant superiority of protein activity versus 
gene-expression-based clustering was recently demonstrated 
(21), including at the single-cell level (22). Thus, to further clus-
ter islet cells, including both ND and T2D cells, we performed 
unsupervised hierarchical clustering analysis using iterative 
clustering (iterClust) algorithms (23) with the full, metaVI-
PER-inferred protein activity matrix. The analysis yielded 11 
clusters (Figure 2A and Supplemental Figure 2), which were fur-
ther characterized by assessing established lineage and func-
tional markers, including (a) hormone mRNA expression, (b) 
activity of TFs characteristic of either β or α cell identity (24), 
(c) activity of metabolic inflexibility/stress-response drivers 
(25), and (d) activity of endocrine progenitor and stem-like-cell 
TFs (ref. 26 and Supplemental Table 2). The latter were chosen 
based on experimental evidence from animal studies of their 
role in disease progression (25, 27, 28).

Protein-based cluster analysis identified 2 main clusters, 
characterized by differential activity of metabolic inflexibility/
stress-response markers (25, 27) (MI+ and MI–) — a stage in the 
progression of β cell failure (25) — including PPARα and PPARγ 
(Figure 2A and Supplemental Figure 3). Expression of the corre-
sponding genes was virtually undetectable in most cells (Supple-
mental Figure 4), thus confirming metaVIPER’s superior sensitiv-
ity and complementarity, compared with mRNA measurements 
(Supplemental Figure 5). Regulatory proteins, including TFs and 
co-TFs, are often expressed at low levels in terminally differen-
tiated cells (29). More importantly, their mRNA expression is a 
poor predictor of their activity, due to complex posttranscriptional 
and posttranslational events. scRNA-Seq data have low sequenc-
ing depth, and as a result most genes (generally >80%) cannot 
be detected by even a single read (dropouts; ref. 18). metaVIPER 
effectively overcomes this limitation, because the differential 

Figure 3. T2D-enriched subclusters in human islets. (A) Bar plots presenting the percentage of ND or T2D cells in each subcluster. A dashed line represents 
the proportion of cells from ND or T2D islets analyzed by scRNA-Seq. P values were derived from Fisher’s exact test. (B) Single cells from human ND and T2D 
islets were projected onto 2D t-SNE space based on protein activity inferred from islet-specific regulatory networks. ND cells are shown in gray and T2D cells 
are shown in red as background. T2D cells in T2D-enriched clusters, MI+2 (T2D-β-like) and MI–4 and MI–5 (both T2D-α-like), were color coded as indicated.
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Figure 4. scGOF-Seq experiments in human islets. (A) Schematic drawing of scGOF-Seq plasmids and experimental procedure. ND islets (ND5) were 
used for this experiment. (B) Violin plots showing the distribution of cells following transduction with each individual candidate or combination thereof 
analyzed according to T2D-β-like signature, an integrated value of RFX6, RFX7, FOXO1, PPARα, PPARγ, RB1, POU5F1, NANOG, and MYCL protein activities. 
Nontransduced and BFP-transduced ND islets serve as negative controls. (C) Bar plots showing the normalized proportion of islet cells with a positive T2D-
β-like signature (activity > 0) in each scGOF-Seq condition over nontransduced control. (D) Violin plots showing cells with a T2D-α-like signature, which is 
an integrated value of IRX2, ZNHIT1, ZFPL1, PAX6, and DRAP1. (E) Bar plots showing the normalized proportion of islet cells with a T2D-α-like signature as 
in B. P values in C and E were derived from Fisher’s exact test.
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Single-cell protein activity analysis reveals T2D-enriched islet 
subpopulations. Next, we assessed whether the 10 molecularly 
distinct clusters were differentially represented in T2D versus ND 
cells and evaluated the statistical significance of their association 
(Figure 3A). Indeed, t-SNE plots revealed highly distinctive cluster 
representation patterns and differential subpopulation represen-
tation (Supplemental Figures 1 and 2). Notably, cluster analysis 
was performed without separating ND and T2D cells and using a 
common, islet-specific regulatory network, thus allowing for the 
unbiased, unsupervised determination of T2D- versus ND-specif-
ic cells across detected clusters.

The analysis revealed that ND islets were highly enriched in 
“healthy” β cells (MI–1), and α-like cells characterized by weak α 
cell markers but inactive metabolic inflexibility/stress response 
and progenitor/stem cell features (MI–3) (P = 3.4 × 10–8 and 8.2 × 
10–10, respectively, by Fisher’s exact test). In contrast, T2D islets 
were highly enriched in 3 clusters: MI+2, MI–4, and MI–5 (P = 9.6 
× 10–13, 7.9 × 10–71, and 1.0 × 10–80, respectively; Figure 3, A and B). 
Among these, MI+2 is composed of β cells with an active metabolic 
inflexibility/stress response and progenitor/stem-cell-like features 
(Figure 2, A–D, and Supplemental Videos 1 and 2). These cells are 
distinguished from the β cell cluster MI–2 by their higher MAFA and 

metabolic inflexibility/stress-response activities (Figure 2, A and 
B). The biphasic distribution of MAFA activity among different β 
cell clusters is reminiscent of the rodent islet stress response asso-
ciated with diabetes progression (30). However, this also heralds 
the onset of metabolic inflexibility (PPARα/γ; ref. 25) and dedif-
ferentiation (27), as indicated by RFX6 activation (31). MI–4 and 
MI–5 combine weak α-like features with a muted stress response. 
However, MI–5 showed elevated β cell and stemness TF activities 
compared with MI–4 (Figure 2, B and D, and Supplemental Videos 
1 and 2), consistent with a putative β- to α-like-cell reprogramming. 
Although we cannot establish directionality of the transition based 
on these data alone, functional testing described below supports 
the β- to α-like model. In summary, this analysis identified endo-
crine cell subpopulations enriched in T2D. They include β cells 
characterized by metabolic inflexibility/stress response and pro-
genitor/stemness signatures (MI+2), as well as cells with α-like fea-
tures (MI–4 and MI–5), consistent with cell reprogramming.

Different driver proteins elicit distinct T2D cell state transitions. 
To identify candidate MR proteins that mechanistically regulate 
the transcriptional identity of cells in T2D-enriched clusters, we 
assessed the most activated and inactivated proteins (candidate 
MR proteins), based on metaVIPER analysis of the 2 most rep-

Figure 5. Perturb-Seq experiments in human 
T2D islets. (A) Heatmap showing protein activity 
and mRNA expression of master regulators 
(MRs) in Perturb-Seq analyses. Black arrows indi-
cate the strongest knockout efficiency in each 
Perturb-Seq condition. T2D islets (T2D7) were 
used for this experiment. (B) Bar plots showing 
the normalized proportion of islet cells with 
a positive T2D-α-like signature, an integrated 
value of IRX2, ZNHIT1, ZFPL1, PAX6, and DRAP1 
(activity > 0) in each Perturb-Seq condition. (C) 
Bar plots showing the normalized proportion 
of islet cells with a T2D-β-like signature, which 
is an integrated value of RFX6, RFX7, FOXO1, 
PPARα, PPARγ, RB1, POU5F1, NANOG, and MYCL 
protein activities.
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resentative T2D-enriched clusters, MI+2 (T2D-β like) and MI–5 
(T2D-α like), versus the healthiest ND β and α cells (MI–1 and MI+5, 
respectively; Supplemental Data 1).

Based on their activity in T2D-enriched clusters and asso-
ciation with T2D susceptibility loci (Supplemental Table 3), we 
selected 15 candidate MR proteins for experimental validation 
using gain-of-function (GOF) assays in ND islets (Supplemental 
Table 4). For this purpose, we modified the Perturb-Seq protocol 
(33, 34) (single-cell GOF sequencing [scGOF-Seq]) (Figure 4A), 
in which the transduced gene can be mapped to an individual 
cell using a DNA barcode, allowing its identity and the effect of 
the gene manipulation to be read out by scRNA-Seq, for further 
metaVIPER analysis (Supplemental Figure 6 and Supplemental 
Table 3). We transduced islets with pooled adenoviruses (n = 3 in 
each pool) to simultaneously screen multiple candidates and test 
potential epistatic interactions among the cotransduced TFs.

We measured the MR candidates’ ability to reprogram ND cells 
toward a T2D transcriptional identity, as represented by the MI+2 
(β-like with metabolic inflexibility/stress response and progenitor/
stem-like features) and MI–5 (putatively converted, α-like) subtypes 
(T2D-β-like and T2D-α-like in Figure 2D). As an integrated metric 
of the MI+2 (T2D-β-like) state, we used a protein activity signature 
composed of RFX6, RFX7, FOXO1, PPARα, PPARγ, RB1, POU5F1, 
NANOG, and MYCL — henceforth referred to as T2D-β-like signa-
ture. As a metric of the MI–5 (T2D-α-like) state, we used a protein 
activity signature composed of IRX2, ZNHIT1, ZFPL1, PAX6, and 
DRAP1 — henceforth referred to as T2D-α-like signature (Figure 
4). Results are presented as violin plots illustrating the shift from 
the basal (nontransduced or BFP-transduced) to the scGOF-Seq 
cell population, and as bar graphs (Figure 4 and Supplemental Fig-
ure 7). For some candidate MR combinations, the number of trans-
duced cells was too low to allow statistical evaluation.

Figure 6. Single–β cell calcium microfluorimetry. (A) Schematic drawing of the single-cell Ca2+ imaging procedure. (B–E) Representative traces of Ca2+ flux 
measured by Rhod-2 loading in Ad-BFP– (B), Ad-AFF3– (C), Ad-BACH2– (D), or Ad-TCF4–transduced (E) primary human β cells from 3 technical repeats 
using 2 ND donors (ND7 and ND8). Red arrows indicate the timing of addition of 16.8 mM glucose, and black arrows indicate addition of 40 mM KCl. *P < 
0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by ANOVA with Dunnett’s method. 
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present the 2 experiments separately (Figure 4 for ND5 and Sup-
plemental Figure 9 for ND6; Supplemental Table 4) to circumvent 
batch effects that may arise from a merged analysis. Each experi-
ment was internally controlled using negative control guide RNAs 
(gRNAs), and the two are statistically independent.

Reversibility of diabetic islet cell signature by gene perturbation 
in T2D islets. Next, we asked whether targeted, CRISPR-mediated 
ablation of selected MR activity could reverse disease features in 
T2D islets (Supplemental Table 4), using a modified Perturb-Seq 
approach (ref. 34 and Supplemental Figure 10A). We generated 
individual adenoviruses encoding 4 different gRNAs for each of 
the top 3 candidate MRs emerging from the GOF assays, including 
AFF3, BACH2, and CUX2. Following transduction, we measured 
the extent of cotransduction with each gRNA by decoding gRNA 
barcodes (Supplemental Table 5) and plotted the effect of differ-
ent gRNA combinations for each candidate (MR) as SET1 to SET3, 
where each SET corresponds to a different gRNA for each gene 
(Supplemental Figure 10B). We measured mRNA levels and com-
puted protein activity signatures to identify sets that reproducibly 
reprogrammed cells to an ND-like state (Figure 5A, blue color).

