JCI The Journal of Clinical Investigation

Neoantigen-reactive CD8+ T cells affect clinical outcome of adoptive transfer with tumor-infiltrating lymphocytes in melanoma

Nikolaj Pagh Kristensen, ..., Inge Marie Svane, Sine Reker Hadrup

J Clin Invest. 2021. https://doi.org/10.1172/JCI150535.

Clinical Research and Public Health In-Press Preview Immunology

BACKGROUND. Neoantigen-driven recognition and T cell-mediated killing contribute to tumor clearance following adoptive cell therapy (ACT) with Tumor-Infiltrating Lymphocytes (TILs). Yet, how diversity, frequency, and persistence of expanded neoepitope-specific CD8+ T cells derived from TIL infusion products affect patient outcome is not fully determined.

METHODS. Using barcoded pMHC multimers, we provide a comprehensive mapping of CD8+ T cells recognizing neoepitopes in TIL infusion products and blood samples from 26 metastatic mela-noma patients who received ACT.

RESULTS. We identified 106 neoepitopes within TIL infusion products corresponding to 1.8% of all predicted neoepitopes. We observed neoepitope-specific recognition to be virtually devoid in TIL infusion products given to patients with progressive disease outcome. Moreover, we found that the frequency of neoepitope-specific CD8+ T cells in TIL infusion products correlated with in-creased survival, and that detection of engrafted CD8+ T cells in post-treatment (i.e. originating from the TIL infusion product) were unique to responders of TIL-ACT. Finally, we found that a transcriptional signature for lymphocyte activity within the tumor microenvironment was associated with a higher frequency of neoepitope-specific CD8+ T cells in the infusion product.

CONCLUSIONS. These data support previous case studies of neoepitope-specific CD8+ T cells in melanoma, and indicate that successful TIL-ACT is associated with an expansion of neoepitope-specific CD8+ T cells.

FUNDING. NEYE Foundation; European Research Council; Lundbeck Foundation Fellowship; Carlsberg [...]

Find the latest version:

https://jci.me/150535/pdf

Neoantigen-reactive CD8+ T cells affect clinical outcome of adoptive transfer with tumor-infiltrating lymphocytes in melanoma

Authors: Nikolaj Pagh Kristensen^{1†}, Christina Heeke^{1†}, Siri A. Tvingsholm^{1†}, Annie Borch¹, Arianna Draghi², Michael D. Crowther², Ibel Carri³, Kamilla K. Munk¹, Jeppe Sejerø Holm¹, Anne-Mette Bjerregaard¹, Amalie Kai Bentzen¹, Andrea M. Marquard¹, Zoltan Szallasi⁴, Nicholas McGranahan⁵, Rikke Andersen², Morten Nielsen^{3, 6}, Göran B. Jönsson⁷, Marco Donia², Inge Marie Svane², Sine Reker Hadrup^{1*}

Affiliations

¹ Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark (DTU); Kgs. Lyngby, Denmark.

² National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.

³ Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín; Buenos Aires, Argentina.

⁴ Danish Cancer Society Research Center; Copenhagen, Denmark.

⁵ Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK.

⁶ Section for Bioinformatics, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark.
⁷ Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sweden.
[†]these authors share co-first authorship. *Corresponding author. Email: <u>sirha@dtu.dk</u>. Address: Kemitorvet bld. 204, 2800 Kgs.
Lyngby. Phone: +45 27 12 52 21.

Present Affiliations

The following authors have since the completion of the work gained new affiliations: CH (CBio A/S, Copenhagen, Denmark), JSH (PokeAcell, Copenhagen, Denmark), AMB (Novo Nordisk A/S, Måløv, Denmark), and AMM (Clinical Microbiomics, Copenhagen, Denmark).

Conflict of interest

SRH is the cofounder of Immumap, Tetramer-shop and PokeAcell and is the co-inventor of the patents WO2015185067 and WO2015188839 for the barcoded MHC technology which is licenced to Immudex. The data presented in this study is not directly involved in these activities. MD has received honoraria for lectures from Novartis and Roche.

Abstract

BACKGROUND. Neoantigen-driven recognition and T cell-mediated killing contribute to tumor clearance following adoptive cell therapy (ACT) with Tumor-Infiltrating Lymphocytes (TILs). Yet, how diversity, frequency, and persistence of expanded neoepitope-specific CD8+ T cells derived from TIL infusion products affect patient outcome is not fully determined.

METHODS. Using barcoded pMHC multimers, we provide a comprehensive mapping of CD8+ T cells recognizing neoepitopes in TIL infusion products and blood samples from 26 metastatic melanoma patients who received ACT.

RESULTS. We identified 106 neoepitopes within TIL infusion products corresponding to 1.8% of all predicted neoepitopes. We observed neoepitope-specific recognition to be virtually devoid in TIL infusion products given to patients with progressive disease outcome. Moreover, we found that the frequency of neoepitope-specific CD8+ T cells in TIL infusion products correlated with increased survival, and that detection of engrafted CD8+ T cells in post-treatment (i.e. originating from the TIL infusion product) were unique to responders of TIL-ACT. Finally, we found that a transcriptional signature for lymphocyte activity within the tumor microenvironment was associated with a higher frequency of neoepitope-specific CD8+ T cells in the infusion product.

CONCLUSIONS. These data support previous case studies of neoepitope-specific CD8+ T cells in melanoma, and indicate that successful TIL-ACT is associated with an expansion of neoepitope-specific CD8+ T cells.

FUNDING. NEYE Foundation; European Research Council; Lundbeck Foundation Fellowship; Carlsberg Foundation.

1 Introduction

2 Adoptive cell transfer with expanded tumor-infiltrating lymphocytes (TIL-ACT) can mediate durable tumor 3 regression in patients with metastatic melanoma (1, 2). Furthermore, TIL-ACT has a high objective re-4 sponse rate even after the failure of checkpoint inhibitor therapy (1-4). TIL-ACT therefore represents an attractive treatment option for metastatic melanoma patients with high unmet medical needs. Current pre-5 6 dictors of tumor regression and long-term survival after ACT include tumor-mutational burden (TMB) and 7 neoantigen load (5), which have recently emerged as independent predictors of outcome across multiple 8 immunotherapies (6, 7). Moreover, transcriptomic evidence implicates antigen-presentation within the tu-9 mor microenvironment before TIL-ACT (5) as an important additional factor, suggesting that antigen-10 presentation and immune-recognition of mutation-derived neoantigens contribute to therapeutic benefit in 11 TIL-ACT. While immune-recognition and tumor-cell killing is generally associated with a positive outcome 12 (8, 9), evaluation of T cell recognition to mutation-derived neoantigens within TIL infusion (Inf) products 13 and peripheral blood after infusion have only been reported in case studies of complete responders (10-15). 14 We aimed to systematically assess T cell recognition towards neoantigens in TIL-ACT and their influence 15 on therapeutic outcome. Recent advances in T cell technologies have led to the possibility of comprehensive 16 screening of T cell recognition against large libraries of patient-derived neoepitopes (12, 16–18). Here, we 17 use DNA-barcode labelled pMHC multimers as a strategy to screen for CD8+ T cell recognition, using 151-18 585 predicted neoepitopes per patient, presented in a multimeric form in the context of patient-matched 19 HLA-I molecules (19, 20). Using this strategy, we determine the presence of CD8+ T cells recognizing 20 mutation-derived neoepitopes, here denoted as NeoAntigen Reactive T cells (NARTs), in the TIL Inf prod-21 ucts from 26 patients with metastatic melanoma. Furthermore, we examined the persistence of such T cells 22 in samples of peripheral blood collected at multiple time-points after therapy. This comprehensive mapping 23 of NARTs demonstrates a substantial T cell reactivity level towards patient-derived neoepitopes and a pos-24 itive influence on clinical outcome following TIL-ACT. This highlights the importance of detecting and 25 enhancing the levels of such T cells in TIL-ACT.

26 Moreover, this study provides essential data to support efforts to identify the few immunogenic neoepitopes 27 that give rise to T cell recognition out of the large number of predicted neopeptides. Recent efforts have 28 been made to identify the parameters, which determine the immunogenicity of a given neoepitope (21) and 29 facilitate more accurate prediction of such sequences for therapeutic measures. In the current study, we 30 evaluated a total of 5921 predicted neopeptides, and identified T cell recognition towards 106 (1.8 %) of 31 these in TIL Inf products. Using this large data set, we further assessed the influence of HLA-binding, 32 antigen expression level, clonality, TMB, and type of mutation on immunogenicity (i.e. recognition of a 33 given neopeptide).

34 Results

35 Identification of neoepitope-reactive CD8+ T cells

In a cohort of metastatic melanoma patients treated with TIL adoptive cell transfer (Supplemental Table 1) prediction of patient-specific mutated HLA-I epitopes was performed using WES and RNA sequencing on tumor material and normal tissue PBMCs. The in silico neopeptide prediction platform MuPeXI (http://www.cbs.dtu.dk/services/MuPeXI/) was employed to identify single nucleotide variants and indels/frameshifts from the sequencing data specific to the cancer material (5, 20). Mutation-derived peptides were subsequently ranked using netMHCpan (20, 22) and transcription of the corresponding gene (transcripts per million (TPM)) (see methods) with the aim of including at least 200 neopeptides per patient.

