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Introduction
While cases of severe coronavirus disease 2019 (COVID-19) occur 
relatively less frequently in children than adults (1, 2), a small pro-
portion of SARS-CoV-2–infected children develop a novel pedi-
atric febrile entity called multisystem inflammatory syndrome 
in children (MIS-C) within 2 to 5 weeks of initial SARS-CoV-2 
exposure (3–9). MIS-C disproportionately affects male children 
and children of Hispanic or Black descent. It manifests as a severe 
and uncontrolled inflammatory response with multiorgan involve-
ment (3–10). A hyperinflammatory state is evidenced by clinical 
makers that include high serum concentrations of C-reactive pro-
tein (CRP), ferritin, and D-dimers, and increased levels of proin-
flammatory cytokines (3, 6, 9, 11, 12). Children often present with 
persistent fever, severe gastrointestinal (GI) symptoms, cardiovas-
cular manifestations, and respiratory and neurological symptoms 
(3, 4, 6–10). Cardiovascular manifestations include hypotension, 
shock, cardiac dysfunction, myocarditis, and pericardial effusion 

(5). In the United States, admission to the intensive care unit (ICU) 
occurs in approximately 58% of cases (5).

The immunological features of MIS-C involve perturbations in 
both innate and adaptive immune responses. MIS-C patients have 
a highly activated myeloid cell compartment (13–15) and elevated 
levels of cytokines and chemokines that mediate neutrophil and 
monocyte chemotaxis, differentiation, and activation (14). MIS-C 
is associated with severe T cell lymphopenia, high levels of T cell 
activation, and expansion of vascular patrolling CX3CR1+CD8+ T 
cells (13–16). We recently identified HLA class I alleles associated 
with expansion of TRBV11-2 T cells in severe MIS-C (17). Inter-
estingly, in these cases TRBV11-2 expansion did not follow the 
typical CDR3-dependent clonal selection observed with conven-
tional antigens (17). Instead, CDR3 regions of expanded TRBV11-2 
T cells were diverse, similar to observations following superanti-
gen-driven T cell expansion (17). This expansion correlated with 
disease severity and cytokine storm, suggesting TRBV11-2 T cell 
expansion may be an important mechanism driving severe MIS-C 
(17). B cell responses may also contribute to MIS-C pathogene-
sis, as plasmablast frequencies have been reported to be elevated 
during MIS-C (13, 18). In addition, most children with MIS-C have 
IgG and IgA anti–SARS-CoV-2 antibodies (14, 15, 19), including 
highly inflammatory anti–SARS-CoV-2 IgG antibodies involved in 
monocyte activation and Fc binding (19). A number of autoanti-
bodies against immunomodulatory mediators and antigens from 
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discovery proteomics analysis on native and depleted (top 14 most 
abundant proteins) serum or plasma samples (ref. 21, Figure 1B, 
and Supplemental Figure 2A). Both data sets were integrated at the 
transition, peptide, and protein level. As plasma was used for KD 
samples, clotting factors (Supplemental Figure 2B) were removed 
from the data set for any downstream analysis involving the KD 
group. Principal component analysis (PCA) (Figure 1B) and hierar-
chical clustering (Figure 1C) showed that the MIS-C and KD pro-
teomes clustered separately from healthy controls. Similar to our 
cytokine analysis, MIS-C and KD showed similar protein profiles, 
indicating that shared pathological pathways likely exist between 
the diseases (Figure 1, B and C). The major proteins contributing 
to dimension 1 of the PCA plot, which separates disease samples 
(MIS-C and KD) from the healthy controls, included inflammatory 
markers and alarmins such as SERPINA3, CRP, haptoglobin (HP)/
zonulin, LPS-binding protein (LBP), CD14, S100A8 and S100A9 
(Figure 1B and Supplemental 2C).

Protein Interaction Network Extractor (PINE; ref. 22) analysis 
of differentially expressed proteins between the groups revealed an 
enrichment of protein networks involved in multiple inflammatory 
processes and pathways, including neutrophil degranulation, plate-
let activation, complement and coagulation cascades, phagocyto-
sis, angiogenesis, acute-phase responses, oxidative stress, metab-
olism, and cell migration and adhesion (Supplemental Figure 2D).

Hierarchical clustering analysis led to the identification of 3 
main clusters of disease samples, sample clusters S1, S2, and S3 
(Figure 1C). A large set of proteins (protein cluster 1, C1) were 
upregulated in both KD and MIS-C, most strikingly in sample 
clusters S1 and S2, compared with healthy controls (Figure 1C). 
Functional annotation analysis revealed that this cluster was 
enriched with proteins involved in leukocyte-mediated immuni-
ty, neutrophil-mediated immunity, humoral immune responses, 
and extracellular matrix (Figure 1D and Supplemental Figure 
3A). Functional annotation analyses revealed that a second set 
of proteins (C2) enriched in sample cluster S2 included proteins 
associated with platelet activation and aggregation, myofibrils, 
and smooth muscle cell contraction (Figure 1D and Supplemental 
Figure 3B). Proteins in C3 were upregulated exclusively in sample 
cluster S1, mostly severe MIS-C patients, and included heavy and 
light chain immunoglobins (Igs), as well as components of the 
classical complement cascade, C1qA, C1qB, and C1qC (Figure 1D 
and Supplemental Figure 3C).

Proteomic characterization reveals biomarkers that differentiate 
severe MIS-C from mild disease and from KD. We next sought to 
identify proteins and associated pathways upregulated or down-
regulated in severe MIS-C and mild MIS-C patients compared with 
healthy controls (Figure 2 and Supplemental Figure 4). We identi-
fied 244 proteins increased and 135 proteins decreased in quantity 
in severe MIS-C compared with healthy controls (top 25 modulated 
proteins; Figure 2, A and B). Network and pathway analysis of sig-
nificantly increased (Figure 2, C and D) or decreased (Figure 2, E 
and F) proteins revealed that humoral immune responses and com-
plement pathways were highly enriched in severe MIS-C, including 
various Igs and C1q proteins, C1qA, C1qB, and C1qC (Supplemen-
tal Figure 5, A and B). The expression of proteins associated with 
platelet activation and coagulation pathways, including von Wille-
brand factor (VWF), F5, F9, F11, fibrinogen α and β chains (FGA and 

endothelial, cardiac, and GI tissues have been identified and may 
play a role in driving MIS-C pathogenesis (14, 16, 18).

Here, we sought to further our understanding of MIS-C immu-
nopathogenesis through proteomics, RNA sequencing (RNA-seq), 
B cell receptor sequencing (BCR-seq), and autoantibody analysis 
of a unique cohort of MIS-C patients with severe and mild clin-
ical courses. We identify a highly inflammatory MIS-C subset 
of patients that show both enhanced neutrophil activation and 
imprints of harmful adaptive immune responses. In addition to 
superantigenic T cell interactions, these patients show strong 
selection of autoreactive B cells that may be the cellular counter-
part of the high autoantibody levels found in these patients.