AFF3 SET2 decreased AFF3 mRNA abundance and converted 
T2D-α-like cells back to an ND-like state but had no effect on the 
T2D-β-like signature (Figure 5, B and C). BACH2 SET1 decreased 
BACH2 mRNA and reversed both T2D-α-like and T2D-β-like sig-

The strongest emergence of the T2D-β-like signature was 
observed in cells transduced with the BACH2/TSZH2 and RARB/
GAS7/ZNF385D combinations, as well as with ZRANB3/MYT1L 
and CUX2/RFX7 (Figure 4, B and C). Next, we asked which 
TFs can drive conversion to a T2D-enriched α-like state. AFF3 
showed the strongest effect, followed by the BACH2/TSHZ2 and 
ZRANB3/MYT1L combinations (Figure 4, D and E; see also Sup-
plemental Figure 7). These data suggest that active reprogram-
ming to an α-like-cell state is characteristic of T2D.

To determine the mechanisms driving cell fate transitions to a 
T2D-β-like signature, we analyzed TFs and co-TFs whose activity 
changed in coordinated fashion upon conversion. We found that 
BACH2, FOXO1, MYTL1, NFATC3, RFX7, and TCF4 were coreg-
ulated in all conditions associated with a T2D-β-like endpoint sig-
nature (Supplemental Figure 8). While FOXO1 or TCF4 ectopic 
expression did not drive the T2D-β-like signature, their activity sig-
nificantly increased upon BACH2- or ZRANB3-dependent conver-
sion, suggesting that these 6 TFs form a hierarchical module whose 
coordinated activity drives T2D-β-like conversion. This observation 
is consistent with RNA-Seq analyses of β cell–specific FoxO1-knock-
out mice, which showed decreased Bach2 mRNA levels (25, 28). We 
confirmed the data in a replication experiment using islets from a 
different donor (Supplemental Figure 9), obtained on different 
dates with 2 independent adenovirus infection experiments. We 

Figure 7. BACH2 immunostaining in human pancreata. (A and B) Coimmunostaining of ACH2 (green), insulin (white), glucagon (red), and DAPI (blue) in 
human ND (A) or T2D pancreata (B). INS+GCG+ bihormonal cells expressing BACH2 are indicated by the pink arrows. Orange arrows indicate BACH2-positive 
β cells and white arrows indicate BACH2-positive α cells. Scale bars: 20 μm. (C–E) Ratio of BACH2-positive cells to INS+GCG– β cells (C), GCG+INS– α cells 
(D), and INS+GCG+ bihormonal cells (E). All data are expressed as mean ± SEM. **P < 0.01, ***P < 0.001 by 2-tailed, unpaired Student’s t test performed 
between the 2 groups (n = 9 per group).
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Functional effects of MRs on fate-converted cells. We next test-
ed whether converting ND β cells (Supplemental Table 4) to a 
T2D-enriched signature impairs β cell function, as assessed by 
measuring intracellular Ca2+ flux in response to glucose in single 
β cells identified by the INS reporter. For these experiments, we 
selected BACH2 (due to its effects on T2D-β-like signatures and 
genetic link to diabetes susceptibility; ref. 35), AFF3 (due to its 
effects on T2D α-like cell conversion), and TCF4 (as a negative 
control). We gated β cells by cotransducing RIP-zsGreen togeth-

natures toward an ND state. Finally, CUX2 SET2 inhibited CUX2 
mRNA and reversed T2D-α-like and T2D-β-like signatures. In 
each instance, the extent of knockdown correlated with the effects 
(Figure 5, B and C). These assays strongly corroborate the findings 
from the scGOF studies.

We also separately analyzed restoration of β and α cell features 
using INS and GCG mRNA as an indirect measure (Supplemental Fig-
ure 11A), as well as MAFA and IRX2 activities (Supplemental Figure 
11, B–E). This subanalysis was consistent with the findings in Figure 5.

Figure 8. The effect of BACH2 inhibitor treatment in diabetic mouse models. (A) Nonfasting blood glucose levels in male db/db mice treated with com-
pound 8 or vehicle control throughout 2 weeks of treatment. (B) Overnight-fasted glucose levels in db/db mice after 2 weeks of compound 8 treatment. 
(C) Plasma insulin levels in db/db mice treated with compound 8 as in A. (D) Oral glucose-tolerance test (OGTT) in db/db mice treated with compound 8 or 
vehicle control (n = 8 mice per group). (E) Insulin secretion at 2.8 mM or 16.8 mM glucose in islets isolated from db/db mice following 24 hours of treatment 
with 1 μM compound 8 (n = 10 per group). (F) Insulin secretion as in E but in hT2D islets (n = 10 per group, T2D8 and T2D9). All data are expressed as mean 
± SEM. *P < 0.05; **P < 0.01; ***P < 0.001 by ANOVA with Dunnett’s method performed between the 2 groups. 
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Discussion
Clinical progression of T2D is characterized by rapid degradation 
of β cell function (5) that becomes refractory to treatment, requir-
ing combination therapy and resulting in life-threatening compli-
cations. GLP-1–based agents have β cell protective effects (38), 
but do not appear to significantly delay monotherapy failure, or 
reverse established β cell failure (39, 40).