We covered 30 different HLA alleles ranging from 2-6 HLA alleles per patient (avg. 4.4 HLAs) (Supplemental Figure 1, A and C), however, HLA-C*02:02 and C*05:01 were excluded from data analyses due to technical concerns. Thus, the final neopeptide library ranged from 151-585 peptides per patient (Supplemental Figure 1B), with the most frequent alleles in our cohort being HLA-A*01:01 and C*03:04 (Supplemental Figure 1C). In addition to neopeptides, we also included a small set of known CD8 T cell epitopes derived from common human viruses: EBV, CMV, and influenza virus (FLU). These represent 'bystander' T cells in the TIL Inf product, and also serve as positive controls for the technical process. 50 DNA-barcode labelled neopeptide libraries were constructed as described previously (19) using UV-medi-51 ated peptide-MHC exchange (23, 24) and fluorescent streptavidin-labelled dextrans (see methods). PBMCs 52 and TIL Inf products were stained with patient-specific multimer libraries followed by sorting of multimer-53 binding CD8 T cells. The co-attached DNA-barcodes was amplified from the sorted T cell population to 54 reveal antigen specificity (19) (Figure 1A). We defined biologically relevant NARTs, as NARTs with an 55 estimated frequency of at least 0.01%, and without presence in partially HLA-matching healthy donor 56 PBMCs. To assess the reproducibility of our pMHC multimer library screens, we screened TIL samples of 57 nine patients twice with the same library demonstrating a correlation between technical replicates (R = $0.55, p < 2.2 \cdot 10^{-16}$) (Supplemental Figure 1D). 58

An example of the analysis of enriched DNA barcodes and their corresponding pMHC in a TIL Inf product from patient M22 (PR) is depicted in Figure 1B and for patients M14 (PD) and M26 (CR) in Supplemental Figure 2. In patient M22, NARTs were detected for 3/4 HLA molecules included, although most reactivity was seen against HLA-A*01:01 restricted peptides. Of interest, 7 HLA-A*01:01-restricted neoepitopes recognized by the M22 TIL Inf product comprised the C-terminal amino acid sequence SILSY (AKAP9^{P1796L}), and CD8+ T cells specific for each of these peptides were confirmed in TILs with single tetramer staining (Supplemental Figure 3A).

From in silico structural models of the interaction between the different AKAP9^{P1796L} peptide variants and 66 67 the HLA-A*01:01 molecule, we observe that leucine (L), introduced by the mutation, protrudes from the 68 HLA binding groove for potential interaction with a TCR. Furthermore, the four 8-10mer epitope variants 69 share this conformation when bound to HLA-A*01:01 (Supplemental Figure 3B). This suggests that the 70 AKAP9^{P1796L} amino acid substitution has given rise to multiple neoepitopes that may be recognized by the 71 same population of CD8 T cells, but with different affinities. The binding affinity hierarchy can be assessed 72 both by the estimated frequency (Supplemental Figure 3C) and the MFI of the tetramer populations (Sup-73 plemental Figure 3D) and indicates favorable interaction with the 9mer and 10mer neoepitopes holding the 74 SILSY motif.

75 Screening of TIL Inf products from 26 melanoma patients with personalized multimer libraries resulted in 76 the detection of 106 different NART populations across the cohort. NARTs were detected in 18 out of 26 77 TIL Inf products, ranging from zero to 13 NART populations per sample. To avoid any potential bias based 78 on differences in HLA coverage, the number and frequency of detected NARTs were normalized to the 79 average HLA coverage of the cohort (4.4 HLAs per patient). Following HLA normalization the median no. 80 of NARTs per TIL Inf product was 3.7 (range 0-12.1, Figure 1C, blue circles). Additionally, we detected 81 the presence of virus-specific CD8+ T cells towards a selected list of virus-derived epitopes in half of the 82 TIL Inf products (13 out of 26 patients, Figure 1C, red circles) which is in line with previous analyses of 83 TIL Inf products (25, 26). Across all TIL Inf products, we observed an estimated NARTs frequency of 0-84 38.6% (median = 0.63%) out of total CD8+ T cells (Figure 1C).

85 Recognition of melanoma tumor cells by NARTs in vitro

The TIL Inf product from most patients (16 of 26), was previously analyzed for tumor recognition properties in terms of cytokine secretion towards an autologous tumor cell line, generated from the same tumor biopsy as the TIL Inf product (4). The estimated frequency of NARTs identified in this study correlated with the capacity of the TIL Inf product to recognize the tumor, indicating that detected NARTs may indeed contribute to tumor cell recognition (Figure 2A). While a significant association was observed, the effect on cytokine secretion from other immune subsets, tumor antigens classes, or NARTs restricted to HLA-alleles not included in our study cannot be excluded.

We additionally investigated the direct tumor recognition capacity of sorted and expanded neoepitope-specific T cell populations. From patient M22 TIL Inf product, we sorted USP34^{S1391F} – derived NLFR-HLA-B*08:01-specific T cells using tetramers. The presence of such T cells was verified (3.2%, Figure 2B), and post-sort expansion resulted in purity of > 96% (Figure 2C). The expanded NLFR-HLA-B*08:01-specific T cells displayed tumor-recognition determined by cytokine secretion upon co-culture with an autologous tumor cell line with (60.1%) and without (2.87%) pre-treatment with IFNγ (Figure 2D). Thus, tumor-recognition was specific, and greatly enhanced by IFNγ pretreatment of the autologous tumor cell line. It has previously been demonstrated that IFNγ pretreatment enhances MHC-I expression and antigen presentation
in both autologous (8) and established tumor cell lines (27). We also sorted CD8+ T cells specific to two
AKAP9^{P1796L} peptide variants followed by rapid expansion (Supplemental Figure 4A), which recognized
their respective AKAP9^{P1796L} variant (Supplemental Figure 4B). These sorted T cell populations, both recognized autologous tumor cell lines with and without pre-treatment with INFγ (Supplemental Figure 4C).
This indicates that some multimer-detected NARTs are capable of further expansion and can specifically
recognize autologous tumor cell lines.

107 The number and frequency of NARTs is associated with the clinical outcome of TIL-ACT

108 Next, we investigated whether higher diversity (number of responses) and frequency of NARTs in TIL Inf 109 products correlate with improved clinical efficacy of TIL-ACT. NARTs were detectable across all RECIST 110 groups, although they were severely depleted from TIL Inf products given to patients that developed pro-111 gressive disease (n = 6) (Figure 3A). Overall, NARTs tended to demonstrate greater diversity in products 112 from responders compared to non-responders (Figure 3B).

113 The estimated NART frequency within TIL Inf products was significantly higher in responders compared 114 to non-responders (Figure 3, C and D, Supplemental Figure 5, A and B), suggesting that NART frequency 115 affects clinical outcome. Tumor mutational burden and number of predicted neoepitopes were uniformly 116 distributed across RECIST groups (Supplemental Figure 5, D and H), and no difference was observed be-117 tween responders vs non-responders (Supplemental Figure 5, E and I). Tumor mutational burden was, how-118 ever, associated with longer progression-free survival (Supplemental Figure 5F), as previously indicated 119 (5). Although, we do not observe a strong influence of the number of predicted neoepitopes on progression-120 free survival (Supplemental Figure 5J).

121 Next, we investigated whether the diversity and frequency of NARTs within TIL Inf products affected 122 progression-free survival and overall survival. Patients in whom the number of NARTs was above the me-123 dian of 3.7 ('High', n = 13) had an increased progression-free survival (p = 0.025, HR 2.62; %95CI = 1.05124 6.50) compared to patients below the median ('Low', n = 13) (Figure 3E). Likewise, patients with a high 125 NART frequency within TIL Inf products (median = 0.7%) ('High', n = 13) demonstrated significantly 126 improved progression-free survival (p = 0.026, HR 2.60; %95CI = 1.05-6.47) compared to patients with 127 low NART frequency ('Low', n = 13) (Figure 3F). High NART frequency also showed a positive effect on 128 overall survival (Supplemental Figure 6B); however, no such correlation was found with NART diversity 129 (Supplemental Figure 6A). Note, that overall survival might also be affected by subsequent treatment given 130 after TIL-ACT.

131 Interestingly, the clinical impact of NART frequency was most prominent for patients above the 66th percentile. For NART frequency, the 'High' patient group (above the 66^{th} percentile, n = 9) showed signifi-132 133 cantly longer progression-free survival (p = 0.0016) (Figure 3H) and overall survival (p = 0.021) (Supple-134 mental Figure 6D) as compared to 'Intermediate' patients (equal to or below the 66th percentile and greater than the 33^{rd} percentile, n = 8) or 'Low' patients (equal to or below the 33^{rd} percentile, n = 9). In contrast, 135 136 NART diversity did not significantly affect survival (PFS and OS) when comparing groups split by the 66th and 33rd percentiles (Figure 3G and Supplemental Figure 6C). The 66th and 33rd percentiles corresponded 137 138 to a frequency of 3.26% and 0.03%, respectively, while the same percentiles for NART diversity were 5.65 139 and 0.88 NARTs, respectively.

In our analysis, T cell recognition of different overlapping peptides originating from the same mutation were defined as multiple individual NART populations. However, T cell recognition of multiple neopeptides, could also arise from cross-reactivity of a single NART population towards several similar epitopes. To avoid any bias in our data analyses based on such potential cross-reactive T cell populations, we reduced the number of detected NART responses to the number of unique immunogenic somatic mutations recognized by NARTs (median = 2.6), and redid our survival analysis using the most frequent NART as a proxy for recognition of all overlapping epitopes from the same non-synonymous mutation. The result showed a similar association: Both NART diversity and frequency correlated with increased PFS, whereas only frequency correlated with an increased OS (Supplemental Figure 6, E-H), ensuring that contribution from T
cell recognition of overlapping epitopes did not bias our overall observation.

150 In summary, this data suggests that high frequency of NARTs positively affects therapeutic outcome fol-

151 lowing TIL-ACT.

152 NARTs are detected in peripheral blood after TIL-ACT and decline over time

153 As indicated by others (10, 28), an essential factor for TIL-ACT efficacy is the capacity of transferred T 154 cells to persist in patients following therapy. This can be measured based on their presence in peripheral 155 blood over time after transfer. For 19 patients, blood samples were available taken 8 days before TIL-ACT 156 and at different time points after TIL infusion, i.e., < 1 month after TIL-ACT, < 4 months after TIL-ACT, 157 < 12 months after TIL-ACT, < 24 months after TIL-ACT, and < 48 months after TIL-ACT (Supplemental 158 Table 1). NARTs present in the first or later PBMC samples post-ACT were defined as 'engrafted'. Fur-159 thermore, if a given NART is detected in multiple later PBMC samples, that NART is regarded as persist-160 ing. Each sample was screened for T cell-recognition towards neopeptides included in the full patient-161 specific neoepitope-MHC library, exemplified by patient M22 (PR) (Figure 4A). In M22 only virus-specific 162 T cells could be detected in the Pre-ACT PBMC sample, namely, B*08:01-restricted FLU-ELR (v1), EBV-163 RAK (v17), EBV-QAK (v30), and EBV-FLR (v31). These virus-specific CD8+ T cells were detectable 164 throughout most time points, while NARTs engrafted (PBMC < 1 month) and persisted in the following 165 PBMC samples up to one year after treatment.

Similar NART kinetics was observed in patient M45 (PR), with NARTs recognizing overlapping neoepitope containing the mutated sequence SAGA (SORC2^{A1093S}) (Supplemental Figure 7). SORC2^{A1093S}
was first recognized in the M45 TIL Inf product, and immune recognition persisted in PBMCs until the last
recorded time point (< 12 months). Furthermore, M45 showed immune recognition towards the same ne-
oepitope DIHF (ZNF786^{M87I}) bound to multiple HLA alleles (HLA-A*01:01, A*24:02, and B*13:02).

Recognition of ZNF786^{M871} was initially discovered in the TIL Inf product, and while it persisted on HLAA*24:02 until the last time point for M45, it appeared to incompletely persist on HLA-A*01:01 and
B*13:02. This overall suggests ZNF786^{M871} to produce a promiscuous neoepitope capable of binding multiple HLAs with a preference for HLA-A*24:02. HLA promiscuity is otherwise known to occur for viral
epitopes (29).

176 The median NART diversity and frequency across RECIST categories were followed to assess the overall 177 kinetics of NARTs post- ACT. Note, that most non-responders did not have PBMC samples for < 12178 months and thereafter (7/10). NART diversity increases markedly when comparing pre-ACT PBMCs and 179 the TIL inf product, and declines over time post-TIL-ACT in the CR, PR and SD patient groups; displaying 180 the expansion of NART populations in the TIL Inf product and their persistence after therapy (Figure 4B). 181 NART frequency demonstrated similar kinetics to NART diversity. However, only responders appeared to 182 have substantial frequencies of NARTs within TIL Inf products (Figure 4C). Unlike the other groups, pa-183 tients with progressive disease did not display any NARTs within TIL Inf products (n = 3); however, they 184 did appear to have ongoing NART recognition in peripheral blood before and after therapy, although at 185 lower frequencies (Figure 4, B and C).

Finally, we compared responders and non-responders in relation to NART diversity across all time points
and found that responders have a higher NART diversity in PBMCs collected before TIL-ACT (Figure 4D).
Similarly, we find an increased NART frequency in responders before TIL-ACT, within TIL Inf products,
and at early time points following infusion (> 1 month) (Figure 4E).

In conclusion, we observed a broad repertoire of NARTs recognizing single neoepitopes, overlapping neoepitopes, and HLA promiscuous neoepitopes in TIL Inf products of metastatic melanoma patients treated with TIL-ACT. These NARTs show signs of engraftment and can persist in peripheral blood after TIL-ACT. Furthermore, we observe that responders have a higher estimated NART frequency before and following TIL-ACT in peripheral blood supporting prior prospective efforts (30).

195 Engrafted neoepitope-specific CD8 T cells dominate immune recognition in responders of TIL-ACT

196 To better understand the dynamic relationship between pre-existing, ongoing and TIL-derived immune 197 recognition, we annotated each detected NART according to their first appearance from 8 days prior to 198 therapy (pre-ACT PBMCs) to the last available time point. Thus, if a NART population appeared exclu-199 sively in pre-ACT samples, it was annotated "Pre-ACT". If a given NART was detected in both pre-ACT 200 PBMCs and in the given TIL Inf product, it was denoted "Pre/TIL", while if it first appeared in the infusion 201 product it was denoted "TIL". Finally, if a NART population first appeared in a later PBMC sample it was 202 regarded as "novel" annotated with its first time of appearance and followed from there on out (see patient 203 overview in Supplemental Figure 8).

204 Using this categorization, we observed that persisting NARTs derived from the TIL Inf product (Pre/TIL + 205 TIL) were present across responders and patients with stable disease at multiple time points after infusion, 206 but absent in patients with progressive disease (Figure 5, A and B, Supplemental Figure 8). Additionally, 207 we observe that 7/8 responders and 5/10 non-responders with available pre-ACT material had pre-existing 208 NARTs (Pre-ACT + Pre/TIL). Pre-existing NARTs are likely clinically relevant as TIL Inf products from 209 responders were overall dominated by pre-existing immune recognition that was further expanded to high 210 frequencies within the TIL Inf product (Pre/TIL) (Figure 5B, Supplemental Figure 8). Mind however, that 211 the presence of pre-existing NARTs that were further expanded did not appear sufficient to generate a 212 clinical response as we also observed Pre/TIL NARTs in 3 patients with stable disease (Supplemental Fig-213 ure 8). The perceived therapeutic benefit of pre-existing NARTs that were further expanded may therefore 214 relate more to the high frequency and persistence after expansion in selected patients, than to their presence 215 alone.

We observed that 62.5% (60/96) of NARTs observed in TIL Inf products were also detectable post-ACT
(Figure 5C). Furthermore, 57% of NARTs detected post-ACT were novel, and did not originate from the
TIL Inf product (80/140), whereas 43% originated from the TIL Inf product (60/140) (Figure 5C). These

novel NARTs were transiently appearing and could represent epitope spreading. However, their appearances may not necessarily have therapeutic benefit, as they were observed across all RECIST groups (Figure 5, A and B), and present at lower frequency than newly engrafted NARTs (TIL NARTs present in postACT PBMCs) (Figure 5D). Finally, we observe that engrafted NARTs derived from the TIL Inf product
(TIL + Pre/TIL) had a higher estimated frequency compared to their non-engrafted counterparts in the TIL
Inf product (Figure 5E) suggesting engraftment to be associated with prior frequency.

225 To evaluate the impact of engrafted NART populations separately from non-engrafted and novel NARTs, 226 appearing only in TIL Inf products and post-ACT PBMCs, respectively, we compared the diversity and 227 frequency of engrafted NARTs (Pre/TIL and TIL) in responders and non-responders with available PBMCs 228 throughout all time points (Figure 5, F and G). Interestingly, we observe that non-responders had a markedly 229 lower diversity (Figure 5F) and frequency (Figure 5G) of engrafted NARTs compared to responders in the 230 first two sampling time-points post-ACT (< 1 month and <4 month). These data suggests that responders 231 were treated with TIL Inf products characterized by high frequent, engrafting NARTs, where non-respond-232 ers were treated with TIL Inf products containing a relatively lower frequency of NARTs that were unable 233 to engraft and persist post-ACT. This is in line with prior TCR sequencing efforts (28).

234 The characteristics of immunogenic neoepitopes

235 Based on the large screen presented here, we evaluated T cell recognition against 5921 predicted neopep-236 tides that were selected based on their HLA binding characteristics and gene transcriptional level in tumor 237 NGS data. Of these predicted neopeptides, we detect specific CD8+ T cell recognition towards 204 ne-238 oepitopes in either TIL Inf products or PBMC samples from melanoma patients, while the remaining 5717 239 were not recognized by T cells in the evaluated patients (Figure 6A). The pool of immunogenic neoepitopes 240 displays similar characteristics related to both clonality and C/T mutations as the total library of evaluated 241 neopeptides (Figure 6A). Hence, we do not observe a specific enrichment of T cell recognition towards 242 clonal mutations as has previously been suggested for NSCLC (31). Interestingly, cancer driver genes (32) 243 are significantly overrepresented in the fraction of immunogenic neoepitopes compared to the fraction of non-immunogenic neopeptides (Figure 6A, 6.5% vs. 3.3%, p = 0.0043). However, we do not find any immunogenic neoepitopes to be shared among patients, as has previously been observed in TILs isolated from colorectal cancer (33).

247 Our neopeptide library was preselected for predicted HLA binding. Within this pool, neoepitopes can be 248 classified as either 'conserved binders' (CB, i.e., neopeptides with similar HLA binding as the mutated 249 peptide versus the germ-line sequence) or 'improved binders' (IB, where the mutation affects HLA binding 250 capabilities resulting in a neopeptide with improved HLA affinity compared to the germline sequence) and 251 defined in Bjerregaard, et al. (34) (Figure 6B). Immunogenic neoepitopes were represented in both catego-252 ries, and we did not observe a significantly different distribution of immunogenic versus non-immunogenic 253 neopeptides among conserved versus improved binders (3.4% CB vs. 3.5% IB, p-value = 0.99, Figure 6B). 254 Furthermore, within the selected HLA affinity range evaluated here, we did not observe any further impact 255 of HLA %rank score on neopeptide immunogenicity, evaluated as the potential enrichment of immunogenic 256 neoepitopes < %rank = 0.5 (p = 0.71, z-test, Figure 6C).

In line with previous findings (33), we observed an enrichment of genes with RNA expression > 2 TPM
among immunogenic neopeptides (Figure 6D, p = 0.001, z-test).

259 TMB and predicted neoepitope load have previously been demonstrated to be predictive for TIL-ACT out-260 come (5). We find a strong correlation between TMB and number of predicted neoepitopes (Supplemental 261 Figure 9A). However, we do not find a correlation between TMB or the number of predicted neoepitopes 262 to NART diversity and NART frequency (Supplemental Figure 9, B-E). This indicates that the presence of 263 NARTs in TIL Inf products is an independent marker of therapeutic outcome in patients with metastatic 264 melanoma. Since the inter-patient variation in neopeptide library size may affect the correlation, we also 265 correlated the number NARTs detected and estimated frequency within the top 151 predicted neoepitopes 266 to have an equal representation of all patients (Supplemental Figure 9G). Again, no strong correlation was 267 evident (Supplemental Figure 9, H-K), as multiple patients with low TMB showed medium sized popula-268 tions of neoepitope-specific CD8 T cells in their respective TIL Inf product (Supplemental Figure 9L). This

emphasizes the need to improve our predictive capacity for identification of those neoepitopes that give rise
to functional T cell recognition and tumor cell killing, and furthermore highlight that other parameters,
beyond TMB, impacts immune recognition.

272 The tumor microenvironment has a substantial influence on the capacity to generate a T cell response to-273 wards the tumor and for such T cells to exert their function. Although the generation of TIL Inf products is 274 conducted in vitro, the tumor microenvironment may still affect the capacity for T cell expansion and func-275 tion. We used the available transcriptomic data from our neoepitope prediction pipeline as input for a dif-276 ferential gene expression analysis, grouping patients according to higher or lower than median sum of esti-277 mated NART frequency within TIL Inf products. From this we observe 226 differentially expressed genes 278 (Figure 6E), which are associated with 383 enriched gene ontology (GO) gene sets (35). The top 20 enriched 279 GO gene sets were a collection of humoral and B-cell mediated mechanisms and several pathways pertain-280 ing to the immune cell signal transduction (Supplemental Figure 10). These gene sets are highly relevant 281 in light of the recently revealed relationship between intratumoral lymphoid structures, antigen-presenta-282 tion, and therapeutic benefit following immunotherapy (36). Of further interest, we observe enriched pres-283 ence of GO terms relating to lymphocyte-mediated immunity (Figure 6F) and increased T-cell proliferation 284 (Figure 6G).

285 **Discussion**

Immune-recognition and tumor killing by cytotoxic T cells are associated with a positive outcome across multiple immunotherapies (9, 31, 37), however, the presence of neoepitope-specific CD8+ T cells in TIL-ACT remains incompletely documented outside case responders (10–15). In the present study, we investigated the capacity of TIL Inf products to recognize predicted, HLA-binding neoepitopes originating from expressed, non-synonymous mutations from 26 patients with metastatic melanoma. To this end, we utilized DNA barcode-labelled pMHC multimers wherefrom we quantified NART diversity and frequency in TIL Inf products and patient PBMCs. We report recognition of a total of 106 neoepitopes within TIL Inf products from this cohort across all 4 RECIST groups. Supporting that the presence of NARTs affects the clinical response to TIL-ACT, we found that NART diversity and frequency is significantly lower in patients
with PD when comparing to patients with SD and PR, and that NART frequency correlates with PFS and
is significantly higher in patients with clinical response to TIL-ACT (CR+PR).

We find that both NART diversity and frequency is highly variable across RECIST groups; especially within responding patients: 3 out of 11 CR/PR patients had zero detectable NART populations. This variability could be due to limitations in neoepitope selection, contribution from other antigen types, insufficient HLA coverage, sampling bias or NART response frequencies below the threshold for detection (i.e. resulting in false negative detection), or other NART-independent and/or HLA-I independent pathways such as the MR1-dependent immune recognition pathway (38).

303 Following each NART population from first appearance to last available PBMC time point further uncov-304 ered, that responders were characterized by circulating NARTs of higher diversity and frequency in pre-305 treatment PBMCs. This is interesting, because pretreatment circulating NARTs could represent a biomarker 306 for ongoing tumor recognition by CD8 T cells, which, in extension, could provide a non-invasive way to 307 measure immune activity of the tumor. However, identification of NARTs is a laborious and patient specific 308 process, and for biomarker purposes a simpler measurement of NART reactivity should be developed. Re-309 sponders were furthermore predominantly treated with TIL Inf products of high NART frequency capable 310 of engrafting and persisting after TIL-ACT at an estimated frequency higher than 0.01%. Additionally, we 311 observe that engrafted NARTs initially appeared with an overall higher estimated frequency in the TIL Inf 312 product compared to non-engrafted NARTs, which indicates that successful NART expansion precedes 313 successful engraftment. As mentioned, the persistence of tumor antigen-specific TCRs has been hypothe-314 sized to drive therapeutic benefit following TIL-ACT (28). Interestingly, this hypothesis has recently been 315 supported in the metastatic melanoma setting (39), where the persistence of neoantigen-specific TCRs 316 post-TIL-ACT correlates with CD39-CD69- stem- like T cells capable of self-renewal, differentiation, and 317 further expansion upon stimulation. Future efforts to discover and quantify the presence of NARTs may

benefit from a simultaneous characterization of stem-like phenotypes to increase our understanding of why certain NARTs are superior in their capacity for expansion and persistence. Together with our current report, this identifies an unmet need to improve the manufacturing of TIL Inf product to increase the frequency of tumor-specific CD8 T cells that are able to engraft and persist in patients post-ACT.

322 Interestingly, we observed that 2 out of 3 patients with PD and multiple patients with SD appeared to have 323 NARTs in peripheral blood despite the lack of persisting NART populations in the TIL Inf product. This 324 suggests that selected non-responders have ongoing tumor recognition, that wasn't expanded by the TIL 325 manufacturing process (i.e. failure to expand meaningful NARTs) perhaps due to poor tumor immune in-326 filtration (i.e. immunologically "cold"). Thus, development of technologies to expand tumor-specific CD8 327 T cells from peripheral blood may be beneficial for the future treatment of patients that do not benefit from 328 conventional TIL-ACT. Given information on the antigen recognized in peripheral blood, other strategies 329 such as therapeutic vaccination (40, 41) could furthermore be combined to increase the likelihood of gen-330 erating long-lasting CD8 and CD4 memory T cells from TIL-ACT.

We additionally observed novel NARTs at multiple time points post infusion in both responders and nonresponders. This might illustrate epitope spreading as a result of tumor cell killing in responders. However, these late-emerging NART populations are present at a lower frequency and appear to be more transient than those transferred in the TIL Inf product. Thus, epitope-spreading, with T cell recognition of pre-existing mutations and their derived peptide products does not appear to play a major role following TIL-ACT. However, this does not exclude a potential therapeutic role for epitope-spreading based on T cell recognition towards novel mutations occurring after immunotherapy.

Finally, we observe that lymphocyte activity and proliferation within the tumor microenvironment is associated with higher NART frequency in TIL Inf products, suggesting that ongoing immune activity within the tumor supports the manufacturing of TIL Inf products containing a high frequency of NARTs. Superior T cell proliferation and response to checkpoint inhibition is associated with intratumoral tertiary lymphoid structures, which maintain a niche of professional antigen-presenting cells and proliferating T cells (36, 343 42). Tertiary lymphoid structures could, therefore, possibly support the successful expansion of TILs prior
344 to successful TIL-ACT. However, the relationship between ongoing T cell proliferation, successful TIL
345 expansion and therapeutic response remains undetermined.

346 Both TIL expansion and post-transfer persistence of CD8 NARTs may additionally be affected by support-347 ing CD4 T cells (43). So far, no differences has been observed between CD8 enriched TIL products and 348 TIL products containing different lymphocytes (although the majority are CD8) (44). Furthermore, epitope 349 spreading as evaluated here for CD8 T cell may likewise occur for CD4 T cells, and the further insight to 350 the relationship between CD4 and CD8 tumor reactive T cells and the relevance for shared antigen recog-351 nition are critical aspects to address for future improvements of immunotherapy. However, technical limi-352 tation are still prohibiting a detailed epitope mapping of CD4 NARTs, as conducted here for CD8 NARTs 353 (45).

354 In this study, we screened for recognition among 5921 predicted neopeptides arising from non-synonymous 355 mutations, of which we find recognition to 1.8% (106 necepitopes) in TIL Inf products, and additionally 356 98 neoepitopes in peripheral blood before or after TIL infusion, making a T cell recognition percentage of 357 3.4%. This illustrates that neoepitope prediction is feasible, but it remains a cumbersome approach to iden-358 tifying neoepitope-specific CD8+ T cells in metastatic melanoma. While recent efforts have led to signifi-359 cant improvements in the prediction of antigen processing and HLA binding (46), a gap remains in our 360 ability to predict which of the presented neoepitopes are able to give rise to T cell recognition (21). Among 361 the neoepitopes recognized by T cells in this study, we observed an enrichment of neoepitopes derived from 362 cancer driver genes and genes expressed above 2 TPM. However, despite these characteristics, the majority 363 of the neoepitopes detected was derived from passenger mutations, and no stringent criteria could be as-364 signed to determine the neoepitopes driving T cell recognition.

365 In conclusion, our study describes the critical contribution of NARTs to the clinical outcome in TIL-ACT 366 therapy and provides a thorough characterization of neoantigens recognized by T cells in this therapeutic 367 context. To this end, our study highlights a significant need for improving TIL-ACT manufacturing and the 368 capacity to predict immunogenic neoepitopes. Strategies to improve the expansion and engraftment of369 NARTs in TIL Inf products should further improve the clinical outcome.

370 Methods

371 Patient material

372 To study the role of NARTs in TIL-ACT in melanoma, we evaluated 26 patients with unresectable or met-373 astatic melanoma enrolled in a phase I/II clinical study of adoptive cell transfer, Clinical Trials.gov Identifier 374 NCT00937625. Demographic and clinical information for each patient ID are available in previous reports 375 (4, 5, 26). TIL Infusion (Inf) products were generated by expanding TILs in vitro from tumor lesions fol-376 lowing a rapid expansion protocol (REP) with high-dose IL-2, as described previously (47). All patients 377 were included at the time of progression from previous treatment(s) with either IL-2/IFNa and/or anti-378 CTLA-4 treatment and/or DC vaccination and/or Temozolomide and/or Vemurafenib (26). Furthermore, 379 as specified previously, four patients received Vemurafenib between surgical resection and TIL-ACT (M27, 380 M29, M35, M36) (4). Clinical response was assessed according to RECIST 1.0. Among the 26 patients, 381 five were complete responders (CR), six were partial responders (PR), ten were stable disease (SD), and 382 five were progressive disease (PD) patients (4), with a median progression-free survival (PFS) and overall 383 survival (OS) of 3.85 and 23.25 months, respectively. Using DNA-barcode-labelled pMHC multimers, we 384 analyzed the TIL inf products from all 26 patients for neoepitope-specific CD8+ T cells. From 19 of these 385 patients, we additionally analyzed corresponding PBMC samples before and at multiple time points after 386 TIL ACT (Supplemental Table 1). Tumor sequencing data (RNA and WES) was available from 26 of the 387 27 patients enrolled in the trial.

388 PBMCs from healthy donors were obtained from whole blood by density centrifugation on Lymphoprep in
389 Leucosep tubes and cryopreserved at -150°C in fetal calf serum (FCS, Gibco) + 10% DMSO.

390 TIL sorting and expansion. Young TILs were thawed and cultured overnight at 37°C in Complete Me391 dium (CM, RPMI-1640 supplemented with 10% heat-inactivated human serum), 100 U/ml penicillin, 100

392 µg/ml streptomycin, 1.25 µg/ml Fungizone and 6,000 IU/ml Interleukin 2. Cells were washed twice in R0 (RPMI-1640, 100 U/ml penicillin, 100 µg/ml streptomycin) and stained with 0.2 µg of in-house produced 393 394 pMHC tetramers conjugated to PE, APC or BV421 for 10 minutes at 37°C constructed using empty disul-395 fide-stabilized monomers where possible (A*02:01-Y84C) (48). Anti-CD4-FITC and anti-CD8-PerCP an-396 tibodies were added for a further 20 minutes at 37°C. Cells were washed with R0 and resuspended in R0 + 397 10% heat-inactivated human serum and sorted by flow cytometry using the BD FACS Aria cell sorter (BD 398 Biosciences, San Jose, CA, USA) into a 96-well plate. Sorted CD8+ tetramer+ cells were expanded 9 + 9 399 days in two sequential mini-rapid expansions (dependent on sorted cell numbers). In brief, 5x10⁵ allogeneic 400 feeder cells from healthy donors, 30 ng/ml OKT3 antibody (anti-CD3, Janssen-Cilag), master mix made of 401 50% CM and 50% rapid expansion medium (RM) consisting of AIM-V medium (Gibco) and 1.25 µg/ml 402 Fungizone supplemented with 6,000 IU/ml IL-2 with 10% HS were added to sorted cells and cultured at 403 37°C. 50% of the media (without OKT-3) was replaced after five days and subsequently every two days.

404 Intracellular Cytokine Assay. Tumor cells were either pretreated with interferon- γ (IFN γ) (100 IU/ml, 405 Peprotech, London, United Kingdom) or left untreated for three days. TILs were then added in a 1:1 ratio, 406 with protein transport inhibitors Brefeldin A (1:1000 dilution, GolgiPlug[™], Cat No 555029, BD), 407 Monensin (1:1000 dilution, GolgiStop[™], Cat No 554724, BD), and anti-CD107a-BV421 antibody (Clone 408 H4A3, BD 562623). Tumor cells and TILs were co-cultured for 5 hours, after which all cells were stained 409 with Near-IR Live/Dead (Life Technologies) and for surface markers CD3-FITC, (Clone SK7, BD 345764), 410 CD8-QDot605 (Clone 3B5, Thermo Fisher Q10009), CD4-BV711 (Clone SK3, BD 563028). Subse-411 quently, the cells were fixed and permeabilized (eBioscience) overnight and stained for intracellular cyto-412 kines TNF-APC (Clone MAb11, BD 554514) and IFN-γ-PE-Cy7 (Clone B27, BD 557643). Cells were 413 analysed on a Novocyte Quanteon (ACEA Biosciences). See details related to antibodies used in Supple-414 mental Table 2.

415 Neoepitope prediction. WES and RNAseq data were obtained from digested tumor fragments except for
416 M22 and M24 where autologous tumor cell lines were used. Two WES files from M15 were utilized and

417 their results combined; one from autologous tumor digest another from an autologous tumor cell line. All 418 WES data were obtained from tumor material from the same biopsy as was used for manufacturing of the 419 corresponding TIL Inf products, expect for M22 where the tumor cell line was derived from an earlier time 420 point. FASTQ files from WES and RNAseq were pre-processed using Trim Galore (49) version 0.4.0. WES 421 reads were aligned to the human genome (GRCh38) using Burrows-Wheeler Aligner (50) version 0.7.15 422 with default mem parameters, and duplicate reads were marked using MarkDuplicates from Picard-tools 423 (51) version 2.9.1. Peptides were extracted and prioritized using MuPeXI (20) version 1.1.3 and 424 netMHCpan version 4.0 (22) providing as input the somatic variants obtained following GATK version 425 3.8.0 best practices, the RNAseq expression values calculated using Kallisto version 0.42.1 (52) and the 426 HLA alleles inferred from normal WES samples using OptiType version 1.2 (53). For patients with high 427 neoantigen load, all predicted neoepitopes with %rank ≤ 0.5 and TPM ≥ 0.1 were included. For patients 428 with lower neoantigen load, we lowered the expression threshold to ≥ 0.01 TPM, and selected top 200 pre-429 dicted neopeptides according to %rank. All predicted neopeptides and virus control peptides were synthe-430 sized and purchased from Pepscan (Pepscan Presto, The Netherlands) and dissolved to 10 mM in DMSO.

For each cancer-specific non-synonymous mutation, the HLA-I binding potential of mutation-derived peptides was predicted using netMHCpan v 4.0 (20, 22). For each patient, a minimum of 200 top-ranking
neopeptides were included. The ranking was based on the predicted HLA-I binding (%rank) and the transcription of the corresponding gene, as RNA Transcripts per Million (TPM).

Clonality. Copy number, purity and ploidity are found using Sequenza version 3.0 (54). As input, printed reads from normal and tumor are used as input to Sequenza. Sequenza-utils version 3.0 bam2seqz with GRCh38 as reference. To run the Sequenza copynumber call with GRCh38, the R packages Shixiang/copynumber version 1.26.0 (55) is applied. The created seqz files are used as input to sequenzautils seqz_binding, the outputs are used to Sequenza utils snp2seqz. To reduce the amount of false negative according to the bulid-in mutations called from Sequenza, copynumber files from the mutect2 output are merged with the copynumber call from the bam files. Sequenza results and PyClone inputs are generated with the Sequenza packages in R, version 3.6.1. To find clonal mutations, PyClone version 0.13.0 (56) is applied with the cellularity given from Sequenza and max cluster of 30 and minimum size of 0 to get all possible mutations given. Clonal mutations are filtered with a cluster size of minimum 80 and cellularity of minimum 90. Clonality could not be computed for M22, M24 and part of M15 as the underlying WES data came from autologous tumor cell lines.

447 Generation of DNA-barcode labelled pMHC multimers. Oligonucleotides containing distinct 25mer nu-448 cleotide sequences (57) were purchased from LGC Biosearch Technologies (Denmark). All oligos carry a 449 6-nt unique molecular identifier (58). Oligonucleotides modified with a 5' biotin tag (oligo A) were joined 450 to unmodified, partially complementary oligonucleotides (oligo B) to generate > 1000 unique double-451 stranded AxBy DNA barcodes. Combinations of A and B oligos (one of each) were mixed with 5 × Se-452 quenase Reaction Buffer mix (PN 70702, Affymetrix) to final concentrations of 26 µM (Oligo A) and 52 453 μ M (Oligo B), respectively; heated to 65°C for 2 min; and allowed to anneal by cooling slowly to < 35 °C 454 over 15-30 min. The annealed oligo As and Bs were elongated to create double-stranded AxBy DNA bar-455 codes by adding Sequenase polymerase (70775Y, Affymetrix), 20 µM DTT and 800 µM or 72 µM dNTPs, 456 followed by incubation for 5-10 min at room temperature. Elongated AxBy barcodes were diluted in nu-457 clease-free water + 0.1% Tween to 2.17 μ M (with respect to the A oligo) and stored at -20°C. Attachment 458 of 5' biotinylated AxBy DNA barcodes to PE- and streptavidin-conjugated dextran (Fina Biosolutions, 459 USA) was performed by mixing the two components at final concentrations of $14 \times 10-8$ M dextran back-460 bone and $2.8 \times 10-5$ M barcode in order to obtain 0.5-2 barcodes for each dextran backbone and subsequent 461 incubation for 30 min at 4°C.

462 Refolded, biotinylated pMHC-I were subsequently added at a stoichiometry of approximately 16.5 pMHC 463 molecules per dextran, these were generated through UV-mediated exchange of cleavable ligands as de-464 scribed previously (23, 24). In brief, MHC monomers bound to UV-sensitive ligands were mixed with 465 HLA-matching peptides at a final concentration of 50 μg ml-1 monomer and 100 mM peptide and exposed 466 to UV light for 60 minutes (366 nm). Afterwards, pMHC monomers were centrifuged for 5 min at 3300×g and then coupled to DNA barcode- and PE-labeled dextran backbones to a final concentration of 35 μ g ml-1 monomer and 4.2 × 10-8 M barcode- and PE-labeled dextran backbone and incubated for 20 min on ice. Then, a freezing buffer was added to reach PBS + 0.5% BSA + 100 μ g mL-1 herring DNA + 2 mM EDTA + 5% glycerol and 909 nM D-biotin and after 20 min on ice, the pMHC multimers were stored at -20°C until use.

472 T cell staining with barcode-labeled pMHC multimers. Cryopreserved cells were thawed, washed twice 473 in RPMI + 10% FCS and then washed in barcode-cytometry buffer (PBS + 0.5% BSA + 100 µg mL-1 474 herring DNA + 2 mM EDTA). Before staining, MHC multimers were thawed on ice, centrifuged for 5 min 475 at 3300×g, and 1.5 µl (0.043 µg) of each distinct pMHC was taken from each well, avoiding potential 476 aggregates in the bottom, and pooled. The volume of the reagent pool was reduced by ultrafiltration to 477 obtain a final volume of $\sim 80 \ \mu L$ of pooled MHC multimers per staining. Centrifugal concentrators (Vi-478 vaspin 6, 100,000 Da, Sartorius) were saturated with BSA before use. Following ultrafiltration, the pool of 479 multimers was spun at 10.000×g for 2 min to sediment potential aggregates. An aliquot of ~ 5 μ l of the 480 MHC multimer reagent pool was stored at -20° C for later baseline analysis. Prior to staining with the MHC 481 multimers, 50 nM dasatinib was added to up to 10×10^6 cells. The MHC multimer pool was then added to 482 the cells and cells were incubated for 15 min at 37°C in a total volume of 80 µl. Following incubation, the 483 cells were stained with an antibody mix containing CD8-BV480 (clone RPA-T8, BD 566121), dump chan-484 nel antibodies (CD4-FITC (clone SK3, BD 345768), CD14-FITC (clone MφP9, BD 345784), CD19-FITC 485 (clone 4G7, BD 345776), CD40-FITC (clone LOB7/6, Serotech MCA1590F), and CD16-FITC (clone 486 NLP15, BD 335035)), and a dead cell marker (LIVE/DEAD Fixable Near-IR; Invitrogen L10119) and 487 incubated for 30 min at 4 °C. Samples were stained with antibodies in 100 μ L according to Supplemental 488 Table 2. Cells were washed three times in barcode-cytometry buffer and fixed in 1% paraformaldehyde 489 (PFA) for 0.5-24 h before they were washed twice and resuspended in barcode-cytometry buffer. Cells 490 were acquired within a week after multimer staining.