Results
Severe MIS-C patients exhibit hyperinflammation and cytokine 
storm. Our MIS-C cohort was composed of 7 patients with mild 
MIS-C and 20 patients with severe MIS-C (Table 1). MIS-C diag-
nosis was performed according to CDC guidelines, and patients 
who required treatment in the pediatric ICU were defined as 
severe MIS-C patients. We first compared circulating biomark-
ers of inflammation and heart failure, and cytokine profiles  
of severe and mild MIS-C patients. Both mild and severe MIS-C 
patients showed elevated levels of C-reactive protein (CRP), 
ferritin, fibrinogen, pro–B-type natriuretic peptide (proB-
NP), aspartate transaminase, alanine transaminase (ALT), D- 
dimers, and creatine compared with normal reference rang-
es (Supplemental Figure 1A; supplemental material available 
online with this article; https://doi.org/10.1172/JCI151520DS1). 
Severe MIS-C cases showed significantly higher levels of fer-
ritin, proBNP, D-dimers, and creatine, and a trend toward 
increased levels of CRP, ALT, and fibrinogen compared with 
mild MIS-C patients (Supplemental Figure 1A).

We next assessed and compared the circulating cytokine pro-
files of healthy controls, mild MIS-C, and severe MIS-C patients. 
MIS-C patients showed increased levels of IFN-γ, TNF-α, IL-6, 
IL-8, IL-10, and IL-1β, with severely ill patients showing stronger 
dysregulation than those with milder courses (Supplemental Fig-
ure 1B). Since some of the clinical symptoms of MIS-C, such as 
erythematous rashes, conjunctivitis, and inflammatory changes 
in the oral mucosa are suggestive of Kawasaki disease (KD), we 
also characterized the cytokine profiles of 7 KD patients who were 
recruited before the COVID-19 pandemic (Supplemental Figure 
1B). KD diagnosis was performed according to the established 
American Heart Association guidelines (20). Except for IL-8, 
which appeared less dysregulated in KD, the overall cytokine pat-
tern was similar in MIS-C and KD (Supplemental Figure 1B).

Proteomic analysis identifies a highly inflammatory proteomics 
profile in MIS-C. To assist in the elucidation of the pathogenesis of 
MIS-C and to identify proteins associated with the severe form of 
the disease, we performed proteomics analysis of serum or plasma 
samples from our study cohort (Figure 1A). We collected serum 
from healthy children (n = 20), mild MIS-C patients (non-ICU, n 
= 5), and severe MIS-C patients who required ICU treatment (n = 
20). We also included analysis of plasma samples from KD patients 
that were collected prior to the pandemic (n = 7; Table 1). Healthy 
adult serum (n = 4) was used for reference range quality control. 
To obtain a high resolution of protein expression we performed 
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levels of proteins involved in pathways  that included proteol-
ysis, classical complement cascade, coagulation, acute-phase 
response, and inflammation (Figure 3, A and B, and Supplemen-
tal Figure 7). These included CRP, S100A9, SAA1, SAA2, STAT3, 
FCGR3A, LBP, CD163, ORM1, SERPINA1, SERPINA3, TIMP1, 
TLN-1, VWF, various Igs, and components of the C1 complex of 
the complement system (C1qA, C1qB, and C1qC) (Supplemental 
Figures 2C, 5B, 6B, and 7). In contrast, severe MIS-C patients had 
reduced expression of proteins in pathways, including negative 
regulators of peptidase activity, extracellular matrix proteogly-
cans, complement and coagulation cascades, and high-density 
lipid protein remodeling (Supplemental Figure 8, A and B).

Next, we aimed to determine which proteins distinguished 
severe MIS-C from mild MIS-C and KD (Figure 3, C–E), exclud-
ing clotting factors. Among proteins of interest, ferritin light 
chain (FTL) was highly expressed in severe MIS-C, as were 
proteins involved in Ig-mediated immune activation, including 
FCGR3A and components of the classical complement cascade, 
C1qA, C1qB, and C1qC (Figure 3E). Proteins that have been 
associated with heart failure were also identified as enhanced in 
severe MIS-C, including tenascin C (TNC; ref. 23) and QSOX1 
(24) (Figure 3, D and E). Proteins with reduced expression in 
severe MIS-C were also identified and included histidine-rich 
glycoprotein (HRG), sex hormone–binding globulin (SHBG), 
and complement component 7 (C7) (Figure 3, D and E). Overall, 
the proteomic profiles of MIS-C and KD were similar, indicating 
shared pathogenic pathways. However, distinguishing proteins 
indicate MIS-C may be mediated more so by immune complex-
es, and have greater heart muscle involvement than KD. These 
proteins have potential to act as biomarkers to distinguish severe 
MIS-C from mild MIS-C or KD.

RNA-seq reveals a subgroup of hyperinflammatory MIS-C 
patients with enhanced myeloid responses, TRBV11-2 expansion, and 
SARS-CoV-2–specific antibodies. We performed RNA-seq analysis 
using RNA isolated from whole blood of febrile controls (n = 13), 
mild MIS-C (n = 4), and severe MIS-C patients (n = 8; Figure 4A). 

FGB), and SERPINF2, was also increased in severe MIS-C com-
pared with healthy controls (Supplemental Figure 5, A and B). Fc 
receptor signaling, neutrophil-mediated responses, and phagocy-
tosis pathways were also enriched in severe MIS-C. These include 
FCGR3A (CD16a), IgGFc-binding protein (FCGBP), calprotectin 
(S100A8 and S100A9), tissue inhibitor of metalloproteinases 1 
(TIMP1), SERPINA1, SERPINA3, and acute-phase-reactant leu-
cine-rich α2-glycoprotein 1 (LRG1) (Supplemental Figure 6, A and 
B, and Supplemental Figure 2C). Proteins involved in VEGF signal-
ing and smooth muscle cell contraction were increased in severe 
MIS-C, including ICAM1, tropomyosin 4 (TPM4), p21-activated 
kinase (PAK2), FGA, FGB, and filamin B (FLNB) (Supplemen-
tal Figure 6C and Supplemental Figure 5B). As these proteins are 
highly expressed in vascular smooth muscle cells, their presence in 
the serum may reflect release from damaged blood vessels. Over-
all, the proteins and pathways increased in severe MIS-C indicate 
Ig-mediated inflammatory responses and endothelial dysfunction.

Networks of proteins reduced in severe MIS-C revealed path-
ways involved in regulation of lipid transport, lipid metabolic 
processes, and lipoprotein clearance, including APOA1, APOA2, 
APOA4, APOC1, and APOM (Figure 2, E and F, and Supplemen-
tal Figure 6D). Some components of clotting and coagulation 
pathways were also downregulated in severe MIS-C compared 
with healthy controls (Figure 2, E and F, and Supplemental Figure 
5A). Furthermore, there was downregulation of proteins involved 
in the regulation of body fluids and relaxation of cardiac muscle, 
including CAMK2D, which aligns with the increase in proBNP and 
the cardiovascular manifestations and shock observed in MIS-C 
(Figure 2, E and F, and Supplemental Figure 6E).

