Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
T cell homeostatic proliferation elicits effective antitumor autoimmunity
Wolfgang Dummer, … , Ralph A. Reisfeld, Argyrios N. Theofilopoulos
Wolfgang Dummer, … , Ralph A. Reisfeld, Argyrios N. Theofilopoulos
Published July 15, 2002
Citation Information: J Clin Invest. 2002;110(2):185-192. https://doi.org/10.1172/JCI15175.
View: Text | PDF
Article Aging

T cell homeostatic proliferation elicits effective antitumor autoimmunity

  • Text
  • PDF
Abstract

Research Article

Authors

Wolfgang Dummer, Andreas G. Niethammer, Roberto Baccala, Brian R. Lawson, Norbert Wagner, Ralph A. Reisfeld, Argyrios N. Theofilopoulos

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Inhibition of melanoma growth by homeostatic T cell proliferation. (a) N...
Inhibition of melanoma growth by homeostatic T cell proliferation. (a) Nonirradiated (circles) or sublethally irradiated (squares) C57BL/6 mice were challenged subcutaneously with 5 × 105 B78D14 melanoma cells. Groups of irradiated mice were transfused with 5 × 106 (inverted triangles) or 5 × 107 (triangles) syngeneic B6.PL LN cells. Means and standard deviation of tumor growth are indicated (all groups, n = 7). (b) Proliferation profiles of gated Thy1.1+CD4+ and Thy1.1+CD4– (CD8+) cells in secondary lymphoid organs shown as CFSE histograms. Upper panel: nonirradiated C57BL/6 mice (Thy1.2+) transfused with 107 B6.PL (Thy1.1+) cells; middle panel: C57BL/6 mice irradiated and transfused with 5 × 106 B6.PL LN cells; lower panel: C57BL/6 mice irradiated and transfused with 5 × 107 B6.PL LN cells. FACS dot plots of host lymphoid organs are depicted to the right. (c) Total number of proliferating (one or more cell divisions) donor CD4+ and CD8+ cells in C57BL/6 recipients of 5 × 106 or 5 × 107 B6.PL LN cells calculated from data presented in b.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts