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Introduction
Host resistance and disease tolerance are essential to mounting 
a successful defense against infections such as SARS-CoV-2. Up 
to 80% of individuals infected with SARS-CoV-2 are asymptom-
atic or develop mild-to-moderate symptoms. However, others 
progress to severe disease with life-threatening complications 
requiring hospitalization and specialized medical care. Severe 
COVID-19 correlates with respiratory symptoms (i.e., dyspnea, 
hyperpnea, hypoxemia, pulmonary infiltration) and concomitant 
multiple organ failure with disseminated intravascular coagula-
tion (1). Consequently, there is an urgent need to elucidate the cen-

tral molecular mechanisms underlying severe and fatal COVID-19 
disease to develop targeted therapeutic approaches.

Early studies suggested that the host response to COVID-19 
may be associated with an excessive proinflammatory response 
caused by a cytokine storm syndrome (CSS) (2). However, more 
recent studies show that persistent CSS is uncommon (3%–4%) 
in severe COVID-19 disease, where high-dose steroids benefit 
only a small proportion of individuals with organ failure (3, 4). 
Mounting evidence supports the idea that immunometabolic sup-
pression, and not CSS, compromises host immunity, leading to 
unrestrained viral replication and severe COVID-19 (5, 6). Even 
when viral burdens decrease, pathologies including tissue and 
organ damage often remain (7).

Lipid metabolism plays an important role in determining 
COVID-19 outcomes. Early lipidomic studies (8, 9) revealed that 
severe COVID-19 modifies the circulating lipidome, with decreas-
es in plasma levels of phospholipids and elevated quantities of 
lysophospholipids (lyso-PLs), unesterified unsaturated fatty acids 
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enhanced signs and symptoms of disease, such as an elevated 
national early warning score 2 (NEWS2) and 7-category ordinal 
scale score, pulmonary infiltration, and low oxygen saturation 
requiring oxygen therapy (Supplemental Table 2 and Supplemen-
tal Figure 1). Furthermore, patients with severe COVID-19 and 
those with fatal COVID-19 experienced more complications, such 
as cardiac arrests, acute kidney injury and renal failure, bacterial 
pneumonia, ARDS, and sepsis (Supplemental Figure 1). Patients 
who developed severe COVID-19 received various therapies to 
treat hypoxemia, ARDS, superimposed/ventilator-associated bac-
terial pneumonia, hyperinflammation, acute kidney injury/renal 
failure, and sepsis. A majority (70%–80%) of patients with severe 
or fatal COVID-19 received corticosteroid therapy, which has 
been shown to attenuate the expression of sPLA2-IIA and induce 
the synthesis of proteins that inhibit sPLA2-IIA activity (12–15). 
However, a larger number of patients received vasopressors in the 
deceased group, possibly because of the patients’ uncontrolled 
septic shock that eventually led to multiple organ failure and car-
diac arrest (Supplemental Table 3).

Initial studies were designed to identify lipidomic changes 
linked to COVID-19 outcomes. Untargeted lipidomic analysis of 
the plasma samples revealed that the most significant changes in 
the lipid profile occurred in the deceased COVID-19 patients (Fig-
ure 1A), with 181 unique molecules identified. Further analysis of 
the 20 most significant molecules showed enrichment in metab-
olites associated with acylcarnitine and phospholipid metabo-
lism (Figure 1B). Specifically, several lysophosphatidylethanol-
amine (lyso-PE) molecular species typified by C16eLysoPE and 
UFAs such as linoleic (18:2) and oleic (18:1) acids were elevated in 
patients with severe COVID-19 and deceased COVID-19 patients 
(Figure 1C). Targeted lipidomics confirmed the untargeted analy-
sis, revealing significant increases in major molecular species of 
lyso-PE and lysophosphatidylserine (lyso-PS), while showing no 
changes in lysophosphatidylcholine (lyso-PC) (Supplemental Fig-
ure 2). Hydrolysis of PE and PS, but not PC, to form corresponding 
lyso-PLs, together with mobilization of UFAs such as linoleic and 
oleic acids are hallmarks of catalysis by a secreted PLA2 isoform 
(16). Given the critical role of sPLA2-IIA in several related diseas-
es, these data suggest that PLA2 hydrolysis (Figure 1D) may con-
tribute to COVID-19 disease severity and mortality (10).