To determine factors contributing to severe disease, we com-
pared severe MIS-C with mild MIS-C (Figure 3). We found that 
the expression of 75 proteins was significantly enhanced in severe 
MIS-C, while 61 proteins were significantly reduced when com-
pared with mild MIS-C. Selected proteins differentially expressed 
between MIS-C severity groups are presented in Figure 3A. Com-
pared with mild MIS-C, severe MIS-C patients had increased 

Table 1. Patient demographics

Healthy control  
(n = 20)

Febrile control  
(n = 15)

Mild MIS-C  
(n = 7)

Severe MIS-C  
(n = 20)

MIS-C All  
(n = 27)

KD  
(n = 7)

Median age, years (IQR) 15.5 (11.5–17) 12 (5.5–18.5) 3 (1.1–9.3) 10 (6.6–15) 8 (3–13.1) 3 (2–3.5)
Sex
 Male
 Female

11 (55%)
9 (9%)

11 (73.3%)
4 (26.6%)

3 (43%)
4 (57%)

15 (75%)
5 (25%%)

18 (66.7%)
9 (33.3%)

5 (71%)
2 (29%)

Race and ethnicity
 White/Non-Hispanic
 Hispanic
 Black
 Black/Hispanic
 Asian
 ND

16 (80%)
4 (20%)

0
0
0
0

5 (33.3%)
6 (40%)
1 (6.7%)

0
1 (6.7%)
2 (13.3%)

4 (66.7%)
0
0
0

1 (16.7%)
2 (33.3%)

2 (10%)
14 (70%)

1 (5%)
1 (5%)
1 (5%)
1 (5%)

6 (22.2%)
14 (51.8%)

1 (3.7%)
1 (3.7%)
2 (7.4%)
2 (7.4%) 7

SARS-CoV-2 serology + 0/15 0/15 6/7 (1 ND) 19/20 25/27 (1 ND) NA
SARS-CoV-2 PCR + (at time of admission) 0/15 0/15 1/7 (1 ND) 7/20 8/27 (1 ND) NA
Serum/plasma samples collected before IVIG NA NA 5/5 17/20 22/25 7/7
RNA samples collected before IVIG NA NA 4/4 5/8 9/12 NA

ND, not determined, unknown value; NA, not appropriate.
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transcriptomics (Figure 4D), we analyzed the correlation between 
the direction of protein expression and gene expression changes 
when comparing cluster 1 with cluster 2 (Supplemental Figure 
10A). We did not find a significant correlation between protein 
and gene expression changes, likely because for a subset, the gene 
expression and protein expression changes occurred in opposite 
directions (increased by gene expression yet decreased by protein 
expression in cluster 1). Functional annotation analysis showed 
that these genes/proteins, including C5, C3, C4BP, HP, F12, F5, 
and PF4, were enriched in complement and coagulation cascades 
(Supplemental Figure 10B). The increased gene expression but 
decreased protein expression of this subset may indicate exces-
sive activation and consumption of these molecules. Interesting-
ly, a reduction in C3 protein has also been observed in COVID-19 
nonsurvivors compared with survivors (25).

We previously identified TRBV11-2 skewing in MIS-C patients, 
which correlated with disease severity and cytokine storm (17). 
As this study utilizes the same patient samples, we compared 
TRBV11-2 usage between the 2 MIS-C clusters identified by RNA-
seq analysis (Figure 4B). The patients with TRBV11-2 expansion 
were restricted to cluster 1, which contained primarily severe 
MIS-C patients (Figure 4H). We also examined titers of antibodies 
against Spike protein between the 2 groups and found that cluster 
1 MIS-C patients had higher levels of anti-Spike IgG antibodies 
than patients in cluster 2 (Figure 4I). This is similar to observa-
tions in adult COVID-19 patients, in which increased antibody 
titers against SARS-CoV-2 are associated with disease severity 
(26). Overall, these data indicate that the patients in MIS-C cluster 
1 exhibited increased inflammatory makers, increased neutrophil 
responses, reduced lymphocytes, increased SARS-CoV-2 antibod-
ies, and TRBV11-2 T cell expansion.

MIS-C autoantibodies are targeted to a diverse set of intracellu-
lar autoantigens and are enhanced in MIS-C cluster 1 patients. We 
next sought to characterize the levels of autoantibodies in our 
patient cohort and determine how these relate to the hyperin-
flammatory cluster 1 identified by RNA-seq analysis. Autoanti-
body analysis was performed using the HuProt array (CDI Labs) 
with serum from febrile controls (n = 5) and MIS-C patients (n 
= 11: 3 mild and 8 severe). The MIS-C patient group included 6 
samples identified by RNA-seq as belonging to cluster 1, and 5 
MIS-C samples from cluster 2 (Figure 5A). Candidate autoanti-
body targets were identified (P < 0.05, FC > 2) based on differ-
ential expression analysis of MIS-C samples, or RNA clusters, 
compared with febrile controls (Figure 5, B and C).

While the majority of IgG autoantibodies that significantly 
increased in MIS-C compared with febrile controls were target-
ed to ubiquitously expressed antigens, we identified a number 
of tissue-specific antigens from the GI tract and cardiovascu-
lar, skeletal muscle, and brain tissues, reflecting the system-
ic nature of MIS-C and the involvement of specific organs in 
clinical presentation of disease (Figure 5D). GI tract autoanti-
gens included ATPase H+/K+-transporting α subunit (ATP4A), 
SRY-box 6 (SOX6), family with sequence similarity 84 member 
A (FAM84A), and RAB11 family interacting protein 1 (RAB-
11FIP1) (Figure 5D). Cardiovascular autoantigens included PDZ 
and LIM domain 5 (PDLIM5) and eukaryotic translation initia-
tion factor 1A, Y linked (EIF1AY) (Figure 5D). Skeletal muscle 

Hierarchical clustering and PCA demonstrated 2 subsets of MIS-C 
patients (Figure 4B and Supplemental Figure 9A). The first sub-
set of MIS-C patients clustered separately (cluster 1) from febrile 
controls, while the other overlapped with febrile controls (cluster 
2; Figure 4B). Cluster 1 consisted predominantly of severe MIS-C 
patients (5 severe and 1 mild), while cluster 2 contained an equal 
number of severe and mild MIS-C patients (3 severe and 3 mild; 
Figure 4B). Analyses revealed a large set of genes differentially 
expressed between the 2 MIS-C clusters (2895 genes upregulat-
ed and 2921 genes downregulated in cluster 1, FDR < 0.05, fold 
change [FC] > 2). The top 20 genes up- and downregulated in clus-
ter 1 are presented in Figure 4C. Functional annotation analysis 
revealed that genes with increased expression in cluster 1 were 
involved in macrophage activation, neutrophil chemotaxis, innate 
signaling pathways, T cell activation, cytokine signaling, comple-
ment pathways, response to wounding, and apoptosis (Figure 4D 
and Supplemental Figure 9B). Cell deconvolution analysis identi-
fied increased relative abundance of neutrophils in cluster 1 MIS-C 
samples (Figure 4E). Genes with reduced expression in cluster 1 
were involved in adaptive immune responses, as well as ribonuc-
leoprotein complexes and RNA processing (Figure 4, C and D, and 
Supplemental Figure 9C). In line with these findings, cell decon-
volution analysis revealed a reduction in adaptive immune cells in 
cluster 1, most strikingly a reduction in naive B cells, which may 
reflect lymphopenia that is observed in MIS-C (Figure 4E).