Through identification and functional characterization of 
diabetes-enriched islet cell populations, we provide proof of 
principle of disease reversibility at the cellular level and validate 
it by cellular studies in primary β cells of diabetics, immunohis-
tochemistry, and animal experimentation. These observations 
dovetail with the clinical reversibility of β cell failure in the ear-
ly phases of T2D (1), or in response to diet (41, 42), but also add 
a pharmacological dimension to the concept. Compound 8 was 
originally developed as a BACH1 inhibitor to treat multiple scle-
rosis but our data showed that it inhibits both BACH1 and BACH2 
(Supplemental Figure 12). BACH1 and BACH2 are highly homol-
ogous, with significant similarity in the bZIP and BTB domains. 
However, their expression pattern is different. While BACH1 is 
expressed ubiquitously, BACH2 is expressed in in B cells, T cells, 
alveolar macrophages, and neural cells (43). Our study suggests 
that BACH1/2 inhibitors (44, 45) may be repurposed in explor-
atory animal studies to evaluate their effectiveness against β cell 
failure. BACH2 expression has been linked to genetic susceptibil-
ity to type 1 diabetes (35), and changes to its chromatin structure 
have been reported in diabetic islets (46). In addition, BACH2 
is regulated by the Akt/mTOR pathway and has emerged from 
a previous analysis of β cell dedifferentiation (28). However, it 
has not been identified as a mechanistic determinant of T2D cell 
states. BACH2 binds to the Maf response element (MARE) with 
small MAFs, and inhibits genes involved in antioxidant respons-
es, which are activated by NRF2 when BACH2 is absent (43). 
Therefore, inhibition of BACH2 in T2D can increase NRF2-de-
pendent antioxidant response genes, decreasing cell damage and 
increasing β cell function.

Unbiased analysis of cell transition states identified 3 salient 
features of diabetic cell populations: (a) α cell–like features, (b) 
metabolic inflexibility/stress response, and (c) endocrine progeni-
tor/stem-cell-like features. A striking feature of the MR analysis is 
the existence of intermediate states, reflecting continuity between 
the main β and α cell identity, as detected by identification of α 
cell subpopulations with increased β cell signature and vice ver-
sa. This can be reconciled with the observation that the latter 
can be reprogrammed into surrogate β cells (47), as well as with 
the overall plasticity of endocrine islet cell fate. Within this dis-
tribution, healthy β cells (cluster MI–1) are enriched in ND, while 
“stressed” β cells (i.e., β cells with markers of metabolic inflexi-
bility/stress response/progenitor/stemness) are enriched in T2D 
(cluster MI+2). In the latter cluster, activation of the 2 nuclear 
hormone receptors PPARα and -γ may appear counterintuitive, 
since they oversee different lipid metabolic functions, but is in 
fact consistent with the observation that, as islets fail, synthetic 
and oxidative branches of lipid metabolism are coactivated (25). 
We have suggested that activation of PPARγ is in this context com-
pensatory by directing lipids toward synthesis as opposed to oxi-
dation. This provides a potential explanation for the longstanding 

er with adenovirus expressing each candidate TF (36) to monitor 
Ca2+ flux (Figure 6A). β Cells transduced with BFP showed a brisk 
Ca2+ response to glucose or KCl (Figure 6B). The glucose response 
was blunted in cells transduced with AFF3 or BACH2, while the 
KCl response was intact, indicating that AFF3 or BACH2 GOF 
impairs β cell glucose sensing but do not alter membrane depo-
larization (Figure 6, C and D). This is consistent with the loss of 
β cell features observed in scGOF-Seq experiments (Figure 4D). 
In contrast, TCF4 GOF had no statistically significant effect on 
Ca2+ influx compared to Tag-BFP (Figure 6E), consistent with the 
scGOF-Seq results. These data further validate our approach and 
strengthen the observations on AFF3 and BACH2.

Increased BACH2 expression in human T2D pancreata. To test 
the clinical relevance of these observations, we performed immu-
nofluorescence analysis of pancreatic samples obtained from ND 
and T2D patients (Supplemental Table 6) with anti-BACH2 anti-
bodies. BACH2-immunoreactive cells are rare in ND islets, while 
T2D pancreata show strong BACH2 immunoreactivity both in α 
and β cells (Figure 7, A and B). Quantitative analysis of the results 
showed a 4-fold increase in BACH2-positive β cells and a 3-fold 
increase in BACH2-positive α cells in T2D (Figure 7, C and D, and 
Supplemental Table 6). Also, the percentage of BACH2-positive 
cells among bihormonal cells (INS+GCG+) increased significantly 
in T2D islets (22% ± 5.6% vs. 80% ± 4.6%, ND vs. T2D, P < 0.0001; 
Figure 7E and Supplemental Table 6). These data are consistent 
with metaVIPER, showing activation of the BACH2 program in 
association with dedifferentiation and β to α transition.

A BACH2 inhibitor improves glycemia in diabetic mice. Finally, 
we tested whether inhibition of BACH2 using BACH2 inhibitors 
affects diabetes in experimental animals. Bach2 mRNA expression 
was significantly increased in diabetic mouse β cells compared 
with controls (Supplemental Figure 12A), consistent with human 
data (Figure 7). To test the effect of BACH2 inhibition, we admin-
istered compound 8 (Supplemental Figure 12B and ref. 37), a dual 
BACH2/BACH1 inhibitor (Supplemental Figure 12, C and D) to 
db/db mice for 2 weeks and monitored glucose levels throughout. 
Starting on day 7, we observed a glucose-lowering effect (Figure 
8A) as well as decreased fasting glucose in compound 8–treated 
animals in a dose-dependent manner (Figure 8B). Whereas plas-
ma insulin levels dropped in vehicle-treated mice, consistent with 
progressive β cell failure, this trend was reversed in compound 8–
treated mice, so that insulin levels gradually increased, consistent 
with improved β cell function upon BACH2 inhibition (Figure 8C). 
Moreover, oral glucose-tolerance tests showed that compound 8 
treatment improved glucose tolerance in db/db mice compared 
with vehicle-treated controls (Figure 8D and Supplemental Figure 
12, E and F). It is possible that some of these effects are related 
to peripheral actions of compound 8. Thus, to analyze the direct 
effect on islets, we examined the effect of compound 8 on diabet-
ic islets isolated from db/db mice or obtained from diabetic organ 
donors (Supplemental Table 4). In both instances, treatment with 
compound 8 resulted in a 50% increase in glucose-stimulated 
insulin secretion and total insulin content, consistent with res-
toration of β cell function (Figure 8, E and F, and Supplemental 
Figure 13). These data are consistent with the Perturb-Seq data in 
human islets (Figure 5) and support the conclusion that BACH2 
inhibition can reverse β cell failure.
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persed into single cells by mechanical shaking at 37°C using 0.05% 
trypsin (Gibco, 25300054). For scGOF-Seq or Perturb-Seq, adenovi-
rus-transduced cells were further gated for PacBlue-positive cells at an 
excitation wave length of 401 nm, and collected at 452 nm.