Patients with severe COVID-19 and deceased COVID-19 
patients also showed elevations of short- and medium-chain 
acylcarnitines (acetyl and hexanoyl carnitines) as well as of mito-
chondrial DNA (mtDNA) (Figure 1C and Supplemental Figure 3B). 
Moreover, acetylcarnitine showed high areas under receiver oper-
ating characteristic (ROC) curves: 0.810 (95% CI, 0.694–0.925) 
for patients with mild versus severe COVID-19, and 0.849 (95% 
CI, 0.752–0.945) for those with mild versus fatal COVID-19 (Sup-
plemental Figure 3A). Accordingly, acetylcarnitine may also be an 
indicator of COVID-19 severity and mortality. Circulating short-
chain acylcarnitines (particularly acetylcarnitine) were recently 
reported as a prognostic biomarker of death during sepsis (17). 
Plasma concentrations of mitochondrially encoded cytochrome 
B (MT-CYB) and cytochrome c oxidase subunit III (MT-COX3) 
were also significantly elevated in deceased COVID-19 patients 
compared with non–COVID-19 patients and patients with mild 
COVID-19 (Supplemental Figure 3B). The increases in mtDNA 

(UFAs), and acylcarnitines. This lipidomic pattern suggests that 
severe COVID-19 may be accompanied by cellular or circulat-
ing phospholipase(s) that cleave intact phospholipids from cel-
lular and mitochondrial membranes to form lyso-PLs and UFAs. 
Among phospholipases, the secreted phospholipase A2 (sPLA2) 
family includes 12 members with highly conserved characteristics, 
including low molecular weight (13–17 kDa), high Ca2+ levels for 
catalytic activity, and the presence of histidine/aspartic acid dyads 
in the catalytic site (10). Elevated sPLA2 group IIA (sPLA2-IIA) lev-
els have been associated with various clinical conditions, includ-
ing sepsis and systemic bacterial infections, adult respiratory 
disease syndrome (ARDS), atherosclerosis, cancer, and multiple 
organ trauma (10). Basal levels of circulating sPLA2-IIA in healthy 
humans are 1–3 ng/mL; however, sPLA2-IIA plasma concentra-
tions can reach 250–500 ng/mL during acute sepsis (11).

Here, we identified lipidomic signatures of PLA2 hydrolysis 
and mitochondrial dysfunction that corresponded with COVID-19 
severity in 127 patient plasma samples. Marked elevations in cir-
culating sPLA2-IIA levels mirrored disease severity, particularly 
in deceased COVID-19 patients. Circulating sPLA2-IIA was cata-
lytically active and paralleled several indices of disease severity, 
including hyperglycemia, kidney dysfunction, hypoxia, anemia, 
and multiple organ dysfunction. Importantly, 3 independent 
machine-learning approaches identified sPLA2-IIA as the cen-
tral feature in predicting survivors versus nonsurvivors in cases 
of severe COVID-19. Since blood urea nitrogen (BUN) was iden-
tified alongside plasma sPLA2-IIA as a key stratification feature, 
we evaluated a novel PLA-BUN index as a prognostic biomarker 
of COVID-19–related mortality. Indeed, our PLA-BUN index suc-
cessfully predicted COVID-19 mortality markedly better than did 
either feature alone. A validation cohort (n = 154) recapitulated the 
increases in plasma sPLA2-IIA in deceased COVID-19 patients, 
with the PLA-BUN index accurately stratifying patients with severe 
disease and deceased patients. Collectively, our study provides evi-
dence to support a targeted therapeutic approach using clinically 
available sPLA2-IIA inhibitors to reduce COVID-19 mortality.

Results
We analyzed an initial cohort of 127 patient plasma samples col-
lected between May 2020 and July 2020 from Stony Brook Uni-
versity Medical Center (referred to hereafter as Stony Brook). The 
plasma sampling information is summarized in Supplemental 
Table 1 (supplemental material available online with this article; 
https://doi.org/10.1172/JCI149236DS1). Non–COVID-19 patients 
and those with mild COVID-19 had significantly shorter hospital 
stays than did patients with severe or fatal COVID-19. Overall, 
samples from patients with COVID-19 were collected at com-
parable time points during their hospital stay, whereas samples 
from non–COVID-19 patients were collected toward the end of 
the inpatient stay. The demographics and baseline clinical charac-
teristics of the patients are shown in Table 1. Ages differed across 
groups, with deceased COVID-19 patients being older on average 
(Supplemental Figure 1). We noted no significant trends in BMI or 
obesity. The prevalence of various comorbidities was comparable 
across groups, except for a higher prevalence of rheumatologic 
disease among the non–COVID-19 patients. Patients with severe 
COVID-19 and deceased COVID-19 patients had presented with 
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lating sPLA2-IIA was catalytically active (Figure 2B), and its poten-
tial pathologic impact on organism-wide membranes was supported 
by a strong correlation (r2 = 0.84, P = 1.2 × 10–13) between sPLA2-IIA 
concentrations and enzymatic activity (Figure 2C).

Elevated levels of plasma sPLA2-IIA were significantly associ-
ated with several clinical indices (Figure 2D). Positive correlations 
with higher baseline NEWS2 and 7-category ordinal scale scores 
suggest a role for sPLA2-IIA in disease severity. The positive cor-
relation of sPLA2-IIA with glucose levels highlights a potential 
link to dysregulated systemic inflammation. Accordingly, hyper-
glycemia is an important prognostic factor for COVID-19 and 
associates with a pro-oxidative/proinflammatory state (21). The 
positive correlations with creatinine and BUN levels (and a corre-
sponding negative correlation with the glomerular filtration rate 
[GFR]) demonstrate how sPLA2-IIA levels may also reflect kidney 
dysfunction. Finally, the negative correlations of sPLA2 levels with 
hematocrit, hemoglobin levels, and oxygen saturation further sup-
port the notion that sPLA2-IIA may contribute to disease severity, 
including hypoxemia and multiple organ dysfunction (22).

levels we observed confirmed the results from a report linking 
mtDNA levels to COVID-19 severity and mortality (18). Together, 
these data also implicate defective fatty acid oxidation and mito-
chondrial dysfunction in COVID-19 severity and mortality.

We subsequently quantified sPLA2-IIA levels in the 127 plasma 
samples to corroborate our lipidomic analyses. Figure 2A shows the 
distribution of sPLA2-IIA levels with markedly higher median val-
ues in deceased (89.3 ng/mL) and severe (17.9 ng/mL) COVID-19 
patients compared with mild COVID-19 (9.3 ng/mL) and non–
COVID-19 patients (8.9 ng/mL). Given that the non–COVID-19 
patients in this cohort showed a higher prevalence of rheumato-
logic disease compared with patients with COVID-19 (Table 1 and 
Supplemental Figure 1), it is important to note that rheumatologic 
diseases significantly increase plasma sPLA2-IIA levels (19) when 
compared with levels in healthy control individuals (median = 0 ng/
mL, IQR: 0–6.5) (20). Importantly, deceased COVID-19 patients 
had sPLA2-IIA levels as high as 1020 ng/mL, and their overall lev-
els were 9.6- and 5.0-fold higher than those in patients with mild or 
severe COVID-19, respectively. Furthermore, we found that circu-

Table 1. Demographics and clinical characteristics at baseline

Non–COVID-19 COVID-19
Variables (n = 37) Mild (n = 30) Severe (n = 30) Deceased (n = 30) P value
Demographics
Mean age (range), yr 57.08 (10–84) 53.37 (14–93) 62.4 (35–86) 71.17 (48–96) 0.0027
Sex, no. of patients (%)

Male 20 (54.0) 12 (40.0) 16 (53.3) 20 (66.7)
0.2314

Female 17 (46.0) 18 (60.0) 14 (46.7) 10 (33.3)
Race/ethnicity, no. of patients (%)

White 28 (75.7) 19 (63.3) 14 (46.7) 19 (63.3)

0.0605
Black or African American 2 (5.4) 1 (3.3) 2 (6.7) 0 (0.0)
Asian 1 (2.7) 0 (0.0) 0 (0.0) 4 (13.3)
Hispanic or Latino 5 (13.5) 9 (30.0) 14 (46.7) 7 (23.3)
Other 1 (2.7) 1 (3.3) 0 (0.0) 0 (0.0)

Characteristics
Median BMI, kg/m2 (IQR) 29.54 (24.45–34.82) 28.55 (24.43–34.04) 29.3 (25.08–34.57) 25.86 (23.18–34.71) 0.0334
Median Charlson comorbidity index (IQR) 1 (0–2.5) 0 (0–2.25) 1 (0–3) 1 (0–3) 0.5738
Hypertension, no. of patients (%) 18 (48.7) 14 (46.7) 21 (70.0) 18 (60.0) 0.2167
Major cardiac disease,A no. of patients (%) 8 (21.6) 6 (20.0) 5 (16.7) 11 (36.7) 0.2687
Diabetes, no. of patients (%) 7 (18.9) 6 (20.0) 9 (30.0) 9 (30.0) 0.5856
Obesity,B no. of patients (%) 16 (43.2) 13 (43.3) 12 (40.0) 5 (16.7) 0.0859
Lipid disorder,C no. of patients (%) 13 (35.1) 9 (30.0) 12 (40.0) 10 (33.3) 0.8750
Kidney disease, no. of patients (%) 5 (13.5) 3 (10.0) 7 (23.3) 6 (20.0) 0.4865
Liver disease, no. of patients (%) 2 (5.4) 3 (10.0) 1 (3.3) 1 (3.3) 0.6352
Malignancy, no. of patients (%) 7 (18.9) 2 (6.7) 2 (6.7) 5 (16.7) 0.2945
Rheumatologic/connective tissue disease, 
no. of patients (%)

8 (21.6) 0 (0.0) 2 (6.7) 2 (6.7) 0.0179

Chronic lung disease, not asthma,  
no. of patients (%)

2 (5.4) 2 (6.7) 4 (13.3) 6 (20.0) 0.2215

Smoking, no. of patients (%) 17 (45.9) 8 (26.7) 8 (26.7) 8 (26.7) 0.2161
Asthma, no. of patients (%) 3 (8.1) 1 (3.3) 4 (13.3) 2 (6.7) 0.5422
AMajor cardiac disease including coronary artery disease, congestive heart failure, and history of myocardial infarction. BObesity defined as a BMI ≥30 
kg/m2. CLipid disorder including hyperlipidemia, dyslipidemia, and antiphospholipid syndrome. All categorical variables are represented as proportions 
(percentage), whereas continuous variables are reported as the median (IQR). The D’Agostino-Pearson normality test was used to assess continuous 
variables and determined all that had non-Gaussian distributions; Kruskal-Wallis test was then used to assess for equality of group variance. Categorical 
variables were compared using the χ2 test. P values reflect comparisons of group variance; significant trends are reported in Supplemental Figure 1. 
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category. Indeed, none of the patients with severe COVID-19 
with sPLA2-IIA levels below 10 ng/mL died from COVID-19. In 
contrast, 75.4% of the patients in the “severe or deceased” cate-
gory had sPLA2-IIA levels of 10 ng/mL or higher, and 63% of the 
patients in this subset died from this disease. Of the remaining 
patients with high sPLA2-IIA levels (≥10 ng/mL), all who had BUN 
levels below 16 mg/dL survived. Conversely, 76% of the patients 
with high sPLA2-IIA levels (≥10 ng/mL) and BUN levels of 16 mg/
dL or higher died from the disease. The clinical decision tree devel-
oped in this study provides a framework to identify patients with 
COVID-19 at high risk of mortality. Of the 80 clinical indices mea-
sured, circulating levels of sPLA2-IIA emerged as the most import-

Three parallel, unbiased machine-learning analyses also iden-
tified elevated sPLA2-IIA as a critical risk factor for COVID-19 mor-
tality. First, 80 clinical indices, including sPLA2-IIA levels, in the 
initial cohort of 127 patients were analyzed in a clinical decision 
tree model (23). A decision tree generated by recursive partitioning 
identified critical indices necessary to stratify the 4 patient groups 
with high accuracy (area under the ROC curve = 0.93–1.0, Figure 
3A, inset). Patients positive for COVID-19 were stratified using 
the predictor “7-category ordinal scale” into “mild” and “severe 
or deceased,” with 91% and 100% accuracy, respectively. Surpris-
ingly, the sPLA2-IIA level was identified as the central node that 
stratified survivors versus nonsurvivors in the “severe or deceased” 

Figure 1. Untargeted lipidomics analysis and COVID-19 status. Plasma samples from non–COVID-19 patients, those with mild COVID-19, those with severe 
COVID-19, and deceased COVID-19 patients were subjected to untargeted metabolomics analyses. Lipidome data were extracted from the metabolomics 
data set and analyzed. (A) Volcano plots show significant alterations in the lipidome of the deceased COVID-19 patients compared with that of the non–
COVID-19 patients, patients with mild COVID-19, and patients with severe COVID-19. Colored areas highlight compounds with a FC of greater than 1.5 and a 
FDR of less than 0.1. (B) Heatmap of the top 20 metabolites whose abundances varied markedly across non–COVID-19 patients (Non–COVID-19), patients 
with mild COVID-19 (Mild), patients with severe COVID-19 (Severe), and deceased COVID-19 patients (Deceased). (C) Abundances of 2 lyso-PLs, 2 FFAs, and 
2 short-chain acyl carnitines extracted from the untargeted lipid data. C16:0e lyso-PC in the upper right panel is an example of a PC-containing lysolipid 
that did not meet the FC and FDR criteria in A and is not a primary substrate of sPLA2-IIA. The other 5 compounds were selected from the colored regions 
in A (FDR <0.1) and may have resulted from the action of sPLA2-IIA. The levels in each panel were further compared using a 1-sided Wilcoxon test with 
Holm’s correction for multiple testing. For the box plots, the upper and lower bounds indicate the 75th (Q3) and 25th (Q1) percentiles, respectively; the line 
within the box indicates the median value; whiskers extend to values within 1.5 IQR (IQR, Q3–Q1) of the upper or lower bound; outlying values are shown 
between 1.5 and 3 IQR beyond the upper or lower bound. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. (D) Model of PLA2 reaction showing how 
PLA2 hydrolyzes the sn-2 position of the glycerol backbone of phospholipids to form lyso-PL and FFA products.
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approaches found sPLA2-IIA and BUN to be key features for pre-
dicting COVID-19 mortality. 

We obtained a second independent test cohort of plasma 
samples from patients with mild or severe COVID-19 and from 
deceased COVID-19 patients (n = 154) from both Banner-Univer-
sity Medical Center Tucson (referred to hereafter as Banner) and 
Stony Brook. The clinical decision tree that minimized the classi-
fication error in the first cohort was applied to this cohort. Consis-
tently, sPLA2-IIA levels were significantly higher in the deceased 
patients than in those with severe or mild disease (Supplemental 
Figure 5A), with the PLA-BUN index–based decision tree model 
stratifying the patient groups (mild, severe, and deceased) with 
reasonably high accuracy (AUC = 0.72–0.99, Supplemental Figure 
5B; also see the decision surface plot in Supplemental Figure 5C).

Given the potential for antibody-based assay cross-reactivity 
due to extensive homology across numerous sPLA2 isoforms, we 
validated the ELISA results using a proteomics assay with greater 
specificity. SomaScan (aptamer-based proteomics) analysis of the 
Banner samples validated the presence of the group IIA sPLA2 iso-
form in plasma from patients with severe COVID-19 and deceased 
COVID-19 patients compared with that from non–COVID-19 
patients (Supplemental Figure 6). SomaScan data are composi-

ant prognostic factor for COVID-19–related mortality. A cutoff val-
ue of 10 ng/mL or higher accurately predicted mortality in patients 
with severe COVID-19. Combining sPLA2-IIA and BUN levels into 
a PLA-BUN index (sPLA2-IIA ≥10 ng/mL and BUN ≥16 mg/dL) 
resulted in a parameter that predicted COVID-19 mortality more 
accurately than did using either feature alone (Figure 3, B and C).

To separately assess and rank the relative importance of the 
80 clinical indices (features) in predicting COVID-19 mortality, 
we used 2 additional machine-learning approaches. A random 
forest analysis ranked feature importance by removing a feature 
from the model and then evaluating the corresponding decrease 
in prediction accuracy obtained from an assembly of decision 
trees (n = 1000 each in 10 repeats, Figure 4A and ref. 24). This 
method identified sPLA2-IIA and BUN as the top 2 features, rank-
ing significantly higher (P < 0.0001) than all other clinical indices 
(including age and BMI) in accurately predicting COVID-19–relat-
ed mortality (Figure 4, B and C). A logistic regression model using 
least absolute shrinkage and selection operator (LASSO) also iden-
tified sPLA2-IIA and BUN as 2 of the 6 features selected among the 
80 clinical variables for classifying patients with severe COVID-19 
and deceased patients (Supplemental Table 4 and ref. 25). Supple-
mental Figure 4 illustrates that 3 independent machine-learning 

Figure 2. Association between sPLA2-IIA and COVID-19 status. (A) sPLA2-IIA levels were determined in 127 plasma samples and are shown here sorted 
within each group. The inset box plot compares the log-transformed data across groups and shows the medians and quartiles. Groups were compared using 
a 1-sided Wilcoxon test with Holm’s correction for multiple testing. ***P < 0.001 and ****P < 0.0001. Pairwise comparisons were computed from a linear 
model that included age and sex, and P values were adjusted for multiple comparisons. (B) sPLA2 enzymatic activity within plasma was assayed in a select-
ed subset of samples. In the box plots in A and B, the upper and lower bounds designate the 75th (Q3) and 25th (Q1) percentiles, respectively; the line within 
the box indicates the median value; whiskers extend to values within 1.5 IQR (IQR, Q3–Q1) of the upper or lower bound; outlying values are shown between 
1.5 and 3 IQR beyond the upper or lower bound. (C) Scatter plot shows plasma sPLA2-IIA levels versus sPLA2 activity in the selected subset of samples. 
Enzyme levels and activity were strongly correlated, indicating that plasma levels of sPLA2-IIA reflect the levels of active enzyme in the larger sample set. 
(D) A heatmap showing the significant Spearman correlations (FDR <0.05) between sPLA2-IIA and other clinical indices of disease severity. Indices that were 
positively or negatively correlated with sPLA2-IIA are as indicated. Indices with missing values above 25 were removed, and those with a skewness (absolute 
value) below 1.0 were log transformed. Index values were mean centered and scaled according to the SD. Blue to red represents low to high index values, 
with color intensity indicating the value magnitude (see the color scheme). Missing values are shown in gray.
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tional and therefore not quantitative like the ELISA-based quanti-
tation we used for both our initial and validation cohorts.

In a subset of sequential samples (n = 46) for which each 
patient’s plasma was sampled at 2 time points, sPLA2-IIA levels 
tapered in the “late” compared with “early” samples in the mild 
and severe groups but remained relatively constant in the plas-
ma from deceased patients (median sPLA2-IIA levels in the lin-
ear scale dropped by 60.2%, 62.0%, and 18.7%, respectively, in 
patients with mild COVID-19, patients with severe COVID-19, 
and deceased patients; Supplemental Figure 7). Given the limited 
number of sequential samples available, the differences in sPLA2-
IIA levels between time points were not statistically significant for 
patients with mild or severe COVID-19. However, these trends are 
consistent with the possible role of sPLA2-IIA in COVID-19 mor-
tality. Moreover, these data suggest that monitoring sPLA2-IIA 
levels in patients with severe COVID-19 may be clinically useful.

Discussion
Early studies from the 1980s first described elevated circulating 
PLA2 activity in severe sepsis, mirroring the observations in our 

study (26–28). Indeed, patients who died from sepsis showed sus-
tained and increasing trends in PLA2 activity, whereas surviving 
patients showed marked tapering. Although it was not possible to 
determine the temporal nature of sPLA2-IIA levels in these retro-
spective cohorts with a limited number of sequential samples, we 
found that deceased COVID-19 patients had persistently elevated 
sPLA2-IIA levels. When activated, sPLA2-IIA has direct and organ-
ism-wide pathogenic potential (10, 29–32), which may contribute 
to COVID-19 severity and mortality (Figure 5). During cell acti-
vation and the initiation of multiple cell death mechanisms, the 
anionic phospholipids PS and PE are externalized, exposing them 
to phospholipid hydrolysis by sPLA2-IIA (33). Hydrolysis of cellular 
membranes can broadly invoke tissue damage and organ dysfunc-
tion. Additionally, activated cells and damaged tissues and organs 
secrete extracellular mitochondria (29). Given that mitochondri-
al phospholipids are preferred substrates for sPLA2-IIA, our data 
suggest the occurrence of cell catalysis resulting in the release of  
mtDNA, acetylcarnitine, and several danger-associated molec-
ular patterns (DAMPs) (34) during severe COVID-19 disease. 
Damaged mitochondria can then be internalized by bystander 

Figure 3. Clinical decision tree predicting COVID-19 severity and mortality. (A) Clinical decision tree model. Patients were classified on the basis of the 
indicated clinical indices (shown in orange diamonds) and boundary conditions (above the split arrows). The number of patients following each split 
is shown in parentheses beneath the split arrow (patients with missing index values were not included in the split). In each node, the percentages of 
patients in the corresponding categories are shown. The inset graph shows the area under the ROC curve, AUC, of the tree in determining each group des-
ignation (e.g., deceased vs. nondeceased patients). (B) Decision surface based on the sPLA2 and BUN boundary conditions in A. The left and right graphs 
show the results following application of the sPLA2 and BUN boundary conditions to the subsets of patients in these graphs (split following the 7-cate-
gory ordinal scale), as indicated in A. (C) PLA-BUN index. The precision, sensitivity/recall, and accuracy in classifying patients with severe COVID-19 and 
deceased COVID-19 patients (7-category ordinal scale ≥4) by combining both decision boundary conditions of sPLA2 and BUN, as in B (i.e., the PLA-BUN 
index), are indicated with a red star in each graph, respectively. The corresponding classification results obtained by using the single index of sPLA2 (light 
blue curve) or BUN (dark blue curve) are shown with varying cutoff values in the corresponding data range (sPLA2, 3.4–1101.2 ng/mL; BUN, 5–242 mg/dL).
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leukocytes to increase inflammatory mediators including lyso-
PLs, UFAs, eicosanoids, and cytokines. sPLA2-IIA also hydrolyzes 
platelet-derived extracellular vesicles (EVs) to release cyclooxy-
genase, thromboxane synthase, and 12-lipoxygenase inflammato-
ry eicosanoids (10). Given the known properties of sPLA2-IIA, our 
findings suggest that sPLA2-IIA may prolong and exacerbate tissue 
and organ damage during fatal COVID-19 disease.

As a multi-institutional retrospective observational study, 
there are limitations. Since the patients were selected on the basis 
of plasma sample availability, this study is subject to potential 
confounders and may not represent the general population. Addi-
tionally, clinical data availability was restricted to existing medical 
records, and there were missing values in the data set (especially 
in the second cohort). Moreover, temporal relationships were dif-
ficult to assess, as the plasma sampling was not standardized. Giv-
en that one of the test cohorts comprised plasma samples from 2 
institutions, the patient populations may be heterogeneous. Final-
ly, given the chaotic nature of COVID-19 management in early 
2020, current standards of care may differ. Despite these limita-

tions, this study consistently identified sPLA2-IIA as a previously 
unrecognized and plausible life-threatening mechanism underly-
ing COVID-19 severity and mortality. Our study also offers a clin-
ical blueprint for identifying those patients with COVID-19 who 
are at risk of death and identifies sPLA2-IIA as a potential thera-
peutic target. Our findings are further supported by the fact that 
high levels of sPLA2 also predict clinical disease severity in chil-
dren, both in those in the acute phase of COVID-19 and in those 
who develop multisystem inflammatory syndrome (35).

Given the role of sPLA2-IIA during other forms of critical ill-
ness that are often complicated by multiple organ failure and high 
mortality rates, structurally diverse classes of sPLA2-IIA inhibitors 
have been developed (36–40). Although deemed safe for clinical 
use, clinical trials using a sPLA2-IIA inhibitor only improved sur-
vival in patients with sepsis when treatment was initiated within 18 
hours of organ failure (39, 40). Further examination of the design 
of these studies revealed limitations: (a) patient selection criteria 
did not incorporate patient sPLA2-IIA levels and (b) circulating 
sPLA2-IIA levels were not reported in the studies. Therefore, inap-

Figure 4. Feature importance ranking of clinical indices. (A) The relative importance of the 80 clinical indices in separating the deceased patients from 
patients with severe COVID-19 (n = 30 each) was evaluated in a random forest analysis. In this random forest, an assembly of decision trees (n = 1000) 
was generated using randomly selected subsets of patients and features (clinical indices) to collectively arrive at the final model prediction (deceased vs. 
severe). The importance of a feature (i.e., clinical index) was evaluated by the decrease in prediction accuracy, when such a feature was excluded from the 
model, assessed on the basis of (B) Gini impurity following a node split (MDI) and (C) the permuted values of the feature (MDA). The feature importance 
was evaluated in 10 repeated random forest analyses. The top 30 features in B and C are shown (the color scheme is proportional to the importance score).
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the CDC Guidelines for the handling and processing of specimens 
associated with COVID-19. Metabolites were isolated from plasma via 
methanol-based extraction containing 10 μL Splash Lipidomix (Avan-
ti Polar Lipids) and separated using reversed-phase chromatography 
as previously described by Najdekr et al. (43). Samples were analyzed 
using an ultra-high-performance liquid chromatography–electrospray 
ionization–tandem mass spectrometry (UHPLC–ESI–MS/MS) system 
(UHPLC: Thermo Horizon Vanquish Duo System from Thermo Hori-
zon; MS: Thermo Exploris 480, both from Thermo Fisher Scientific, 
and separation was achieved using a Hypersil GOLD aQ UHPLC col-
umn (100 × 2.1 mm, 1.9 μm, Thermo Fisher Scientific, part no. 25302-
102130) with mobile phases composed of water containing 0.1% 
formic acid and methanol containing 0.1% formic acid. Metabolites 
were eluted over a 15-minute gradient with the Exploris 480 operating 
in positive ion mode, at an ion transfer tube temperature of 350°C, a 
sheath gas of 45, an aux gas of 5, and a spray voltage of 4000. Mass 
spectrometric data for all samples were collected using dynamic 
exclusion and then aligned with pooled samples collected using the 
Thermo AquireX to achieve optimal metabolite identification in Lip-
idSearch 4.0 and Thermo Compound Discoverer 2.3 software (both 
from Thermo Fisher Scientific).