We next compared the proteomes of cluster 1 with cluster 2 
patients (Figure 4, F and G, and Supplemental Figure 9, D and E). 
Cluster 1, which was primarily severe MIS-C cases, was character-
ized by significantly enhanced expression of inflammatory mark-
ers, including CRP, SAA1, and SAA2, as well as proteins associated 
with neutrophil activation, including myeloperoxidase (MPO), 
lipocalin 2 (LCN2), cathepsin B (CATB), ICAM1, granulin (GRN), 
and LBP (Figure 4F). In line with this, pathway analysis of protein 
expression in cluster 1 identified an enrichment of neutrophil- 
mediated responses (Figure 4G). Analysis of proteins and path-
ways downregulated in cluster 1 identified lipoprotein-particle 
proteins, including APOA1 and APOA4 (Supplemental Figure 9, 
D and E), which were also observed as downregulated in severe 
MIS-C compared with mild MIS-C or healthy controls (Supple-
mental Figure 6D). Interestingly, we found a reduction in com-
plement and coagulation cascade protein pathways in cluster 1 
compared with cluster 2 (Supplemental Figure 9, D and E). Since 
complement pathways were identified as increased in cluster 1 by 

Figure 1. Proteomic profiling of MIS-C cases. (A) Experimental design of 
native and depleted serum proteomics profiling of healthy controls (n = 20), 
mild MIS-C (n = 5), severe MIS-C (n = 20), and KD (n = 7) patients. (B) PCA 
of proteomics data and top proteins contributing to dimension 1 of the PCA 
plot. (C) Heatmap and hierarchical clustering of proteomics expression data 
revealed 3 protein sets (C1, C2, and C3) driving separation between 3 clades 
of MIS-C and KD patients (sample clusters S1, S2, and S3). (D) ClueGO ontol-
ogy analysis via PINE (Protein Interaction Network Extractor) for visualiza-
tion of pathways and functional categories significantly enriched within 
each of the 3 protein sets (C1, C2, and C3) revealed by hierarchical clustering 
analysis in panel C. The x axis denotes the negative decimal logarithm of 
the FDR of enrichment (term P value corrected with Bonferroni’s test). Size 
of the node denotes number of proteins within each term.
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autoantigens included RNA-binding motif protein 38 (RBM38) 
and skeletal troponin C2 (TNNC2) (Figure 5D). Brain autoan-
tigens included microtubule-associated protein 9 (MAP9) and 
NSF attachment protein β (NAPB). Interestingly, several anti-
gens highly expressed in neutrophils were identified, including 
endothelin-converting enzyme 1 (ECE1), SOX6, and RAB11FIP1 
(Figure 5D). Autoantibodies were predominantly targeted to 
intracellular antigens, suggesting they may result from a sec-
ondary immune response to cell damage. We identified 3 IgA 
autoantibodies that were significantly increased in MIS-C com-
pared with febrile controls, namely FAM84A, which is highly 
expressed in GI tissues, TNNC2, which, as mentioned above is 
highly expressed in skeletal muscle, and guanylate-binding pro-
tein family member 6 (GBP6) (Figure 5E). FAM84A and TNNC2 
were significantly increased in RNA cluster 1, but not RNA clus-
ter 2, compared with febrile controls.

We next examined how the 2 RNA clusters differed in auto-
antibody responses (Figure 5, F and G). Overall, patients in RNA 
cluster 1 had greater autoantibody responses than those in RNA 
cluster 2 (Figure 5, B and C), with the largest differences iden-
tified in IgG autoantibodies against ATP4A, UBE3A, FOXK2, 
SATB1, and MAOA (Figure 5F), and in IgA autoantibodies against 
FAM84A (Figure 5G). Overall, our data suggest systemic tissue 
damage and cell death may contribute to excessive antigenic drive 
against a diverse set of tissue-specific and ubiquitously expressed 
antigens. The enhanced levels of autoantibodies in RNA cluster 
1 link autoantibody development to hyperinflammation, myeloid 
cell activation, lymphopenia, increased SARS-CoV-2 antibodies, 
and TRBV11-2 T cell expansion.

Patients belonging to RNA cluster 1 show BCR repertoires 
with highly connected networks of CDR3 sequences. To further 
study B cell repertoire metrics and antigenic selection in our 
cohort, we performed BCR-seq on extracted RNA from blood  
samples of patients with mild (n = 4) or severe (n = 8) MIS-C, and 
age-matched febrile control patients (n = 15). We found a trend 
toward higher richness and a lower fraction of antigen-expe-
rienced B cells with somatic hypermutation in MIS-C patients 
than in febrile control patients. However, repertoire richness 
was distributed quite heterogeneously across patients, and the 
high richness pattern appeared to apply more to the small group 
of individuals with mild MIS-C without reaching statistical  

significance due to the small group size (Supplemental Fig-
ure 11). These distinct immune metrics were observable in all 
Ig chains — heavy chain (IGH) as well as κ (IGK) and λ (IGL) 
light chains — arguing in favor of the specificity of this finding. 
These findings were also consistent with the previously reported 
increased richness in T cell receptor repertoires in patients with 
mild MIS-C (17). Since our RNA-seq analysis revealed 2 clusters 
of MIS-C patients, with cluster 1 correlated with high levels of 
SARS-CoV-2 antibodies and autoantibodies as well as TRBV11-
2 T cell expansion, we subdivided our MIS-C cohort into these 
clusters for the following analyses of BCR repertoires. Our aim 
was to determine imprints of (auto)antigenic selection or other 
B cell repertoire features that discriminate cluster 1 from clus-
ter 2. MIS-C patients from cluster 1 showed lower B cell richness 
than febrile control patients and cluster 2 (Figure 6A), consistent 
with the contracted B cell compartment suggested by the tran-
scriptome analysis of this cluster. Interestingly, although no dif-
ferences in the level of somatic hypermutation were detectable 
between MIS-C patients of RNA cluster 1 and 2, the BCRs of all 
cluster 1 patients converged toward networks of highly similar 
CDR3 amino acid sequences (Figure 6B). The degree of connect-
ed sequences was significantly enriched in cluster 1 repertoires 
and comprised up to 99% of BCR clones when Levenshtein dis-
tances of 1 and 3 were used for network construction (Figure 6B). 
Thus, MIS-C patients in cluster 1 showed strong imprints of anti-
genic selection in their B cell repertoires.

Higher frequency of autoantibody-associated IGHV genes 
IGHV4-34 and IGHV4-39 in MIS-C. The higher autoantibody 
levels in RNA cluster 1 patients prompted us to investigate 
whether specific IGHV sequences known to be involved in the 
formation of autoantibodies are overrepresented in this cluster. 
To globally investigate IGHV-J gene usage in RNA cluster 1 ver-
sus cluster 2, we studied the repertoires by PCA. This revealed 
a significant skewing of IGHV-J gene usage between cluster 
1 and cluster 2 (Figure 6C). Among the genes preferentially 
used in B cell repertoires of patients from RNA cluster 1 was 
IGHV4-39, which has been previously reported to be used by 
autoreactive lymphocytes in multiple sclerosis (27, 28). More-
over, IGHV4-34, a gene extensively studied for its usage in 
autoreactive B cells (29), was preferentially used in B cells from 
MIS-C patients in general, with a numerically higher expansion 
in cluster 1 repertoires. Furthermore, IGHV1-69, which is pref-
erentially used in autoreactive B cells (30, 31), was also overrep-
resented in cluster 1 (Figure 6C).