scRNA-Seq library preparation using the Fluidigm C1 800 platform. 
Sorted cells were suspended in C1 Cell Suspension Reagent (Fluidigm) 
and loaded onto each inlet of the C1 high-throughput integrated flu-
idic circuit (HT IFC). The number of cells captured in each chamber 
was visualized and noted using a phase contrast microscope. Only 
chambers with single-cell capture were used for analysis. Cells were 
lysed, and mRNA reverse transcribed and PCR amplified using C1 Sin-
gle-cell Auto Prep IFC (Fluidigm, protocol 101-4964). The quality and 
yield of cDNA were determined by Agilent Bioanalyzer using Agilent 
High Sensitivity DNA Chip. Libraries for sequencing were prepared 
using Nextera XT DNA library preparation kit (Illumina FC-131-1096) 
and sequenced with 50 paired-end cycles on an Illumina HiSeq 2500. 
Each library pool was sequenced in 2 lanes of the Illumina HiSeq 2500.

10× Genomics platform scRNA-Seq library preparation. Sorted cells 
for scGOF-Seq or Perturb-Seq were treated with a Chromium Single 
Cell 3′ Library and Gel Bead Kit v2 (PN-120237), Chromium Single 
Cell 3′ Chip Kit v2 (PN-120236), and Chromium i7 Multiplex Kit (PN-
120262), and analyzed with a 10× Genomics Chromium for Single-Cell 
Library Preparation Instrument, per the manufacturer’s specifications 
and 150-bp, paired-end sequenced on a HiSeq 4000 to a depth of 
90,000 unique molecular identifiers (UMIs) per cell. UMI counts for 
each cellular barcode were quantified and used to estimate the number 
of cells successfully captured and sequenced. The Cell Ranger Single 
Cell Software suite was used for demultiplexing, barcode processing, 
alignment, and initial clustering of the raw scRNA-Seq profiles.

We used the Chromium instrument and the Single Cell 3′ Reagent 
kit (v1) to prepare individually barcoded scRNA-Seq libraries following 
the manufacturer’s protocol (10× Genomics). For QC and to quantify 
the library concentration we used both the BioAnalyzer (Agilent BioAn-
alyzer High Sensitivity Kit) and qPCR (Kapa Quantification kit for Illu-
mina Libraries). Sequencing with dual indexing was conducted on an 
Illumina NextSeq machine using the 150-cycle High Output kit. Sample 
demultiplexing, barcode processing, and single-cell 3′ gene counting 
was performed with the Cell Ranger Single Cell Software Suite CR2.0.1. 
Each droplet partition’s contents were tagged with a UMI — a barcode 
encoded as the second read of each sequenced read pair. We followed 
the 10× Single Cell 3′ Reagent Kit’s v2 protocol as written, using 12 
cycles for cDNA amplification and 12 cycles for sample index PCR. Sam-
ples were sequenced to a depth of approximately 400 million reads per 
sample on a NovaSeq 6000 (R1 = 26 bp, R(i) = 8 bp, R2 = 91 bp).

Plasmid construction. We synthesized open reading frames (ORFs) 
of each scGOF-Seq candidate with a Tag-BFP and an 18-nt unique bar-
code (Supplemental Table 2) (Qinglan Biotech) and cloned them into 
the pENTR2b vector using KpnI and EcoRV (AFF3, CUX2, FOXO1, 
GAS7, TSHZ2, and ZFN385D), BamHI and NotI (BACH2, BNC2, 
EBF1, RARB, RFX7, and TCF4), SalI and NotI (MYT1L and NFATC3), 
or KasI and NotI (ZRANB3). For modified Perturb-Seq, we synthesized 
the DNA fragment containing the hU6 promoter and gRNA scaffold 
followed by CMV promoter and Streptococcus pyogenes Cas9 ORF with 
a Tag-BFP. We also inserted NotI and HindIII enzyme sites between 
Tag-BFP and the bGH poly(A) signal (Genewiz). This synthesized DNA 
fragment was cloned into the pENTR2b vector using KpnI and EcoRV 
(pENTR2B-Cas9). gRNA was cloned into the pENTR2B-Cas9 vector 

clinical observation that PPARγ agonists have beneficial effects on 
diabetes prevention and β cell function (48). Nevertheless, given 
the side effects associated with either PPARγ agonism (49, 50) or 
PPARα antagonism (51), we do not believe that these data can be 
exploited pharmacologically. Rather, they provide unbiased vali-
dation of the metaVIPER approach by linking it to mechanisms of 
disease identified in experimental models (25, 52).

Within “stressed” clusters (MI+), T2D islets are enriched in 
stressed β cells (MI+2), whereas ND islets are enriched in stressed 
α-like cells (MI+3). In this regard, there appears to be an inverse cor-
relation between GCG mRNA and activation of the IRX2-depen-
dent network on the one hand, and metabolic inflexibility/stress 
response on the other. Cells in which these features are more pro-
nounced prevail in ND islets, whereas cells with more muted α-like 
characteristics are enriched in T2D (MI–3 vs. MI–4 and MI–5), which 
is somewhat reminiscent of mixed-feature cells identified previ-
ously (53). What can this mean? One potential interpretation is that 
α-like cells displaying a more robust stress response are more resil-
ient, and hence capable of reversal to β cells (if indeed this is their 
origin), whereas those lacking a stress response are transitioning 
toward a functionally quiescent state. To the extent that these pro-
cesses are reversible, at least up to a point in the progression of the 
disease (54), there are likely to be subpools of cells undergoing β to 
α and α to β cell transitions. However, the clinically salient features 
of decreased insulin production and increased glucagon production 
make the β to α cell transition a key disease process.

Our functional studies show that analysis of regulatory net-
works, reverse engineered from single cells of pancreatic islets 
from T2D and ND individuals, can pinpoint drivers of different 
aspects of the cellular pathology, and, consistent with our find-
ings in other contexts (55), favor a model in which a small subset 
of TFs can drive different aspects of diabetic islet pathology. This 
regulatory model and associated protein activity signatures differ 
from those identified thus far and could not have been predicted 
based on mRNA expression, GWAS, or epigenetic analyses (56). 
The results that emerge are that BACH2 strongly affects dediffer-
entiation, whereas AFF3 has the strongest effect on driving the 
α-like cell phenotype.

In conclusion, the key findings of this work are the functional 
assessment of unbiased scRNA-Seq data, their functional validation 
in a disease-relevant context, and the identification of actionable 
targets for intervention that address the underlying pathophysiology.

Methods
Human islet procurement. Human ND and T2D islets were from the 
NIH’s Integrated Islet Distribution Program (IIDP). Upon arrival, 
human islets were plated at a density of 10,000 islet equivalents per 
10-cm nontreated tissue culture dish (Corning, 430591) into 10 mL 
of islet culture medium (Prodo Labs, PIM(S), cPIM-CS001GMP), sup-
plemented with 5 mL PIM(G) Glutamine/Glutathione (Prodo Labs, 
PIM-G001GMP), 5% PIM(ABS) Human AB Serum (Prodo Labs, PIM-
ABS001GMP), and triple antibiotics, PIM(3×), which includes cipro-
floxacin (Corning, 61-277-RF, 10 mg/L), gentamicin (Sigma-Aldrich, 
G1272, 10 mg/L), and amphotericin B (Omega, FG-70, 2500 μg/L). 
Islets were cultured for no longer than 1 week after arrival and medi-
um was replaced every 2 days. On the day of scRNA-Seq, islets were 
collected, washed in phosphate-buffered saline (PBS) once, and dis-
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380 nm at 0.5-second intervals, and imaged at 510 nm. For each data 
set, regions of interest corresponding to the locations of 10 to 20 indi-
vidual cells were selected and images were recorded using an Axio-
Cam camera controlled by Stallion SB.4.1.0 PC software (Intelligent 
Imaging Innovations). Single-cell intracellular Ca2+ mobilization data 
are plotted as a function of time.

Immunohistochemical and morphometric analyses. Paraffin sec-
tions of pancreas far from the margin of pancreatectomy were col-
lected from our previous research (57). In brief, all cases with partial 
pancreatectomy performed in Ruijin Hospital between 2013 to 2019 
were assessed. Cases with a malignant tumor were excluded and then 
9 cases of T2D patients and 9 age- and BMI-matched ND subjects 
were finally included in this study. Detailed information and clinical 
characteristics for each patient are listed in Supplemental Table 6. 

We fixed and processed tissue for immunohistochemistry as 
previously described (57). We performed immunofluorescence 
assays using 5-μm-thick paraffin sections obtained and processed as 
described previously (57). All slides were treated by tissue antigen 
recovery to improve the fluorescent immune detection of various 
proteins. Slides were incubated at 4°C overnight with a cocktail of pri-
mary antibodies diluted in the blocking reagent for chromogenic and 
fluorescent immunohistochemical assays. Primary antibodies were 
prepared at the following dilutions: guinea pig anti-insulin (1:800, 
DAKO, A056401–2), mouse anti-glucagon (1:400, Abcam, ab10988), 
and rabbit anti-BACH2 (1:100, Sigma, SAB2108650). Detection was 
performed using secondary antibodies conjugated to Alexa Fluor 488, 
594, and 647 (Jackson ImmunoResearch or Life Technologies). Nuclei 
were stained with DAPI (Vectashield, Vector Labs) as a marker. Images 
were captured with an Olympus Microscope or Zeiss LSC 710 confo-
cal microscope. We processed the quantification in a blinded fashion 
using the cell counter of ImageJ software (NIH) to analyze individual 
cells located throughout the whole cross section. This analysis scores 
numbers of positive cells for each marker and calculates the number of 
cells marked by different signals. To process cell counting, we exam-
ined insulin-positive cells (271 ± 63 vs. 207 ± 34 in ND vs. T2D; P = not 
significant) and glucagon-positive cells (124 ± 31 vs. 205 ± 39 in (ND 
vs. T2D; P = not significant) per group.

