#### カタログ

| R2 supplementary Figures····· | 1 |
|-------------------------------|---|
| R2 supplemental clean······   | ō |



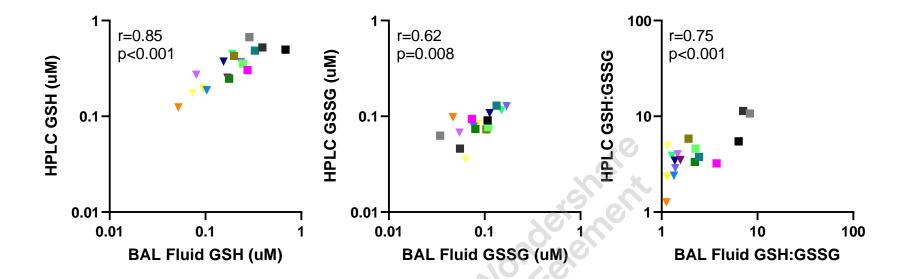
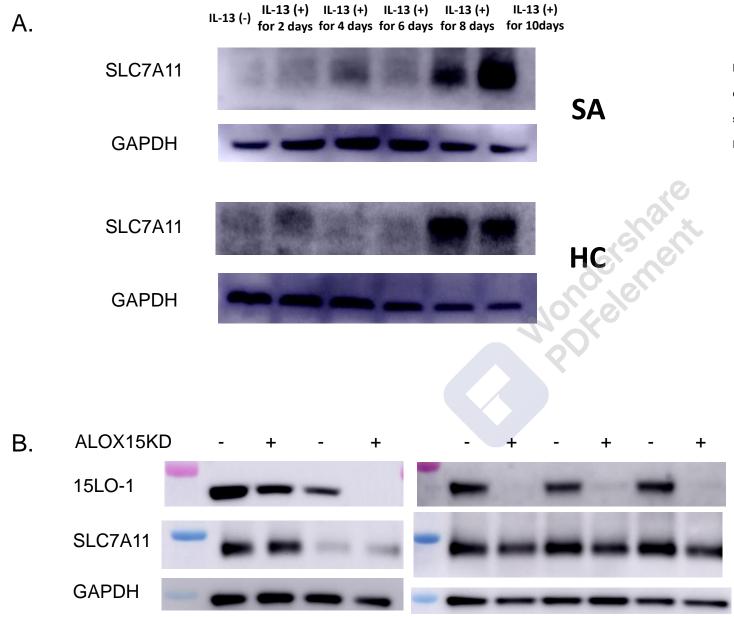
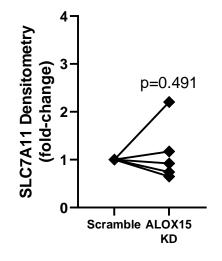
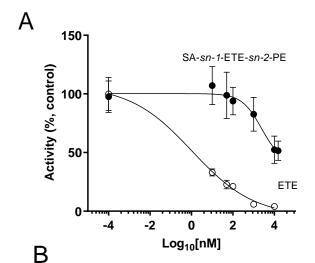
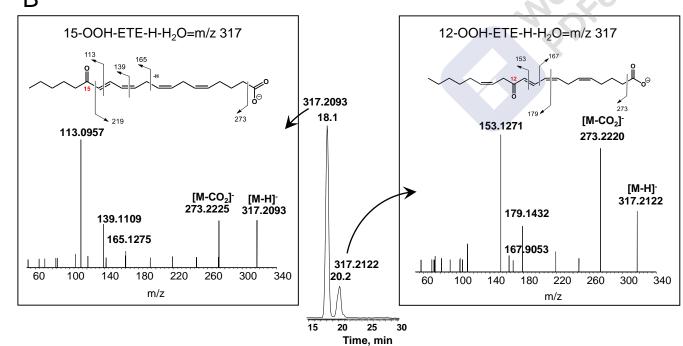





Fig. 1. GSH and GSSG levels and GSH:GSSG measured by enzymatic method correlated strongly with high-performance liquid chromatography (HPLC) measurements (n=17).




**Fig. 2. (A)** Representative western blots showing time course of SLC7A11 protein expression in response IL-13 stimulation *in vitro*. (**B**) Representative western blots showing the inconsistent impact of ALOX15 siRNA knockdown on SLC7A11. (**C**) Densitometric analysis of the fold changes.




C.

# Supplemental Figure 3.



| Sample                    | 15-LOX-1 IC <sub>50</sub><br>values |
|---------------------------|-------------------------------------|
| ETE                       | 6.4 ± 0.2 nM                        |
| SA-sn-1-ETE-sn-2-PE       | 2.9 ± 0.4 μM                        |
| SA-sn-1-ETE-sn-2-PE+PEBP1 | 3.1 ± 0.5 μM                        |





**Fig 3.** Effect of BLX2477 on oxidation of free eicosanotetraenoic acid (ETE) and stearoyl-sn-1-eicosatetraenoyl-sn-1-phosphatidylethanolamine (SA-sn-1-ETE-sn-2-PE) by 15-LOX-1 in the absence and in the presence of PEBP1.

- (A) Concentration dependent inhibition of 15LO1 activity by BLX2477 in the presence of ETE (open circles) or in the presence of SA-sn-2-ETE-sn-2-PE (closed circles) (left panel). The data are presented as % of control. 100% of 15LO1 activity in the absence of BLX2477 was used as the control (n=5-7).  $IC_{50}$  values of 15LO1 for BLX2477.  $IC_{50}$  values were calculated using GraphPad Prism (GraphPad Software, Inc.)
- (B) 15LO1 oxidation of ETE results in the formation of two oxidized products 15-OOH-ETE and 12-OOH-ETE. Base peak profile of oxygenated ETE formed during 15LO1-driven reaction (middle panel). MS<sup>2</sup> spectrum and structural formulas showing the fragments formed during the analysis of molecular ions with m/z 317.2 corresponding to 15-OOH-ETE without water (left panel) and 12-OOH-ETE without water (right panel).

Experimental conditions: ETE or SA-sn-1-ETE-sn-2-PE were integrated into OA-sn-1-OA-sn-2-PC (100 mM, at ratio of 1:1) liposomes and incubated with 15LO1 (0.4mM) for 2.5 and 5 min at 37°C. Reaction was started by the addition of 3  $\mu$ M 13 HpODE. At the end of incubation lipids were extracted and analyzed by LC/MS.

# Supplemental Figure 4.

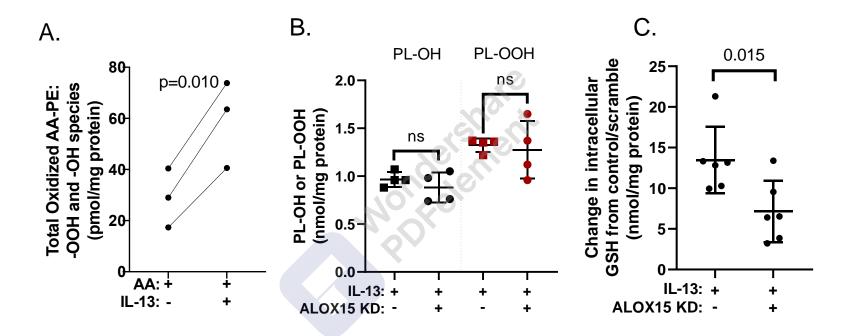



Fig 4. (A) Changes in hydroperoxy- and hydroxy-arachidonic acid (AA) species, including 15-HpETE and 15-HETE, following IL-13 with AA supplementation in HAECs. (B) Changes in total hydroperoxy- (PL-OOH) and hydroxy-phospholipids (PL-OH) following IL-13 and ALOX15/15LO1 KD compared to control/scramble in HAECs. (C) Changes in intracellular GSH.