491 Sorting of pMHC multimer+ T cells. Multimer-binding CD8+ T cells were sorted on a FACS Aria Fusion 492 or FACS Melody Cell Sorter (BD) into BSA saturated tubes containing 100 µl of barcode-cytometry buffer. 493 We gated on single, live, CD8+, and dump channel (CD4, CD14, CD16, CD19, and CD40)-negative lym-494 phocytes and sorted all multimer-positive PE cells within this population. As tested and described in 495 Bentzen et al., inclusion of CD8+, multimer negative cells in the sorting gate does not have an impact on 496 the final results because the fluorescence signal is used only for sorting out the relevant cells. Determination 497 of antigen specificity is done solely based on the DNA barcode. The sorted cells were centrifuged for 10 498 min at 5000 g and the buffer was removed. The cell pellet was stored at -80 °C in a minimal amount of 499 residual buffer (< 19 µL). %Multimer+ CD8+ T cells was used as input for estimation of epitope-specific 500 CD8+ T cells (see Processing of DNA barcode sequencing data), 3 samples were run without exported flow 501 cytometry files precluding adequate estimation of frequency after sequencing of DNA-barcodes (M15 TIL 502 Inf product, M40 pre-ACT PBMCs, and M40 PBMCs < 1 month). TIL Inf product from M47 were stained 503 again to estimated %multimer+ CD8+ T cells. M15 had no significant hits among barcoded multimers (i.e. 504 sum of estimated frequency was set to 0%). See details antibody assay details in Supplemental Table 2.

505 **DNA barcode amplification.** DNA barcode amplification was performed using Taq PCR Master Mix Kit 506 (Qiagen, 201443) and 3 µM of forward and reverse primers (LGC Biosearch Technologies). PCR amplifi-507 cation was conducted on sorted multimer-binding T cells (in $< 19 \mu$ L of buffer) and on a triplicate of the 508 stored aliquot of the MHC multimer reagent pool (diluted 10.000× in the final PCR) under the following 509 conditions: 95°C 10 min; 36 cycles: 95°C 30 s, 60°C 45 s, 72°C 30 s, and 72°C 4 min. The multimer reagent 510 pool was used as the baseline to determine the number of DNA barcode reads within a non-processed MHC 511 multimer reagent library. PCR products were purified with a QIAquick PCR Purification kit (Qiagen) and 512 the amplified DNA barcodes were sequenced at Primbio (USA) using an Ion Torrent PGM 316 or 318 chip 513 (Life Technologies).

514 Processing of sequencing data from DNA barcodes. Sequencing data were processed by the software
515 package "Barracoda", available online at (https://services.healthtech.dtu.dk/service.php?Barracoda-1.8).

516 This tool identifies the barcodes used in a given experiment assigns in PCR used sampleIDs and pMHC 517 specificity to each barcode, and counts the total number (clonally reduced) reads for each DNA barcode. 518 Furthermore, it accounts for barcode enrichment based on methods designed for the analysis of RNA-seq 519 data, implemented in the R package edgeR: specifically, log2 fold changes in read counts mapped to a given 520 sample relative to the mean read counts mapped to triplicate baseline samples are estimated using normal-521 ization factors determined by the trimmed mean of M-values method. Barcodes with a log2 fold change 522 with a p < 0.001, which equals a FDR < 0.1 (estimated using the Benjamini–Hechberg method). Barracoda 523 outputs were further processed and annotated using R 4.0.2 - adding relevant clinical information, and 524 excluding signals arising from insufficient read depth (% read count < 0.1). Furthermore, biologically rele-525 vant barcode enrichment was defined as an estimated frequency > 0.01%, and without presence in partially 526 HLA-matching healthy donor PBMCs. 227 multimers were excluded due to technical concerns regarding 527 HLA-C*05:01 (M22, 140 multimers; M27, 46 multimers) and HLA-C*02:02 (M43, 41 multimers). Peptide 528 missannotations were also excluded, which originated from pipetting errors discovered through cross-ref-529 erencing of ordering and annotation tables (M27, 1 multimer; M35, 40 multimers; M46, 1 multimer). Fre-530 quency of a pMHC-specific CD8+ T cell population was estimated based on the %read count of the asso-531 ciated barcode out of the total %multimer-positive CD8+ T cells population. Sum of estimated frequency 532 represents the pooled frequencies of all T cell populations in a given sample. Due to differences in number 533 of producible HLA molecules, number and frequency of neoepitope-specific CD8+ T cells were normalized 534 to the mean absolute HLA coverage in the cohort (average HLA covered (across all panels) / HLA covered 535 (patient panel)).

Structural analysis of overlapping mutated peptides and the HLA binding. Structural pMHC models
were generated using the method described in TCRpMHCmodels (59). All peptides were bound to HLAA*01:01 and the sequence for this MHC molecule was downloaded from the IMGT database (60). To get
the electrostatic potential for each of the pMHC models hydrogen atoms were added using the phenix.reduce protocol from (61) after which Delphi (62) was used to calculate the electrostatic potential with the

following parameters, scale=1.0, perfil=70.0, indi=4.0, exdi=80.0, prbrad=1.4, salt=0.15, ionrad=2.0, bndcon=2, linit=800, maxc=0.0001, sigma=2.0, srfcut=20.0 and gaussian=1. The electrostatic potential from
Delphi was finally virtualized using PyMOL (https://pymol.org/).

Differential expression analysis. RNAseq data for differential gene expression analysis exclusively came
from tumor digests i.e. no autologous tumor cell lines were used. Output files from Kallisto are used as
input to DESeq2 version 1.26.0 from R/biocinductor with default options(63) to find differential expressed
genes (adjusted p-values < 0.05, related to high and low sum of estimated frequency split by the median
and PFS split by equal or below the median). GO enrichment analysis was performed using R version 4.0.2
with the packages; enrichplot version 1.11.0.991 (64) and clusterProfier version 3.16.1 with Benjamin
Hochberg at p value adjustment (35).

551 Statistics. Statistical analysis of DNA barcoding data was performed using the software package "Barra-552 coda" as described above. Survival analysis used percentiles and medians (number of NARTS or frequency) 553 to define thresholds to split the cohort. Any values matching the threshold were treated as belonging to the 554 lower group. Mantel-Cox test was used to evaluate the effect of NARTs on survival, and hazard ratios were 555 calculated using log rank-approach using Graph Pad Prism 8. Correlations were tested using non-paramet-556 ric, two-sided Spearman correlation test, except in Supplemental Figure 1D, where we used a two-sided 557 Pearson correlation. Two-sided z-test (prop.test) was applied where specified in Figure 6A, C and D. All 558 two-group comparisons were performed using non-parametric Mann-Whitney test with a significance 559 threshold of 0.05. Multi-group comparisons were performed by an initial non-parametric Kruskal-Wallis 560 test followed by post hoc Dunn's multiple comparison test.

561 Study approval. This study was conducted using TILs and PBMCs from patients enrolled in the clinical 562 study: ClinicalTrials.gov Identifier NCT00937625. All patients signed a written consent form according to 563 the Declaration of Helsinki. The study was approved by the local ethics committee for the capital region of 564 Denmark (RegionH). Likewise, healthy donor samples were collected by approval of the local Scientific Ethics Committee for the capital region of Denmark (RegionH), with donor written informed consent obtained according to the Declaration of Helsinki. Healthy donor blood samples were obtained from the blood
bank at Rigshospitalet, Copenhagen, Denmark. All samples were obtained anonymously

568 Author Contributions

569 NPK, CH, and SAT performed experiments, analyzed data, generated figures, and wrote the manuscript. 570 AB conducted all bioinformatics analyses and generated figures. AD and MDC performed experiments and 571 analyzed data. IC predicted neoepitopes. KKM conducted structural analyses of pMHC and generated fig-572 ures. JSH assisted the neopeptide selection and pMHC multimer production. AMB assisted the neopeptide 573 prediction. AKB provided technical guidance. AMM supported data analyses. ZS co-designed in silico 574 platforms and supported funding. NMG assisted in bioinformatic guidance. RA provided patient material, 575 diagnosed and characterized the patients, and generated tumor cell lines. MN designed the in silico plat-576 forms and supervised neoepitope prediction. GBJ conducted sequencing analysis and discussed data. MD 577 provided patient material, co-supervised the study, and discussed the data. IMS provided patient material, 578 co-supervised the study, discussed the data, and revised the manuscript. SRH conceived the concept, su-579 pervised the study, discussed the data, and wrote the manuscript.

580 Data and materials availability

All requests for raw and analyzed data and materials will be promptly reviewed by the senior authors to verify whether the request is subject to any intellectual property or confidentiality obligations. Patientrelated data not included in the main manuscript or supplementary files may be subject to patient confidentiality. Any data and materials that can be shared will be released via material transfer agreement and data processing agreements, provided approval from the relevant authorities.

586 Code availability

587 MuPeXi used for neoepitope prediction is available for all users at http://www.cbs.dtu.dk/services/MuPeXI/

and published in (20). Visualization of pMHCs were generated as described in methods. Analysis of DNA-

- 589 barcodes was performed as described in methods, and the bioinformatics pipeline is available at https://ser-
- 590 <u>vices.healthtech.dtu.dk/service.php?Barracoda-1.8</u>. Code used for further analysis and visualization was
- 591 written in R as performed as described in methods.

592 Acknowledgments

We thank all donors and patients for participating in the study; B. Rotbøl, A.F. Løye and A. D. Burkal for excellent technical assistance with handling flow cytometry instruments and blood samples. This research was funded primarily through the NEYE foundation grant 'A personalized approach for increased clinical efficacy of cancer immunotherapy', and in part supported by the European Research Council, StG 677268 NextDART, the Lundbeck Foundation Fellowship R190–2014–4178 and the Carlsberg foundation.

598 **References**

- 1. Rosenberg SA, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma
 using T-cell transfer immunotherapy. *Clin. Cancer Res.* 2011;17(13):4550–4557.
- 2. Besser MJ, et al. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic
 melanoma: Intent-to-treat analysis and efficacy after failure to prior immunotherapies. *Clin. Cancer Res.*2013;19(17):4792–4800.
- 3. Itzhaki O, et al. Establishment and large-scale expansion of minimally cultured young tumor infiltrating
 lymphocytes for adoptive transfer therapy. *J. Immunother*. 2011;34(2):212–220.
- 4. Andersen R, et al. Long-lasting complete responses in patients with metastatic melanoma after adoptive
 cell therapy with tumor-infiltrating lymphocytes and an attenuated IL-2 regimen. *Clin. Cancer Res.*2016;22(15):3734–3745.
- 5. Lauss M, et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy
 in melanoma. *Nat. Commun.* 2017;8(1):1–10.

- 6. Goodman AM, et al. Tumor mutational burden as an independent predictor of response to
 immunotherapy in diverse cancers. *Mol. Cancer Ther.* 2017;16(11):2598–2608.
- 613 7. Samstein RM, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer
- 614 types. *Nat. Genet.* 2019;51(2):202–206.
- 615 8. Donia M, et al. Methods to Improve Adoptive T-Cell Therapy for Melanoma: IFN-γ Enhances Anticancer
- 616 Responses of Cell Products for Infusion. J. Invest. Dermatol. 2013;133(2):545–552.
- 9. Rosenberg SA, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating
 lymphocytes and interleukin 2. *J. Natl. Cancer Inst.* 1994;86(15):1159–1166.
- 619 10. Zhou J, et al. Persistence of multiple tumor-specific T-cell clones is associated with complete tumor
- 620 regression in a melanoma patient receiving adoptive cell transfer therapy. *J. Immunother.* 2005;28(1):53–

621 62.

- 622 11. Lu YC, et al. Mutated PPP1R3B is recognized by T cells used to treat a melanoma patient who
 623 experienced a durable complete tumor regression. *J Immunol* 2013;190(12):6034–6042.
- 624 12. Lu YC, et al. Efficient identification of mutated cancer antigens recognized by T cells associated with
- durable tumor regressions. *Clin. Cancer Res.* 2014;20(13):3401–3410.
- 626 13. Huang J, et al. T Cells Associated with Tumor Regression Recognize Frameshifted Products of the
 627 CDKN2A Tumor Suppressor Gene Locus and a Mutated HLA Class I Gene Product . *J. Immunol.*628 2004;172(10):6057–6064.
- 629 14. Robbins PF, et al. Mining exomic sequencing data to identify mutated antigens recognized by
 630 adoptively transferred tumor-reactive T cells. *Nat. Med.* 2013;19(6):747–752.
- 631 15. Prickett TD, et al. Durable complete response from metastatic melanoma after transfer of autologous T
- 632 cells recognizing 10 mutated tumor antigens. *Cancer Immunol. Res.* 2016;4(8):669–678.

- 633 16. Newell EW, et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope
 634 mapping and characterization. *Nat. Biotechnol.* 2013;31(7):623–629.
- 635 17. Joglekar AV, et al. T cell antigen discovery via signaling and antigen-presenting bifunctional receptors.
- 636 *Nat. Methods* 2019;16(2):191–198.
- 637 18. Kula T, et al. T-Scan: A Genome-wide Method for the Systematic Discovery of T Cell Epitopes. *Cell*638 2019;178(4):1016-1028.e13.
- 639 19. Bentzen AK, et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers
- 640 labeled with DNA barcodes. *Nat. Biotechnol.* 2016;34(10):1037–1045.
- 641 20. Bjerregaard AM, et al. MuPeXI: prediction of neo-epitopes from tumor sequencing data. *Cancer*
- 642 *Immunol. Immunother.* 2017;66(9):1123–1130.
- 643 21. Wells DK, et al. Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium
 644 Approach Improve Neoantigen Prediction. *Cell* 2020;183(3):818-834.e13.
- 645 22. Jurtz V, et al. NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating
- Eluted Ligand and Peptide Binding Affinity Data. J. Immunol. 2017;199(9):3360–3368.
- 647 23. Rodenko B, et al. Generation of peptide-MHC class I complexes through UV-mediated ligand
 648 exchange. *Nat. Protoc.* 2006;1(3):1120–1132.
- 649 24. Toebes M, et al. Design and use of conditional MHC class I ligands. *Nat. Med.* 2006;12(2):246–251.
- 650 25. Kvistborg P, et al. TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma
- 651 patients. *Oncoimmunology* 2012;1(4):409–418.
- 652 26. Elleback E, et al. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose
- 653 Interleukin-2 in metastatic melanoma patients. J. Transl. Med. 2012;10(1):1–12.
- 654 27. Effern M, et al. Adoptive T Cell Therapy Targeting Different Gene Products Reveals Diverse and

- 655 Context-Dependent Immune Evasion in Melanoma. *Immunity* 2020;53(3):564-580.e9.
- 656 28. Robbins PF, et al. Cutting Edge: Persistence of Transferred Lymphocyte Clonotypes Correlates with
- 657 Cancer Regression in Patients Receiving Cell Transfer Therapy. J. Immunol. 2004;173(12):7125–7130.
- 658 29. Frahm N, et al. Extensive HLA class I allele promiscuity among viral CTL epitopes. *Eur. J. Immunol.*659 2007;37(9):2419–2433.
- 30. Gros A, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of
 melanoma patients. *Nat. Med.* 2016;22(4):433–438.
- 662 31. Mcgranahan N, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune
 663 checkpoint blockade. *Science* 2016;351(6280):1463–1469.
- 664 32. Hodis E, et al. A landscape of driver mutations in melanoma. *Cell* 2012;150(2):251–263.
- 33. Parkhurst MR, et al. Unique neoantigens arise from somatic mutations in patients with gastrointestinal
 cancers. *Cancer Discov.* 2019;9(8):1022–1035.
- 34. Bjerregaard AM, et al. An analysis of natural T cell responses to predicted tumor neoepitopes. *Front. Immunol.* 2017;8(NOV):1–9.
- 35. Yu G, et al. ClusterProfiler: An R package for comparing biological themes among gene clusters. *Omi. A J. Integr. Biol.* 2012;16(5):284–287.
- 671 36. Cabrita R, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma.
 672 *Nature* 2020;577(7791):561–565.
- 673 37. Liu S, et al. Efficient identification of neoantigen-specific T-cell responses in advanced human ovarian
 674 cancer. *J. Immunother. Cancer* 2019;7(1):1–17.
- 675 38. Crowther MD, et al. Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting
- 676 via the monomorphic MHC class I-related protein MR1. *Nat. Immunol.* 2020;21(2):178–185.

- 677 39. Krishna S, et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human
 678 cancer. *Science* 2020;370(6522):1328–1334.
- 679 40. Carreno BM, et al. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-
- 680 specific. *Science* 2015;348(6236):803–808.
- 41. Lövgren T, et al. Complete and long-lasting clinical responses in immune checkpoint inhibitor-resistant,
 metastasized melanoma treated with adoptive T cell transfer combined with DC vaccination. *Oncoimmunology* 2020;9(1).
- 42. Jansen CS, et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. *Nature*2019;576(7787):465–470.
- 686 43. Borst J, et al. CD4+ T cell help in cancer immunology and immunotherapy. *Nat. Rev. Immunol.*687 2018;18(10):635–647.
- 44. Dudley ME, et al. CD8+ enriched "Young" tumor infiltrating lymphocytes can mediate regression of
 metastatic melanoma. *Clin. Cancer Res.* 2010;16(24):6122–6131.
- 45. Hadrup SR, Newell EW. Determining T-cell specificity to understand and treat disease. *Nat. Biomed. Eng.* 2017;1(10):784–795.
- 692 46. Sarkizova S, et al. A large peptidome dataset improves HLA class I epitope prediction across most of
 693 the human population. *Nat. Biotechnol.* 2020;38(2):199–209.
- 694 47. Donia M, et al. Simplified protocol for clinical-grade tumor-infiltrating lymphocyte manufacturing with
- 695 use of the Wave bioreactor. *Cytotherapy* 2014;16(8):1117–1120.
- 48. Saini SK, et al. Empty peptide-receptive MHC class I molecules for efficient detection of antigen-
- 697 specific T cells. *Sci. Immunol.* 2019;4(37).
- 698 49. Krueger F. Trim Galore. *GitHub Repos.* 2012;

- 50. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 2009;25(14):1754–1760.
- 701 51. Broad Institute. Picard Toolkit. *GitHub Repos.* 2019;
- 52. Bray NL, et al. Near-optimal probabilistic RNA-seq quantification. *Nat. Biotechnol.* 2016;34(5):525–
 527.
- 53. Szolek A, et al. OptiType: Precision HLA typing from next-generation sequencing data. *Bioinformatics*2014;30(23):3310–3316.
- 54. Favero F, et al. Sequenza: Allele-specific copy number and mutation profiles from tumor sequencing
 data. *Ann. Oncol.* 2015;26(1):64–70.
- 55. Wang S. Copynumber. *GitHub Repos.* 2020;
- 709 56. Roth A, et al. PyClone: Statistical inference of clonal population structure in cancer. *Nat. Methods*710 2014;11(4):396–398.
- 711 57. Xu Q, et al. Design of 240,000 orthogonal 25mer DNA barcode probes. *Proc. Natl. Acad. Sci.*712 2009;106(7):2289–2294.
- 58. Kivioja T, et al. Counting absolute numbers of molecules using unique molecular identifiers. *Nat. Methods* 2012;9(1):72–74.
- 59. Jensen KK, et al. TCRpMHCmodels: Structural modelling of TCR-pMHC class I complexes. *Sci. Rep.*2019;9(1):1–12.
- 60. Lefranc MP, et al. IMGT®, the international ImMunoGeneTics information system R 25 years on. *Nucleic Acids Res.* 2015;43(D1):D413–D422.
- 719 61. Liebschner D, et al. Macromolecular structure determination using X-rays, neutrons and electrons:
- 720 Recent developments in Phenix. Acta Crystallogr. Sect. D Struct. Biol. 2019;75:861–877.

721	62. Li L, et al. DelPhi: a comprehensive suite for DelPhi software and associated resources. BMC Biophys.
722	2012;5(1):9.

- 723 63. Love MI, et al. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
- *Genome Biol.* 2014;15(12):1–21.
- 725 64. Yu G, Hu E. enrichplot: Visualization of Functional Enrichment Result [Internet]2020;https://yulab-
- 726 smu.top/biomedical-knowledge-mining-book/. cited
- 727 65. Donia M, et al. Aberrant expression of MHC class II in melanoma attracts inflammatory tumor-specific
- 728 CD4+T-cells, which dampen CD8+T-cell antitumor reactivity. *Cancer Res.* 2015;75(18):3747–3759.

- ____

- _ . .

742 Figures

745	Figure 1. Detection of neoepitope-specific CD8+ T cells in expanded tumor-infiltrating lym-
746	phocytes of melanoma. (A) Melanoma-specific mutation-derived peptides were predicted to bind
747	patient's HLA molecules using the prediction platform MuPeXI. DNA barcode-labelled MHC-
748	multimers with either neopeptides or virus-derived peptides were assembled on a PE-labelled
749	streptavidin-conjugated dextran backbone. Multimer-binding, neoepitope-specific CD8+ T cells
750	(NARTs) were fluorescence-sorted and T cell specificities decoded by barcode sequencing. (B)
751	Example of neoepitope- and virus-specific CD8+ T cells detected in expanded TILs of melanoma
752	patient M22, partial responder, across available HLAs. Significant barcode enrichment is defined
753	based on a log fold change (log2FC) of the number of barcode reads compared with triplicate
754	baseline samples, and $p {\leq} 0.001$ (egdeR) after correction for multiple hypothesis testing (see meth-
755	ods). Blue: NARTs; Red: Virus-specific CD8+ T cells; Black: Multimers with non-enriched bar-
756	codes. V17 annotate EBV peptide RAKFKQLL. (C) Number and frequency of neoepitope- and
757	virus-specific CD8+ T cells in TIL samples across cohort of 26 melanoma patients. Blue: NARTs.
758	Red: Virus-specific CD8+ T cells. Number of and frequency of NARTs were normalized to abso-
759	lute HLA coverage (see methods).
760	
761	
762	
763	
764	
765	
766	

769 Figure 2. Autologous tumor recognition by enriched NARTs. (A) Correlation of TIL reactivity to autologous tumor (measured by ICS) and sum of estimated NART frequency. TIL reactivity 770 771 towards an autologous tumor cell line was defined as positive for two out of TNFa, IFNy and 772 CD107a. 16 patients with available tumor reactivity data were included from both responder (n =773 6) and non-responders (n = 10). R and p-value from Spearman correlation with 95% confidence 774 intervals in grey. NART frequency was normalized to absolute HLA coverage (see methods). (B-C) HLA-B*08:01-restricted, NLFR specific CD8+ T cells from M22 TIL Inf product were sorted 775 776 based on 2-color tetramer binding (B) and expanded in vitro followed by NLFR-tetramer staining 777 (C). (D) Tumor reactivity as measured by $TNF\alpha/IFN\gamma$ release after co-culture of expanded, NART-778 specific cell products with, or without autologous tumor cell lines, with PMA/Ionomycin, or with autologous tumor cell line and IFNy. NLFR, NLFRRVWEL from USP34^{S1391F}. ICS, intracellular 779 780 cytokine staining. TIL reactivity data shown in A originate from (4) and the assay performed as 781 described in (65).

768

783

784

Figure 3. Frequency of NARTs correlate with increased survival after TIL-ACT. (A-B) 787 788 NART diversity represented as the number of NARTs detected in TIL Inf products for each patient 789 according to RECIST (A) and clinical response (B). (C-D) NART frequency represented as the sum of estimated frequency of NARTs detected in TIL Inf products for each patient according to 790 791 RECIST (C) and clinical response (D). (E-F) Progression-free survival for the cohort split by the median NART diversity (median = 3.65 NARTs) (E) and median NART frequency (median = 792 793 0.63 %) (F). (G-H) Progression-free survival for the cohort splits by high (> 66th percentile), intermediate (> 33rd percentile), and low groups (< 33rd percentile). (G), NART diversity. 66th per-794 centile = 5.65 NARTs. 33^{rd} percentile = 0.88 NARTs. (H), NART frequency. 66^{th} percentile = 795 3.26%. 33^{rd} percentile = 0.03\%. p-values were calculated using Kruskal-Wallis test followed by 796 797 Dunn's multiple comparison test in A and C; only significant comparisons are shown. Non-parametric Mann-Whitney U test was used for B and D. Boxplot whiskers represent IQR. p-values and 798 799 hazard ratios (HR) were calculated using Mantel-Cox test and log-rank approach, respectively in 800 E-H. Both number of and frequency of NARTs were normalized to absolute HLA coverage (see 801 methods). n = 26 for all plots. All values displayed on a logarithmic scales were increased by 0.01 to account for zero-values 802

806 Figure 4. NARTs appear in peripheral blood and decline in frequency following TIL-ACT. 807 (A) Output example from screening paired PBMCs from 19 patients. Virus- and neoepitope-spe-808 cific CD8+ T cells in patient M22 (PR) in Pre-ACT PBMCs, TIL Inf product, and PBMCs follow-809 ing TIL-ACT. Blue: NARTs. Red: Virus-specific CD8 T cells. Black: Multimers associated with 810 non-enriched barcodes. Significant barcode enrichment is defined based on a log2FC of the num-811 ber of barcode reads compared with triplicate baseline samples, and p < 0.001 (egdeR) (see meth-812 ods). V1 annotate FLU peptide ELRSRYWAI, v17 annotate EBVvirus peptide RAKFKQLL, v30 813 annotate EBV peptide QAKWRLQTL, and v31 annotated EBV peptide FLRGRAYGL. (B-C) 814 Median number of NARTs, error bars indicate IQR, points were displaced for visual purposes. (B) 815 and sum of estimated NART frequency (C) over time in TIL Inf product and available PBMC 816 samples. Patients are divided according to RECIST groups. (D-E) Boxplots representing diversity (D) and frequency (E) of NARTs for each patient according to RECIST groups. p-values were 817 calculated using Mann-Whitney U test. 19 patients had both TIL Inf products and PBMCs availa-818 ble, but the number of samples at each time point varied according to sample and data availability 819 820 (Supplemental Table 1, Supplemental Figure 8). NART frequency could not be calculated for M40 PBMCs Pre-ACT and for M40 PBMCs < 1 month after treatment (see methods) and are therefore 821 822 excluded in C and E. Whiskers represent IQR. NART frequencies were normalized to HLA coverage of the given patient (see methods). All values displayed on logarithmic scales were increased 823 824 by 0.01 to account for zero-values. 825 826

- 827
- 828
- 829
- 830
- 831

Figure 5. Responding patients have high frequent, engrafting NARTs in their TIL infusion 838 839 product. (A-B) Each NART population was annotated and colored according to first appearance 840 in Pre-ACT PBMCs, TIL Inf products and Post-ACT PBMCs (< 1 month to < 48 months). Black 841 numbers specify the total number of NARTs detected at the specific time and RECIST group. (A) 842 Distribution of NARTs within RECIST groups according to first appearance. (B) Distribution of 843 NART frequency within RECIST groups according to first appearance. *M01 (CR) did not have 844 pre-ACT and < 1 month PBMCs available and was excluded from analysis to avoid a biased dis-845 tribution. **Frequency data could not be calculated for M40 pre-ACT, and M40 post-ACT < 1 month, which were excluded (see methods). (C) Venn diagram showing the overlap of detected 846 847 NARTs between pre-ACT PBMCs, TIL Inf products and all post-ACT PBMC samples. n = 19. 848 (**D**) The estimated frequency of each NART population detected < 1 month post infusion. Re-849 sponses were either regarded as engrafted (i.e. also detected in TIL Inf) or novel. n = 16, M01 and M40 were excluded as stated for (A-B), M29 did not have detectable antigen-specific CD8 T cells 850 before the second time point post-ACT (E) The estimated frequency of each NART population 851 observed in TIL Inf products. Non-engrafted vs engrafted (i.e. detected at least once at a later time 852 points), n=19. (F-G) Number and frequency of engrafted NARTs, defined by presence in both TIL 853 854 Inf product and post TIL-ACT. n varied according to sample availability (Supplemental Table 1, Supplemental Figure 8). M40 pre-ACT and < 1 month PBMCs were excluded from G (see meth-855 ods). Sum of estimated frequency in G was increased by 0.01 to account for zero-values. p-values 856 857 from Mann-Whitney U test. Whiskers represent IQR.

858

859

860

861

864 Figure 6. Characteristics of immunogenic neoepitopes. (A) Venn diagram of 5921 unique pMHC; 204 immunogenic and 5717 non-immunogenic as determined by the presence of ne-865 866 oepitope-specific CD8+ T cells in patients at any time. The distribution and overlap of immunogenic vs. non-immunogenic neoepitopes deriving from either cancer driver genes (6.5% vs. 3.3%, 867 868 p = 0.0048, z-test), C/T mutations (3.4% vs. 3.5%, p = 0.78, z-test), and clonal mutations (80.1%) 869 vs 86.0% p = 0.03, z-test). Clonality could not be determined for 913 neopeptides as WES was 870 performed on autologous tumor cell lines (M22, M24, and a subset of M15). These were excluded 871 from the z-test, but included in the Venn diagram as subclonal mutations for visualization. (B) Eluted ligand (EL) %rank of mutated peptide compared to %rank of the corresponding germline 872 peptide without mutation or nearest germline peptide, immunogenic peptides are colored red (3.4% 873 874 CB vs. 3.5 % IB, p-value = 0.99, z-test). (C) Mutant EL %rank comparing proportion of immunogenic neoepitopes above and below 0.5 %rank (3.3 % vs 3.5, p-value = 0.71, z-test). (D) RNA 875 876 expression (TPM), comparing proportion of immunogenic peptides with expression above and below 2 TPM (4.2 % vs. 2.6%, p-value = 0.001, z-test). (E) Unsupervised clustering of the 226 dif-877 878 ferential expressed gene according to high and low sum of estimated frequency within TIL Inf products split by the median frequency (0.63%). Denoted names were prioritized according to GO 879 880 terms and known function. (F) Enriched GO gene set representing lymphocyte-mediated immunity. (G) Enriched GO gene set representing T cell proliferation. Significance thresholds for GSEA 881 882 was set at FDR < 0.01. M24 was excluded from D-G as RNAseq data was obtained from an autol-883 ogous tumor cell line, n = 25. M22 was included in D-G using data from the tumor biopsy used 884 for manufacturing of the infusion product.

885

886

887

888

889