Quantitative analyses of single-cell gene expression. For scRNA-
Seq profiles of primary donors (GSE98887), raw sequencing reads of 
single cells were aligned to hg19 reference genome by Bowtie2-2.2.6 
(58). Aligned reads were sorted and indexed by samtools-1.2 (59). 
Count matrices were measured with R packages GenomicFea-
tures (1.24.5; ref. 60), GenomicAlignments (1.8.4; ref. 60), and 
TxDb.Hsapiens.UCSC.hg19.knownGene (3.2.2). Cells with fewer 
than 100,000 reads were filtered out as low-quality cells. For Per-
turb-Seq (GSE137766) and scGOF-Seq (GSE136887) profiles, UMI 
matrices generation, including quality filtering, were performed 
using the standard 10× Genomics Cell Ranger pipeline (v2.1.1) with 
hg38 reference genome. Barcode matrices were generated using 
the standard scPLATE-Seq data processing pipeline, which is avail-
able at https://github.com/califano-lab/scPLATE-Seq. Specifical-
ly, alignment and mapping were performed by STAR (2.5.2a) with 
flag --outFilterMultimapNmax 1 to exclude multimapping reads 
for accurate barcode quantification (61). QC reports of cells qual-
ity filtering, including distributions of transcriptome complexity 
(number of genes) and sequencing depth (number of reads/UMI) 
are included in Supplemental Figures 14–16.

using BsmbI (pENTR2B-gRNA-Cas9), and corresponding guide bar-
code was sequentially cloned into the pENTR2B-gRNA-Cas9 vector 
using NotI and HindIII (Supplemental Table 3).

Adenovirus generation. Recombinant adenoviruses for scGOF-Seq 
were generated using the pAd/CMV/V5-DEST Gateway recombina-
tion system (Life Technologies) after cloning the full-length cDNA 
into the pENTR vector. Individual adenoviruses were packaged and 
amplified in HEK-293A cells, and then pools of 3 P1 adenoviruses as 
detailed below were expanded into high-titer virus. Pool 1: ZNF385D, 
RARB, and GAS7; Pool 2: EBF1, FOXO1, and TCF4; Pool 3: BACH2, 
TSHZ2, and NFATC3; Pool 4: ZRANB3, BNYC2, and MYT1L; and 
Pool 5: AFF3, RFX7, and CUX2. Adenoviruses were purified by PD-10 
column (GE Healthcare, 17085101). Titers were determined by plaque 
assay (PFU). Each virus pool was transduced into HCT116 cells and 
expression was analyzed by qPCR. FOXO1, TCF4, NFACT3, RFX7, 
and AFF3 were amplified individually from P1 adenovirus. Adenovi-
rus for modified Perturb-Seq were generated using the pAd/PL-DEST 
Gateway recombination system (Life Technologies). Individual ade-
noviruses were packaged and amplified in HEK-293A cells, and then 
pools of 4 P1 adenoviruses encoding gRNA to target the same TF were 
expanded into high-titer virus.

Adenovirus transduction. Two hundred to 300 human ND islets 
were handpicked for each transduction condition and placed in 5 
mL round-bottom polystyrene test tubes. Thereafter, islets were 
washed and incubated with 100 μL serum-free islet culture medium 
containing 1 mM EGTA and transduced at an MOI of 20. After a 5- to 
6-hour transduction, 1 mL of complete islet culture medium with 5% 
PIM(ABS) Human AB Serum (Prodo Labs, PIM-ABS001GMP) was 
added overnight. Islets were then transferred to 60-mm nontreated 
tissue culture dishes (Thermo Fisher Scientific, FB0875713A), and 
the medium was replaced with fresh islet culture medium every 2 
days for 7 days for scGOF-Seq or Perturb-Seq experiments, and 3 
days for single-cell intracellular calcium microfluorimetry. The 2 
ND donors for scGOF-Seq were procured on different dates and 
adenoviral transduction resulted in different sets of transcription 
factors being transduced. For this reason, we analyzed the 2 data 
sets separately in Figure 4 and Supplemental Figure 9 for ND5 and 
ND6 (Supplemental Table 4), respectively, lest batch effects yield a 
biased analysis.

Single-cell intracellular calcium microfluorimetry. Similarly sized 
human islets from ND donors were handpicked and transduced with 
adenovirus expressing each candidate cDNA. The day after transduc-
tion, islets were partially dispersed using 0.05% trypsin for 5 minutes 
at 37°C, and then plated on 35-mm glass-bottom dishes with 10-mm 
microwells (In vitro Scientific, D35-10-0-N) precoated with fibronec-
tin (Sigma-Aldrich, F1141). Cells were washed with islet media and 
allowed to rest for 2 additional days. On the third day, each plate was 
washed with KRBH buffer (10 mM HEPES pH 7.4, 140 mM NaCl, 1.5 
mM CaCl2, 3.6 mM KCl, 0.5 mM NaH2PO4, 0.5 mM MgSO4, 2 mM 
NaHCO3, and 0.1 % BSA) and incubated with 2.8 mM glucose–con-
taining KRBH buffer for 30 minutes, and then loaded in the dark with 
5 μM Rhod-2, AM (Thermo Fisher Scientific, R1244) in KRBH buffer. 
Cells were washed and transferred into a perifusion chamber placed 
in the light path of a Zeiss Axiovert fluorescence microscope, and per-
ifused with low glucose (2.8 mM), high glucose (16.8 mM), or KCl (40 
mM) in KRBH buffer. β Cells were excited by a Lambda DG-4 150 watt 
xenon light source (Sutter), using alternating wavelengths of 340 and 
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pounds were administered orally (10 mL/kg) daily for 15 days in 1% 
hydroxyethylcellulose, 0.25% Tween 80, and 0.05% antifoam. Non-
fasted glucose and insulin were assessed throughout the study. On day 
13, after an overnight fast, oral glucose-tolerance tests were performed 
with a bolus of glucose (0.3 gm/kg).

Glucose-stimulated insulin secretion assays. Islets were preincubated 
in KRBH buffer for 1 hour at 2.8 mM glucose, followed by incubation in 
KRBH at 2.8 or 16.7 mM glucose for 1 hour at 37°C. At the end, we col-
lected islets by centrifugation and assayed the supernatant for insulin 
secretion or lysates for insulin content by ELISA (Mercodia, 10-1247-
01). The insulin levels were normalized to protein concentration.

Statistics. Figure 3A and Supplemental Figure 3, C and D quan-
tified the alteration of cell population proportions as opposed to the 
corresponding control groups, thus P values from Fisher’s exact test 
(FET) were used to evaluate the significance level. For example, to 
test whether cluster A1 in Figure 3A is enriched for ND or T2D cells, 
we constructed a 2 × 2 table (ND%, T2D%) × (A1 cells, all cells). 
Such table was then used for FET, and the yielded P value of 0.64 
indicted that cluster A1 is not significantly enriched for ND or T2D 
cells. The same FET was performed on other clusters in Figure 3A, 
as well as cell populations presented in Figure 4, C and E, and Sup-
plemental Figures 7–9. For Figure 8, ANOVA with Dunnett’s method 
was performed between the 2 groups. A P value of less than 0.05 was 
considered significant.

Study approval. Animal studies were performed under approved 
Animal Care and Use protocols by Lilly Research Laboratories. Human 
studies were approved by the Institutional Review Board of the Ruijin 
Hospital affiliated to Shanghai Jiao Tong University School of Medi-
cine and were in accordance with the principles of the Declaration of 
Helsinki II.

Data availability. scRNA-Seq data using the Fluidigm C1 system 
for all donors have been deposited in the NCBI’s Gene Expression 
Omnibus (GEO) database (GEO GSE98887). scGOF-Seq and Per-
turb-Seq data using the 10× Genomics Chromium platform have been 
deposited in the GEO database under accession numbers GSE136887 
and GSE137766, respectively.
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Regulatory networks and transcriptional regulator activity analysis. 
Islet-specific regulatory networks were reverse engineered by ARAC-
Ne (20) on an individual patient basis. ARACNe was run with 200 
bootstrap iterations using 1,813 transcription factors (genes annotat-
ed in Gene Ontology molecular function database as GO:0003700, 
“transcription factor activity” or as GO:0003677, “DNA binding” and 
GO:0030528, “transcription regulator activity” or as GO:00034677 
and GO: 0045449, “regulation of transcription”); 969 transcriptional 
cofactors (a manually curated list, not overlapping with the transcription 
factor list, built upon genes annotated as GO:0003712, “transcription 
cofactor activity” or GO:0030528 or GO:0045449); and 3,370 signal-
ing pathway related genes (annotated in GO Biological Process database 
as GO:0007165 “signal transduction” and in GO cellular component 
database as GO:0005622, “intracellular”, or GO:0005886, “plasma 
membrane”). Parameters were set to 0 data processing inequality (DPI) 
tolerance and mutual information (MI) P value (using MI computed by 
permuting the original data set as null model) threshold of 1 × 10–8. Pro-
tein activity profiles were then generated by metaVIPER by integrating 
across all 11 donor-specific regulatory networks (18).

Dimension reduction and clustering analysis. Dimension reduction 
was done using both gene expression and metaVIPER-inferred activ-
ity profiles. For gene expression, cells were first projected to principal 
component space using Principal Component Analysis (PCA), fur-
ther projected to 2D t-SNE space. The t-SNE function in the CRAN 
R package t-SNE-0.1.3 was used for t-SNE analysis. Specifically, 1 
– r (cell-wise Pearson correlation in principal component space) was 
used as distance matrix. For metaVIPER-inferred activity, cells were 
projected to 2D t-SNE space. The t-SNE function in CRAN R package 
t-SNE-0.1.3 was used for t-SNE analysis. Specifically, cell-wise activity 
dissimilarity was used as distance matrix (17).

Clustering analysis was done using the iterClust iterative clus-
tering analysis framework (23). The iterative clustering analysis was 
performed using the iterClust function in Bioconductor R package 
iterClust-1.0.2, at metaVIPER-inferred activity level. In total, 3 iter-
ations were done, separating cell populations at different metabolic 
stress states and cell types sequentially. Using scRNA-Seq data from 
cells with more than 0.1 million mapped reads, we first projected 
single cells onto on 2D space with t-SNE.

ELISA for HMOX1. HMOX1 protein induction as a measure of 
inhibition of the BACH1/2 cellular activity was quantified in cell 
lines expressing different combinations of these transcription fac-
tors. HMOX1 protein levels were determined using the DuoSet IC 
Human Total HO-1/HMOX-1 kit (R&D Systems, DYC3776). Cells 
were cultured according to the manufacturer’s protocol and seed-
ed (5,000 cells/well) in 96-well poly-D-lysine–coated plates. Two 
days after seeding, cells were treated with different concentrations 
of compound 8 in culture media for 6 hours and then lysed. Lysates 
were stored at –80°C overnight. ELISA plates were coated overnight 
with the capture antibody and the next day lysates were tested in the 
HMOX1 ELISA assay following the manufacturer’s protocol. Opti-
cal density of plates was read at 450 nm on a Cytation microplate 
reader (BioTek). 

In vivo mouse studies with BACH inhibitors. Five-week-old male 
C57BLKS/J db/db mice were purchased from The Jackson Laboratory. 
All mice were fed Lab Diet 5008, maintained under approved Animal 
Care and Use protocols for Lilly Research Laboratories, and housed 
under a 12-hour light/12-hour dark cycle. At 6 weeks of age, com-
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