- 1 Supplemental Figures.
- 2 Fig. 1. GSH and GSSG levels and GSH:GSSG measured by enzymatic method correlated
- 3 strongly with high-performance liquid chromatography (HPLC) measurements (n=17).
- 4 Fig. 2. (A) Representative western blots showing time course of SLC7A11 protein expression
- 5 in response IL-13 stimulation in vitro. (B) Representative western bltos showing the
- 6 inconsistent impact of ALOX15 siRNA knockdown on SLC7A11. (C) Densitometric analysis
- 7 of the fold changes.
- 8 Fig 3. Effect of BLX2477 on oxidation of free eicosanotetraenoic acid (ETE) and stearoyl-
- 9 sn-1-eicosatetraenoyl-sn-1-phosphatidylethanolamine (SA-sn-1-ETE-sn-2-PE) by 15-LOX-1
- in the absence and in the presence of PEBP1.
- (A) Concentration dependent inhibition of 15LO1 activity by BLX2477 in the presence of ETE
- 12 (open circles) or in the presence of SA-sn-2-ETE-sn-2-PE (closed circles) (left panel). The
- data are presented as % of control. 100% of 15LO1 activity in the absence of BLX2477 was
- used as the control (n=5-7). IC<sub>50</sub> values of 15LO1 for BLX2477. IC<sub>50</sub> values were calculated
- using GraphPad Prism (GraphPad Software, Inc.)
- 16 **(B)** 15LO1 oxidation of ETE results in the formation of two oxidized products 15-OOH-ETE
- and 12-OOH-ETE. Base peak profile of oxygenated ETE formed during 15LO1-driven
- reaction (middle panel). MS<sup>2</sup> spectrum and structural formulas showing the fragments formed

19 during the analysis of molecular ions with m/z 317.2 corresponding to 15-OOH-ETE without 20 water (left panel) and 12-OOH-ETE without water (right panel). 21 Experimental conditions: ETE or SA-sn-1-ETE-sn-2-PE were integrated into OA-sn-1-OA-sn-22 2-PC(100 mM, at ratio of 1:1) liposomes and incubated with 15LO1 (0.4mM) for 2.5 and 5 23 min at 37°C. Reaction was started by the addition of 3 μM 13 HpODE. At the end of incubation 24 lipids were extracted and analyzed by LC/MS. 25 Fig 4. (A) Changes in hydroperoxy- and hydroxy-arachidonic acid (AA) species, including 15-26 27 HpETE and 15-HETE, following IL-13 with AA supplementation in HAECs. (B) Changes in total hydroperoxy- (PL-OOH) and hydroxy-phospholipids (PL-OH) following IL-13 and 28 29 ALOX15/15LO1 KD compared to control/scramble in HAECs. (C) Changes in intracellular 30 GSH. 31

## Supplemental Table 1. Characteristics of fresh epithelial cell subset

|                     | HC (n = 11) | M/M (n = 4)   | SA (n = 11)   | P value |
|---------------------|-------------|---------------|---------------|---------|
| Age (years)         | 44 ± 14     | 35 ± 18       | 52 ± 11       | 0.189   |
| Female/male         | 8/3         | 2/2           | 7/4           | 0.706   |
| BMI (kg/m²)         | 27 ± 4      | 28 ± 2        | $30 \pm 7$    | 0.478   |
| History of          | NA          | 1/3           | 6/5           | 0.310   |
| exacerbation*,      |             |               | .charle       |         |
| yes/no              |             | 200           | Shall<br>11/0 |         |
| Inhaled             | NA          | 1/3           | 11/0          | 0.001   |
| corticosteroids,    |             |               |               |         |
| yes/no              |             |               |               |         |
| ACQ                 | NA          | 0.6 (0.2-1.2) | 1.7 (1.3-3.0) | 0.023   |
| AQLQ                | NA          | 6.3 (5.9-6.7) | 5.2 (3.9-5.8) | 0.013   |
| FeNO (ppb)          | 11 (9-17)   | 31 (14-47)    | 37 (17-45)    | 0.011   |
| FEV <sub>1</sub> (% | 102 ± 13    | 98 ± 17       | 65 ± 25       | < 0.001 |
| predicted)          |             |               |               |         |

32

- 34 p values by ANOVA, Mann-Whitney, Kruskal-Wallis, or  $\chi^2$  tests
- 35 Exacerbation\*, self-reported use of systemic corticosteroid ≥3 days in past 12 months





## Supplemental Table 2. Relationships between extracellular (BAL fluid) and intracellular

#### **GSH** pathways in asthma and HCs

|                      | BAL fluid |           |          |
|----------------------|-----------|-----------|----------|
|                      | GSH (μM)  | GSSG (μM) | GSH:GSSG |
| <u>Intracellular</u> |           |           |          |
| GSH (nmol/mg         | r=0.41    | r=-0.29   | r=0.58   |
| protein)             | p=0.037   | p=0.156   | p=0.002  |
| GSSG (nmol/mg        | r=0.26    | r=-0.09   | r=0.33   |
| protein)             | p=0.191   | p = 0.645 | p=0.104  |
| GSH:GSSG             | r=0.13    | r= -0.19  | r=0.24   |
|                      | p=0.517   | p= 0.352  | p=0.234  |

- 52 Supplemental Table 3. Non-parametric correlations for BAL eosinophils (absolute, %
- 53 BAL cells) and GSH, GSSG and GSH:GSSG

54

55

#### Eosinophils

|               | Absolute eosinophil | % BAL Cells |
|---------------|---------------------|-------------|
|               | numbers             |             |
| AL Fluid:     |                     |             |
| GSH           | rho=0.02            | rho=-0.08   |
|               | rho=0.02<br>p=0.877 | p=0.417     |
| GSSG          | rho=-0.01           | rho=0.05    |
|               | p=0.938             | p=0.644     |
| GSH:GSSG      | rho=-0.05           | rho=-0.18   |
|               | p=0.610             | p=0.078     |
| r-epithelial: |                     |             |
| GSH           | rho=-0.25           | rho=-0.33   |
|               | p=0.227             | p=0.102     |
| GSSG          | rho=-0.26           | rho=-0.29   |
|               | p=0.199             | p=0.148     |

| GSH:GSSG | rho=-0.07 | rho=-0.14 |
|----------|-----------|-----------|
|          | p=0.730   | p=0.482   |

56

57

60

58 Supplemental Table 4. Non-parametric corrleations of inflammatory cells (% BAL cells)

versus BAL fluid and intracellular/intra-epithelial GSH, GSSG, and GSH:GSSG.

### 61 Other Inflammatory Cells

|            | Neutrophils   | Macrophages    | Lymphocytes    |
|------------|---------------|----------------|----------------|
|            | (% BAL cells) | (% BAL cells ) | (% BAL cells ) |
| BAL Fluid: |               |                |                |
| GSH        | rho=-0.06     | rho=0.01       | rho=-0.01      |
|            | p=0.586       | p=0.989        | p=0.914        |
| GSSG       | rho=0.16      | rho=-0.15      | rho=0.07       |
|            | p=0.147       | p=0.156        | p=0.542        |
| GSH:GSSG   | rho=-0.19     | rho=0.14       | rho=-0.09      |
|            | p=0.089       | p=0.206        | p=0.431        |

|         | _     |       |
|---------|-------|-------|
| Intra-e | nitha | lial• |
| mura-e  | pune  | uui.  |

| GSH      | rho=-0.07 | rho=0.01 | rho=0.13  |
|----------|-----------|----------|-----------|
|          | p=0.725   | p=0.985  | p=0.527   |
| GSSG     | rho=0.15  | rho=0.17 | rho=-0.12 |
|          | p=0.481   | p=0.403  | p=0.557   |
| GSH:GSSG | rho=-0.32 | rho=0.01 | rho=0.07  |
|          | p=0.117   | p=0.956  | p=0.744   |
|          | Not       | detshont |           |

## Supplemental Table 5. Correlation of T2 signature genes and ALOX15 expression.

|                   | ALOX15 expression |
|-------------------|-------------------|
| CCL26 expression  | r=0.58            |
|                   | p<0.001           |
| MUC5AC expression | r=0.41            |
|                   | p<0.001           |
| NOS2 expression   | r=0.67            |
|                   | p<0.001           |
| POSTN expression  | r=0.56            |
|                   | p<0.001           |

65 Bold p-values pass Bonferonni Correction