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Lymphangiogenesis in the 
infarcted heart
Earlier studies in large mammals have 
demonstrated that lymphatic drainage of 
the heart is essential for maintenance of 
cardiac tissue homeostasis (1). Recently,  
there has been renewed interest in car-
diac lymphatics, as the cardiac lymphat-
ic network was found to be remodeled 
through the process of lymphangiogen-
esis following myocardial infarction 
(MI) (1–4). As with other organs, cardiac 
lymphatic expansion and remodeling in 
health and disease are mainly controlled 
by vascular endothelial growth factor 
receptor 3 (VEGFR-3) and its two ligands, 
VEGF-C and VEGF-D (ref. 5 and Figure 
1). Activation of VEGFR3, together with 
its coreceptor neuropilin (Nrp), induces  
migration, proliferation, and differen-
tiation of lymphatic endothelial cells 
(LECs) to expand the lymphatic vascular 
network (6). The pathophysiological trig-

gers for lymphangiogenesis include both 
tissue inflammation and edema, and 
emerging studies indicate that mechano-
transduction may contribute to the reg-
ulation of VEGFR3 activity in the heart 
(7). Concerning the origin of endogenous 
VEGF-C and -D ligands in the heart, both 
cardiomyocytes and cardiac-infiltrating 
immune cells are rich sources of these 
lymphatic growth factors (8, 9). In the 
setting of myocardial ischemia, hypoxia- 
inducible growth factors, including 
VEGF-A and PDGF-B, may also stimulate 
lymphangiogenesis (10, 11). In addition, 
other factors, such as adrenomedullin 
(12), contribute to cardiac lymphatic 
expansion after MI.

Impact of genetic loss of 
function of VEGF-C, VEGF-D, 
and VEGFR3
Studies in transgenic animals reveal that 
although Vegfd-null mice lack any clear 

phenotypes, Vegfc homozygous deletion 
is embryonic lethal due to lymphatic defi-
ciency (13). Vegfc-haploinsufficient embry-
os survive to adulthood, but display hypo-
morphic lymphatic vasculature. Similarly, 
neutralization of endogenous VEGF-C and 
-D ligands, through transgenic constitu-
tive expression of a soluble VEGFR3-Ig 
construct (sVEGFR3), severely delays 
lymphatic development, including in the 
heart where the lymphatics are present but 
dilated in adult mice (14, 15). An even more 
severe phenotype occurs in adult Chy 
mice, which harbor an inactivating muta-
tion in VEGFR3 (16) and whose cardiac 
lymphatics are profoundly abnormal (15). 
In contrast, constitutive Vegfr3 deletion is 
embryonic lethal, owing to early effects 
on blood vessel formation. Indeed, during 
embryonic development VEGFR3 is not 
yet restricted to LECs, and VEGF-C and -D 
contribute to embryonic angiogenesis via 
VEGFR3 expressed on blood endothelial 
cells (BECs). In adult mice, VEGF-C and 
-D also stimulate angiogenesis by bind-
ing to VEGFR2 expressed in BECs (17, 18). 
Together, these data uncover the impact 
of the VEGF-C/VEGF-D/VEGFR3 axis  
on the development and postnatal mat-
uration of lymphatics, including those of 
the heart. However, in healthy adult mice, 
inhibition of VEGF-C/VEGF-D/VEGFR3 
has limited, if any, functional impact, as 
quiescent lymphatic vessels in most organs 
are insensitive to reduced growth factor 
signaling (19).

In cardiovascular pathology, where 
lymphangiogenesis is reactivated in the 
inflamed and edematous heart, sVEGFR3 
strikingly reduces post-MI cardiac lymph-
angiogenesis, again indicating the key  
role of VEGF-C and -D ligands (8, 15).  
However, the functional impact was found 
to differ depending on whether attenua-
tion of the VEGFR3 signaling was chronic 
or acute; whereas transgenic constitutive 
sVEGFR3 expression increased post-MI 
mortality due to enhanced cardiac rupture 
(15), adeno-associated virus (AAV) delivery 
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VEGF-D/VEGFR3 axis potently inhibited  
infarct lymphangiogenesis. However, 
reduced lymphangiogenesis had no effect 
on the infarct size, nor on left ventricu-
lar dilation or function 7 or 14 days after 
MI (Figure 1). While myocardial edema 
during post-MI stages tended to increase 
in VEGFR3-deleted mice, there was no 
difference in infarct macrophage density, 
indicating limited functionality of infarct 
lymphatic vessels. These unbiased, exper-
imental data from multiple genetic models 
convincingly demonstrate that although 
endogenous lymphangiogenesis is potent-
ly induced in the post-MI infarct zone, it 
has no clear pathophysiological relevance, 
at least in the short term following MI.

Outlook and concluding 
remarks
The study by Keller, Lim, et al. (22) raises 
several important questions, one of which 
is whether inactivation of the VEGF-C/
VEGF-D/VEGFR3 axis similarly impacted  
lymphangiogenesis in the noninfarcted  
viable myocardium. Previous studies 
have shown that the endogenous lymph-
angiogenesis in the viable left ventricular 
wall in rodents after MI is both weak and 
slow (4, 8), hence the need for therapeu-
tic lymphangiogenesis. In the Keller, Lim, 

infarct size, with more moderate cardiac 
functional benefits linked to lymph-medi-
ated improvement of tissue homeostasis 
in noninfarcted, viable myocardium (4, 
8). Given that infarct maturation is heavily 
regulated by immune cells, it is conceiv-
able that stimulation of infarct lymphan-
giogenesis could accelerate resolution of 
edema and/or inflammation by enhancing 
clearance of extracellular fluid, debris, and 
immune cells from the developing scar tis-
sue. However, whether the kinetics of lym-
phatic vessel regrowth is sufficiently rapid 
to influence this process of infarct matura-
tion is debatable. Moreover, given the fact 
that cardiac lymphatics rely on contracting 
cardiomyocytes to propel the lymph, the 
functionality of lymphatic vessels in the 
infarct scar, which is nearly devoid of con-
tractile elements, remains uncertain.

In this issue of the JCI, Keller, Lim, 
et al. address this debatable issue (22). 
Using an elegant setup of several com-
plementary genetic models, including 
inducible LEC-selective deletion of the 
gene that encodes VEGFR3 (Vegfr3) or 
inducible global deletion of Vegfc in Vegfd-
null mice, the authors investigated the 
functional impact of cardiac lymphangio-
genesis on the infarct zone after MI. They 
found that inactivation of the VEGF-C/

of the gene encoding sVEGFR3 at the time 
of coronary ligation in mice surprisingly lim-
ited post-MI cardiac dysfunction (8). In the 
latter case, the mechanism included a reduc-
tion in infarct remodeling, with less infarct 
scar thinning due to decreased cardiac T cell 
density. This reduction in infarct remodel-
ing was proposed to reflect nonlymphatic 
effects of VEGF-C, with immune modula-
tion through alteration of dendritic cell mat-
uration, as previously described (20).

Controversies of 
lymphangiogenic therapy for MI
Several experimental studies have report-
ed that therapeutic lymphangiogenesis, 
achieved by VEGFR3-selective VEGF-C 
gene or protein therapy, suffices to improve 
post-MI cardiac function in rodents. In 
parallel, clinical trials based on Vegfd deliv-
ery in patients with coronary artery dis-
ease are currently ongoing (21). However, 
there are some controversies regarding the 
cellular mechanisms of these treatments. 
While one study indicated that intraperi-
toneal delivery of VEGF-C protein in mice 
reduced the infarct size and strikingly 
improved post-MI cardiac function (3), 
other studies based on either intramyo-
cardial protein delivery or AAV delivery 
of Vegfc did not report any effects on the 

Figure 1. Impact of the VEGF-C/VEGF-D/VEGFR3 axis on cardiac lymphangiogenesis. Cardiac lymphangiogenesis is reactivated, notably in the infarct zone, 
after myocardial infarction (MI). It is mainly regulated by binding of the growth factors VEGF-C and VEGF-D to the plasma membrane–spanning (PM-span-
ning) VEGFR3 tyrosine kinase (TK) receptor selectively expressed on lymphatic endothelial cells. This signaling leads to expansion of the preexisting lym-
phatic network in the heart, which, by modulating infarct scar maturation through accelerated resolution of edema and inflammation, may reduce cardiac 
dysfunction and development of heart failure. However, Keller, Lim, et al. reveal that inactivation of VEGF-C/VEGF-D/VEGFR3–induced infarct lymphangio-
genesis had no functional effect on either infarct size or cardiac function 14 days after MI in mice. These data call into question the functionality of infarct 
lymphatics, because although myocardial edema tended to increase, there was no change in infarct macrophage density following deletion of VEGFR3.
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et al. experiments, it is possible that other 
factors partially compensated for loss of 
VEGF-C/VEGF-D signaling, given that 
cardiac lymphatic vessels eventually form 
in sVEGFR3-transgenic mice (14, 15). Fur-
thermore, VEGF-C and -D also impact 
cardiac angiogenesis; although reduc-
tion in VEGFR3 signaling may upregulate 
VEGFR2 expression (15), it remains to be 
determined whether inactivation of the 
VEGF-C/VEGF-D/VEGFR3 axis, as per-
formed by Keller, Lim, et al., influenced 
myocardial angiogenesis. Last, but not 
least, given that VEGF-C, notably by acti-
vating VEGFR2, regulates many other cell 
types, including BECs, immune cells, and 
neurons, the cardiovascular impact linked 
to nonlymphatic effects of the VEGF-C/
VEGF-D/VEGFR3 axis modulation needs 
further investigation. For the clinical out-
look, deepening our understanding of 
where and how to stimulate lymphangio-
genesis is essential for improving lymphat-
ic clearance in the heart to limit edema and 
inflammation in cardiovascular diseases.
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