We next asked which factors drive B lineage repertoires in 
MIS-C patients toward autoreactivity. The majority of patients 
from RNA cluster 1, where imprints of antigenic selection 
beyond SARS-CoV-2 reactivity were most obvious, showed 
superantigenic T cell interactions, which could be one driver 
promoting autoreactive B lymphocytes. The RNA transcriptom-
ics data pointed to increased BAFF expression in RNA cluster 1, 
and cytokine analysis pointed to increased IL-6 and IL-10 levels 
in the serum (Figure 6, D and E). These results indicated that 
B cell dysregulation in MIS-C patients from RNA cluster 1 may 
not only be driven by superantigenic T cell interactions, but also 
by soluble factors derived from the pronounced myeloid/innate 
cell compartment in these patients.

Figure 2. Characterization of severe MIS-C. Protein expression was 
compared between severe MIS-C (n = 20) and healthy controls (n = 20). 
Proteins were considered significantly changed when FDR was less than 
0.05, as determined by mapDIA statistical software for protein differential 
expression using MS/MS fragment-level quantitative data. (A) Top proteins 
enhanced in severe MIS-C, ranked by fold change. (B) Top proteins reduced 
in severe MIS-C, ranked by fold change. (C) ClueGO Ontology analysis via 
PINE visualized a network of pathways and functional annotation terms 
enriched in a set of proteins significantly increased in severe MIS-C popula-
tion when compared with healthy controls. (D) Selected pathways and func-
tional annotation terms from PINE analysis of proteins increased in severe 
MIS-C when compared with healthy controls. (E) Network plots visualized 
via PINE analysis of proteins reduced in severe MIS-C group when compared 
with healthy controls. (F) Selected pathways and functional annotation 
terms from protein functional enrichment analysis of proteins reduced in 
severe MIS-C group when compared with healthy controls.
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immune complex interactions (35). However, the role of C1q pro-
teins in autoimmune disease is complex, as C1q deficiency can also 
enhance susceptibility to SLE, likely by reducing clearance of apop-
totic cells (38). Interestingly, we found that severe MIS-C patients 
had reduced levels of C6 and C7, components of the membrane 
attack complex, compared with mild MIS-C patients. Furthermore, 
we found a reduction in complement C3 and C5 protein levels in 
serum of the hyperinflammatory RNA cluster 1 despite enhanced 
gene expression. These expression patterns may reflect excessive 
activation and consumption of complement components and a fail-
ure to clear autoantibody immune complexes.

We identified enhanced autoantibody levels in MIS-C patients, 
consistent with 2 previous reports (14, 16). Three autoantigens iden-
tified in our array were previously identified by Gruber et al. (14) 
as associated with MIS-C (UBE3A, ECE1, and RBM38). Another 
8 IgG autoantigen candidates identified in our cohort have been 
previously reported as autoantigens in other diseases, including 
ATP4A (type I diabetes and corpus atrophic gastritis; refs. 39, 40), 
TROVE2 (Ro60, SSA2; systemic lupus erythematosus and Sjogren’s 
syndrome; ref. 41), KLHL12 (primary biliary cirrhosis and Sjogren’s 
syndrome; refs. 42, 43), FAM84A (inflammatory bowel disease; ref. 
44), ANXA11 (prostate cancer; ref. 45), HK1 (primary biliary cir-
rhosis; ref. 42), MAOA (Alzheimer’s disease; ref. 46), and CTDP1 
(Behcet’s disease; ref. 47). While we did not confirm the findings of 
Consiglio et al. (16), who identified autoantibodies targeting endog-
lin, this may be due to differences in assays and cohorts used. Most 
autoantigens identified in our array were intracellular and have 
diverse cell expression profiles, indicating that systemic tissue dam-
age may drive autoantibody production in MIS-C. However, we also 
observed tissue-specific antigens from organs such as the gut, heart, 
endothelium, and skeletal muscle, reflecting the severe symp-
toms associated with these organs. Increased autoantibodies are 
common in various autoimmune and inflammatory diseases, and 
in response to some viral infections (48, 49). A number of factors 
can lead to autoantibody production, including abnormal survival 
of autoreactive lymphocytes, breakdown in B and T cell activation 
threshold, and excessive antigenic drive as a result of autoantigen 
release from damaged tissues and dying cells (49). Our data point to 
a combination of these events in MIS-C.

MIS-C patients belonging to RNA cluster 1 represented an 
interesting subset. These patients had high levels of inflammato-
ry markers, activated myeloid function, and some showed supe-
rantigen-like T cell expansion. Moreover, this subset exhibited 
high levels of SARS-CoV-2 antibodies as well as autoantibodies. 
When looking in depth into the B cell immune repertoires of these 
patients, we found prominent B cell networks indicative of pro-
nounced ongoing antigenic B cell selection. Immunogenetic rep-
ertoire biases with enrichments of genes previously described to 
be used in autoreactive lymphocytes (27–31) reflected the plasma 
autoantibody profiles of these patients. Although the promotion 
of autoreactive B cells could well be driven by superantigen-like T 
cell expansions in this cluster, it may also be favored by cytokines 
that were enriched in the cluster. One such candidate is BAFF, 
which may contribute to human autoimmune diseases not only by 
breaking tolerance during B cell development, but also by enhanc-
ing plasmablast survival. BAFF was strongly increased in patients 
from cluster 1, aligning with the evidence that these patients have 

Discussion
MIS-C is a hyperinflammatory disease with multi-organ involve-
ment that is triggered by SARS-CoV-2 infection. Here, we sought 
to further understand the mechanisms driving MIS-C through a 
combination of discovery proteomics, transcriptomics, BCR rep-
ertoire analysis, and autoantibody arrays. Overall, our data point 
to an autoimmune phenotype in MIS-C characterized by dysreg-
ulated B cell responses, autoantibody production, and comple-
ment- and myeloid cell–mediated inflammation.

Our data highlight a central role for neutrophils and comple-
ment pathways in MIS-C, both of which are implicated in multiple 
systemic, autoimmune, and vasculitic diseases including anti-neu-
trophil cytoplasmic antibody–associated (ANCA-associated) vas-
culitis, Behcet’s disease, systemic lupus erythematosus (SLE), 
and KD (32–34). Similar mechanisms of neutrophil activation via 
FcγR and complement pathways as well as neutrophil-mediated 
pathogenesis through NETosis, cytokine and chemokine expres-
sion, and tissue damage via ROS and proteases are likely to occur 
in MIS-C (32, 34). Cytotoxic complement pathways, activated by 
antigen-autoantibody immune complexes as well as by alternative 
pathways may also cause direct cytotoxic tissue injury leading to 
multi-organ tissue damage (35, 36). Notably, IVIG is proposed to 
function through neutralization of FcγR proteins as well as inhibi-
tion of complement pathways (37), which may explain the success 
of IVIG in treating MIS-C (3, 6–8).

We found enhanced levels of multiple components of the 
complement pathway in MIS-C, although notably there were dif-
ferences in complement components between mild and severe 
forms of the disease. Severe MIS-C patients expressed high  
levels of classical complement activation components C1qA, C1qB, 
and C1qC. The enhanced levels of C1q proteins and Igs in severe 
MIS-C may reflect an abundance of autoantibody immune com-
plexes and an important role for immune complex–mediated 
pathology in MIS-C. The classical complement pathway through 
C1q plays a role in driving a number of autoimmune diseases via 

Figure 3. Proteins distinguishing severe MIS-C from mild disease and KD. 
Protein differential expression analysis was performed between severe 
MIS-C (n = 20) and mild MIS-C (n = 5) groups. Proteins were considered sig-
nificantly changed when FDR was less than 0.05 as calculated by mapDIA 
statistical software. (A) Bar graphs show top increased and top decreased 
proteins in severe MIS-C when compared with mild, ranked by fold change 
and excluding Igs. (B) Selected pathways and functional annotation terms 
from protein functional enrichment analysis facilitated by PINE software 
using proteins increased (top panel) and decreased (bottom panel) in 
severe MIS-C compared with mild MIS-C. (C) Venn diagram of proteins 
differentially regulated between severe MIS-C, mild MIS-C, and KD. (D) 
Heatmap of selected proteins distinguishing severe MIS-C from mild MIS-C 
and KD. (E) Box-and-whisker plots of selected proteins found increased in 
severe MIS-C compared with mild MIS-C and KD. For improved visual-
ization purposes, box-and-whisker plots show scaled protein expression 
values. Scaling was performed by mean centering and division by SD of 
each protein variable. For box-and-whisker plots, the bounds of the boxes 
represent IQR (Q1 to Q3) and the whiskers represent the nonoutlier mini-
mum and maximum values, 1.5 × IQR. The median values are marked with 
a horizontal line in the boxes, and outliers are marked with black centered 
points outside the whiskers. Statistical analysis was calculated by mapDIA 
statistical software for protein differential expression using MS/MS frag-
ment-level quantitative data. **P < 0.01, ***P < 0.001. NS, not significant.
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CDR3-independent T cell expansion, reduced BCR diversity, high 
levels of autoantibodies, neutrophilia, and complement activa-
tion. Our data further demonstrate similarities between severe 
MIS-C and severe COVID-19 proteomic profiles, with common 
upregulated pathways including neutrophil degranulation, plate-
let degranulation, coagulation cascades, macrophage activation, 
and acute-phase response (58, 59). Furthermore, downregula-
tion of proteins involved in plasma lipid regulation is evident for 
both diseases, including downregulation of protein constituents 
of HDL (58). Moreover, the hyperinflammatory cluster of MIS-C 
patients we identified (RNA cluster 1) shares many similarities 
with severe COVID-19 patients, including enhanced monocyte 
and neutrophil responses, increased SARS-CoV-2 antibody titers, 
high levels of autoantibodies, and an association with CDR3- 
independent TCR Vβ expansion. These similarities indicate that 
common mechanisms may be driving both diseases.

Overall, our study furthers our understanding of the immuno-
pathogenesis of MIS-C, particularly the autoimmune aspects of 
disease, and highlights pathogenic pathways that may act as tar-
gets for more directed therapeutic interventions. We identify BCR 
profiles that are associated with hyperinflammation and autoim-
mune responses. We confirm our previous finding that TRBV11-2 
T cell expansion is linked to a more severe disease phenotype and 
demonstrate a link between TRBV11-2 expansion and a cluster of 
hyperinflammatory MIS-C patients with autoimmune signatures. 
Furthermore, we identify serum proteins with potential to act as 
biomarkers to predict severity of MIS-C.

Limitations of this study. Our study had several limitations due 
to sample availability. For proteomics, we could only obtain serum 
from control and MIS-C patients, and plasma from KD patients. 
Therefore, differences in coagulation pathways between MIS-C 
and KD could not be compared, and we removed clotting factors 
for any comparisons involving KD. Given that MIS-C is a new 
and rare disease, our RNA-seq, BCR-seq, and autoantibody anal-
yses were limited by sample size. Validation in a larger cohort of 
patients is needed in future studies.

Methods

Study design
This is a descriptive study that aimed to characterize and identify 
pathogenic pathways, proteins, and signatures associated with MIS-C 
by multi-omics analysis, including proteomics, RNA-seq, autoanti-
body arrays, and BCR-seq. Samples consisted of mild MIS-C (n = 7), 
severe MIS-C (n = 20), KD (n = 7), healthy control (n = 20), and febrile 
control (n = 15) patients. MIS-C severity classification was based on 
admission to pediatric ICU requiring vasopressor use (severe) or no 
ICU admission (mild). Ninety-two percent of MIS-C serum samples 
and 100% of KD plasma samples were collected prior to IVIG admin-
istration. Patient data are presented in Table 1. The samples from the 
KD group were collected prior to the COVID-19 pandemic. As MIS-C 
is a new and rare syndrome, sample size was based on availability.

Case definitions
MIS-C was defined as per the Centers for Disease Control and Pre-
vention (CDC) definition, which includes an individual age of less 
than 21 years, a persistent fever of greater than 38°C for more than 

activated neutrophil and innate cell compartments, which may 
give rise to elevated BAFF levels. Indeed, neutrophils can modu-
late B cell function through BAFF expression (50, 51) and promote 
autoimmune B cell responses (52). Positive feedback mechanisms 
between neutrophils/monocytes and B cell responses are likely 
important mechanisms driving MIS-C pathogenesis.

The association of TRBV11-2 T cell expansion with the hyper-
inflammatory RNA cluster 1 highlights the potential for TRBV11-2 
expansion to act as a biomarker for severe disease. TRBV11-2 T cell 
activation and cytokine production may participate in the promo-
tion of autoimmune responses through a number of mechanisms. 
Given the finding that HLA class I is associated with TRBV11-2 
expansion (17), engagement of cytotoxic T cells with HLA class I 
molecules on endothelial cells may drive tissue damage and auto-
antigen release. Cytokine storm mediated by activated T cells 
may also contribute to tissue damage and modulation of immune 
cell functions that promote autoreactivity. IL-6, IL-10, and TNF-α 
expression correlate with TRBV11-2 expansion (17), all of which 
can drive B cell proliferation. However, whether TRBV11-2 T cell 
activation is the precipitating event that leads to development of 
MIS-C, or is an additional mechanism exacerbating the inflamma-
tory autoimmune responses remains to be determined.

Gut dysfunction plays a role in driving autoimmunity, includ-
ing autoreactive T cell and antibody responses (53). Severe GI 
symptoms are a common feature of MIS-C (5). We identified auto-
antibodies targeting gut-specific antigens in MIS-C patients that 
may drive some of these symptoms and lead to gut dysfunction. 
We identified increased serum levels of LBP and CD14 in MIS-C, 
which are indirect markers of gut dysfunction and are induced by 
gut microbial translocation (54, 55). Furthermore, a recent study 
identified persistent SARS-CoV-2 RNA in the stool of MIS-C 
patients, weeks after initial infection, and found sustained levels 
of shed Spike subunit 1 (S1) in the blood of MIS-C patients that 
correlated with high antibody titers against Spike and TRBV11-2 
skewing (56). These data suggest that leakage of Spike and other 
gut antigens including LPS may occur across the gut barrier to pro-
mote a systemic immune response. This may include the TRBV11-
2 expansion observed in MIS-C through a superantigen-like motif 
at the C-terminus of the Spike S1 subunit (17, 57).

Many immunological features of severe MIS-C are highly sim-
ilar to those of severe COVID-19 in adults, including lymphopenia,  

Figure 4. RNA-seq analysis of MIS-C. RNA-seq was performed using 
whole-blood RNA isolated from febrile controls (n = 13), mild MIS-C (n = 
4), and severe MIS-C (n = 8) patients. (A) Experimental design of RNA-seq 
analysis and patient groups. (B) PCA of RNA-seq profiles. (C) Genes up- or 
downregulated in cluster 1 vs. cluster 2 MIS-C patients (FDR < 0.05). (D) 
Selected pathways and functional annotation terms from gene functional 
enrichment analysis performed with PINE software using significantly up- 
and downregulated (FDR < 0.01, log2[FC] > 1.5 and < –1.25) genes in cluster 
1 vs. cluster 2 MIS-C patients. (E) Cell deconvolution analysis of RNA-seq 
data by CIBERSORT. (F) Top proteins increased in cluster 1 vs. cluster 2, 
based on proteomics data. (G) Enriched pathways and functional annota-
tion terms based on protein expression changes significantly (FDR < 0.05) 
upregulated in cluster 1 with respect to cluster 2. (H) TRBV11-2 expansion 
of RNA-seq samples (17). (I) IgG titers against Spike protein receptor 
binding domain (RBD). Data are presented as mean ± SEM. Statistical 
significance was determined by Mann-Whitney test (H and I).
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normalized transition-level data were scored (65), aligned (66), and 
processed using mapDIA software (67) to perform pairwise compari-
sons between groups at the peptide and protein level.

Clustering analysis and network analysis. PCA was performed 
using the Factoextra package in R. Hierarchical clustering was per-
formed using the pheatmap package in R. Protein network analysis 
was performed with PINE (22). The mass spectrometry proteom-
ics data have been deposited to the ProteomeXchange Consortium 
via the PRIDE (68) partner repository with the data set identifier 
PXD025462. Data can be accessed at ProteomeXchange (69) (http://
www.proteomexchange.org).

Cytokine array
Cytokine analysis of serum or plasma was performed using the 
V-PLEX Proinflammatory Panel 1 Human Kit (MSD). No detection of 
cytokine was assigned a value of 0.

RNA-seq
RNA-seq was performed using RNA isolated from whole blood. Library 
construction was performed using the SMARTer Stranded Total RNA-
Seq Kit v3 – Pico Input Mammalian kit (Takara Bio USA, Inc.). Total 
RNA samples were assessed for concentration using a Qubit fluorom-
eter (Thermo Fisher Scientific), and for quality using the 2100 Bioana-
lyzer (Agilent Technologies). Up to 10 ng of total RNA per sample was 
used for fragmentation, followed by reverse transcription. Indexing 
PCR added Illumina sequencing adapters with barcodes. Next, ribo-
somal cDNA was depleted, and the resulting library was PCR ampli-
fied. Sequencing was performed on the NovaSeq 6000 (Illumina) 
using 2 × 50 bp sequencing. Normalization and analysis of gene expres-
sion data was performed in R using edgeR and Limma-voom. Genes 
were considered differentially expressed with an adjusted P value of 
less than 0.05 and FC of greater than 2. Differentially expressed genes 
were analyzed using PINE (22). Cell deconvolution analysis was per-
formed with CIBERSORT (70) (cell-type identification by estimating 
relative subsets of RNA transcripts) using the cell signature file LM22. 
The RNA-seq data have been deposited in the NCBI’s Gene Expression 
Omnibus (71) under accession number GSE179992.

SARS-CoV-2 Spike RBD antibody assay
SARS-CoV-2 serological Simoa assays for IgG against the Spike pro-
tein receptor binding domain (RBD) were prepared and performed as 
previously described (15, 72).

Autoantibody analysis
Autoantibody analysis was performed by CDI Labs using native 
HuProt arrays for IgG and IgA profiling of serum samples. Briefly, the 
arrays were blocked and probed with the samples at a 1:1000 dilu-
tion and incubated at room temperature for 1 hour. Then the arrays 
were washed and probed with Alexa Fluor 647–anti–human IgG (Fc) 
and Cy3–anti–human IgA secondary antibodies for signal detection. 
All samples were analyzed on the same day to avoid batch variations. 
Utilizing CDI Labs software, quantile normalization of the raw signal 
intensities (F635 median for IgG; F532 median for IgA) was performed 
on all arrays. A t test was used to compare the different groups and 
candidates were identified using the following criteria: FC of average 
signal intensity greater than 2 between the 2 groups, P value less than 
0.05, and signal intensity of the candidates at least 5 SDs above the 

24 hours, laboratory evidence of inflammation, 2 or more organs 
involved, no plausible alternative diagnosis, and positivity or recent 
SARS-CoV-2 infection demonstrated by either real-time quantitative 
PCR (RT-qPCR) on nasopharyngeal swab, serology, or antigen test-
ing, or exposure to an individual with COVID-19 within 4 weeks prior 
to the onset of symptoms (60). The American Heart Association defi-
nition was used for KD diagnosis (20).

Proteomics
Detailed proteomics methods can be found in the supplemental mate-
rial and are outlined in McArdle et al. (21). 

Depletion. Plasma/serum samples were either analyzed as naive 
samples or were depleted of the 14 most abundant plasma proteins 
albumin, IgA, IgE, IgG, and IgM (κ and λ light chains), α-1-acid gly-
coprotein, α-1-antitrypsin, α-2-macroglobulin, apolipoprotein A1, 
fibrinogen, haptoglobin, and transferrin using High Select Top 14 
Abundant Protein Depletion Resin composed of anti-camel antibod-
ies (Thermo Fisher Scientific). 

Digestion. Plasma/serum and depleted plasma/serum trypsin 
digestion and desalting were performed using an automated worksta-
tion (Beckman i7), which is programed to perform reactions at a con-
trolled temperature with uniform mixing, as previously described (61) 
using a standardized sample processing workflow (21).

LC-MS/MS. Data-independent analysis (DIA) was performed 
on an Orbitrap Exploris 480 instrument (Thermo Fisher Scientific) 
interfaced with a flex source coupled to an Ultimate 3000 ultra-high-
pressure chromatography system with mobile phase A (0.1% formic 
acid in water) and mobile phase B (0.1 % formic acid in acetonitrile). 
Peptides were separated on a linear gradient on a C18 column (15 cm, 
3 μm) over the course of 60 minutes at a flow rate of 9.5 μL/min. Frag-
mented ions were detected across 50 DIA nonoverlapping precursor 
windows of 12-Da in size.

Bioinformatic data analysis. DIA MS raw files were converted into 
mzML and the raw intensity data for peptide fragments was extracted 
from DIA files using the open source OpenSWATH workflow (62, 63), 
where experimental MS spectra were matched against a human twin 
population plasma peptide assay library (64). The total ion current–

Figure 5. Autoantibody analysis of MIS-C. (A) Autoantibody analysis was 
performed on serum from febrile controls (n = 5) and MIS-C patients (n = 
11) using HuProt array. MIS-C samples correspond to RNA cluster 1 (n =  
6) and RNA cluster 2 (n = 5) identified in Figure 4. (B) Venn diagram of 
candidate IgG autoantibody targets in MIS-C and RNA clusters (P < 0.05, 
FC > 2). (C) Venn diagram of candidate IgA autoantibody targets in MIS-C 
and RNA clusters (P < 0.05, FC > 2). (D) IgG autoantibody targets identified 
in MIS-C (n = 11) compared with febrile controls (n = 5). The bar represents 
log2(FC). Each symbol represents 1 MIS-C patient presented as log2(FC) 
above the mean of febrile controls. (E) IgA autoantibody targets identified 
in MIS-C (n = 11) compared with febrile controls (n = 5). The bar represents 
log2(FC). Each symbol represents 1 MIS-C patient presented as log2(FC) 
above the mean of febrile controls. (F) IgG autoantibody targets separated 
based on RNA cluster 1 (n = 6) and RNA cluster 2 (n = 5). Data are present-
ed as log2(FC) above the mean of febrile controls. (G) IgA autoantibody 
targets separated based on RNA cluster 1 (n = 6) and RNA cluster 2 (n = 
5). Data are presented as log2(FC) above the mean of febrile controls. For 
box-and-whisker plots, the bounds of the boxes represent the interquartile 
range (IQR, Q1 to Q3) and the whiskers represent the minimum and max-
imum values. The median values are marked with a horizontal line within 
the box. *FDR < 0.05 compared with febrile controls.



The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

J Clin Invest. 2021;131(20):e151520  https://doi.org/10.1172/JCI1515201 4



The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

1 5J Clin Invest. 2021;131(20):e151520  https://doi.org/10.1172/JCI151520

by dividing the number of identical nucleotides within the V gene by 
the length of the V gene per sequence. Sequences with less than 98% 
sequence identity to germline were counted as antigen-experienced 
cells. Dot plots for richness and somatic hypermutation were generat-
ed with Prism 8.0.2 (GraphPad Software). The networks of connected 
sequences were constructed for a subset of the 1000 most frequent 
different CDR3 amino acid sequences per repertoire using Imnet (75). 
Networks were constructed for Levenshtein distances 1 and 3. Petri 
dish plots and percentage of connected sequences were obtained from 
Imnet output files via R package igraph (76) (https://igraph.org). PCA 
and V gene usage box plots were visualized with R package ggplot2.

Statistics
For direct comparison of laboratory data between groups, Mann-Whit-
ney t test was used. For multiple comparisons of cytokine data between 
groups, Kruskal-Wallis 1-way ANOVA with Dunn’s multiple compar-
ison test was used. For proteomics data, differences between groups 
were identified by pair-wise comparisons with multiple testing correc-
tion and proteins were considered significantly different with an FDR 
of less than 0.05. For RNA-seq data, differences between clusters were 
identified by t test with Benjamini-Hochberg multiple testing correc-
tion and genes were considered significantly different with an FDR of 
less than 0.05. For autoantibody array, t test was used to compare the 
different groups and candidates were identified using the following 
criteria: FC of average signal intensity greater than 2 between the 2 
groups, P less than 0.05, and signal intensity of the candidates at least 
5 SDs above the mean signal intensity in 1 group. For BCR data, ordi-
nary 1-way ANOVA was used for global analysis, unpaired Student’s t 
test was used for paired comparison, and Pillai-Bartlett test of MANO-
VA of principal components was used. Data were considered statisti-
cally different with a P value of less than 0.05.

Study approval
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control samples were obtained from Massachusetts General Hospi-
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mean signal intensity in one group. Data are represented as log2(FC) 
relative to the mean of febrile controls. Tissue expression and cellular 
compartment analysis was performed with Human Protein Atlas (73) 
(http://www.proteinatlas.org).

BCR-seq
Library construction was performed using the SMARTer Human BCR 
IgG IgM H/K/L Profiling Sequencing Kit (Takara Bio Inc.). Total RNA 
samples were assessed for concentration using a Qubit fluorometer 
(Thermo Fisher Scientific), and for quality using the 2100 Bioanalyzer 
(Agilent Technologies). Up to 50 ng of total RNA per sample was used 
for reverse transcription, followed by 4 separate PCR amplification 
reactions for IgG, IgM, IgK, and IgL. A second round of PCR ampli-
fied the entire BCR variable region and a small portion of the con-
stant region. After size selection, quantification and fragment analy-
sis of the individual libraries were performed. Individual chains were 
then pooled and sequenced on the MiSeq (Illumina) using 2 × 300 
bp sequencing. Fastq raw data have been deposited in the European 
Nucleotide Archive (ENA) under accession number PRJEB44566.

BCR analysis
Raw fastq files were converted to fasta sequences using seqtk tool 
(https://github.com/lh3/seqtk). Fasta sequences were submitted to 
IMGT/HighV-QUEST (74) for annotation of Ig rearrangements. All 
analyses and data plotting were performed using R version 3.5.1. Rep-
ertoires for heavy (IGH), κ (IGK), and λ light chains (IGL) were extract-
ed and normalized to the lowest read count per chain by subsampling 
of 20,685, 137,544, or 126,509 productive IGH, IGK, and IGL reads, 
respectively. Richness was calculated as the number of unique CDR3 
nucleotide sequences per repertoire. The percentage of antigen-ex-
perienced cells refers to cells that underwent somatic hypermutation. 
We calculated the percentage of sequence identity to germline alleles 

Figure 6. B cell repertoire metrics, connectivity characteristics, and 
skewing of IGHV-J usage of MIS-C patients in RNA clusters 1 and 2.  
(A) Richness and somatic hypermutation of productive IGH repertoires  
of MIS-C patients of RNA cluster 1 (n = 5) and RNA cluster 2 (n = 6)  
compared with age-matched febrile control patients (n = 15). Bars indi-
cate mean ± SD. Statistical analysis: ordinary 1-way ANOVA for global 
analysis and unpaired Student’s t test for paired comparison. (B) Petri 
dish plots of IGH repertoire networks of MIS-C patients of RNA cluster 
1 and 2. A sample of 1000 unique CDR3 amino acid clones per repertoire 
were subjected to imNet network analysis (75). Petri dish plots are 
shown for Levenshtein distance 1. Percentages of connected sequences 
of MIS-C patients of RNA cluster 1 and 2 obtained from networks with 
Levenshtein distance 1 and 3 are shown as bar plots. Bars indicate mean 
± SD. Statistical analysis: unpaired Student’s t test. (C) PCA of differen-
tial IGHV-J gene usage in MIS-C patients of RNA cluster 1 (n = 5) versus 
cluster 2 (n = 6) versus age-matched febrile controls (n = 15). Statistical 
analysis: Pillai-Bartlett test of MANOVA of all principal components. 
Frequencies per repertoire of the 10 most skewed IGHV genes in MIS-C 
and febrile control patients are shown as box-and-whisker plots. The 
boxes extend from the 25th to 75th percentiles, whiskers from minimum 
to maximum, and the line within the box indicates the median. (D) BAFF 
expression in MIS-C cluster 1 and cluster 2, using the RNA-seq data in 
Figure 5. Data are presented as mean ± SEM. (E) IL-6 and IL-10 levels in 
serum of MIS-C cluster 1 and cluster 2 patients, using cytokine data from 
Supplemental Figure 1. Data are presented as mean ± SEM. Statistical 
analysis: Mann-Whitney test (D and E). **P < 0.01.
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