Targeted lipidomics analysis was performed using an Agilent 1200 
HPLC Tandem Thermo Quantum Ultra triple quadrupole mass spec-
trometer (Agilent Technologies) to quantify levels of major molecular 
species of lyso-PLs. C16, C18:1, C18:2, and C20:4 molecular species for 
lyso-PC, lyso-PE, and lyso-PS (Cayman Chemical) were used as stan-
dards and deuterated Splash Lipidomix (Avanti Polar Lipids) as inter-
nal standards. Lyso-PLs were separated using an Agilent Poroshell 120 

propriate patient selection probably contributed to patient hetero-
geneity, resulting in negative findings. A recent study reported 
that, using a cutoff value of 25 ng/mL, sPLA2-IIA is highly sen-
sitive and specific in detecting sepsis (20). Given that deceased 
COVID-19 patients in this study had elevated sPLA2-IIA levels 
(≥10 ng/mL), we propose incorporating sPLA2-IIA levels and 
the PLA-BUN index as prognostic clinical parameters. Our study 
further highlights the merit of exploring sPLA2-IIA inhibitors to 
reduce COVID-19–related morality.

Methods
Study design. The study was designed according to Strengthening the 
Reporting of Observational Studies in Epidemiology (STROBE) guide-
lines (41). COVID-19 was diagnosed by real-time reverse transcriptase 
PCR (RT-PCR), and COVID-19–positive patients were classified into 
3 groups: (a) mild, in which patients had mild symptoms without pneu-
monia on imaging and were discharged from inpatient care; (b) severe, 
in which patients had respiratory tract or nonspecific symptoms, pneu-
monia confirmed on imaging, an oxygenation index below 94% on room 
air, and were discharged from inpatient care; and (c) deceased, in which 
the patients died during inpatient care. All plasma samples were collected 
during each patient’s hospital stay, except for the late (2nd) time points 
for patients with mild COVID-19 (Supplemental Figure 6). Only non–
COVID-19 patients and those with mild COVID-19 with NEWS2 scores 
of 3 or lower were included in this study in order to exclude patients hospi-
talized for unrelated, possibly confounding major clinical presentations.

Sample processing and lipidomics analyses. Frozen EDTA plasma 
samples were processed using Biosafety Level 2 conditions following 

Figure 5. Potential direct and organism-wide pathogenic mechanism of sPLA2-IIA. Mechanisms include: (a) hydrolysis of cellular membranes that broadly 
invoke tissue damage and organ dysfunction; (b) hydrolysis of mitochondrial membranes leading to the release of mtDNA, acetylcarnitine, and DAMPs; 
(c) internalization of damaged mitochondria by bystander leukocytes to increase inflammatory mediators including lyso-PLs, UFAs, eicosanoids, and 
cytokines; and (d) hydrolysis of platelet-derived EVs to release eicosanoids, platelet-activating factor, and lyso-PLs.
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er were considered to be significant and biologically relevant. Individ-
ual metabolites, sPLA2 levels, sPLA2 activity, and mtDNA levels were 
compared between groups with nonparametric Mann-Whitney Wil-
coxon tests at an α level of 0.05, with an additional Holm adjustment 
for multiple comparisons. Spearman’s correlations between sPLA2 lev-
els and clinical indices were computed in R. ROC curves, AUC, and 
CIs were generated using the R packages ROCR and pROC.

Decision tree, random forest analyses, and logistic regression analysis 
(LASSO). Eighty initial clinical indices were used as input variables to 
build a predictive model (i.e., decision tree) by recursive partitioning, 
using the classification and regression trees (CART) algorithm (23) 
implemented in the R package RPART. The tree model identified a set 
of predictive features (branch conditions) that best classified the ini-
tial cohort of 127 patients into the 4 groups: non–COVID-19, patients 
with mild COVID-19, patients with severe COVID-19, and deceased 
COVID-19 patients. The tree split points were determined by the Gini 
index with a minimum leaf size of 10. A 10-fold cross-validation meth-
od was used to tune the tree model and evaluate its prediction accura-
cy. To avoid overfitting, the tree was pruned back to the smallest size, 
while minimizing the cross-validated error. The classification accura-
cy of the tree to determine each group membership (e.g., deceased vs. 
nondeceased) was assessed using the area under the ROC curve.

To further evaluate the relative feature importance in accurately 
separating patients with severe COVID-19 and deceased COVID-19 
patients, a random forest analysis was performed using the R package 
Random Forest (24). An assembly of 1000 random decision trees was 
constructed in each forest, and 10 forests were constructed in repli-
cate. The importance of a given feature (i.e., 1 of the 80 clinical indi-
ces) was assessed by the decrease of prediction accuracy when such a 
feature was omitted in the model, based on 2 measurement metrics: 
the Gini importance or mean decrease impurity (MDI) and the permu-
tation importance or mean decrease accuracy (MDA).

A logistic regression model was built to classify patients with 
severe COVID-19 and deceased COVID patients using the glmnet 
package in R (25). The same 80 initial clinical indices used to construct 
the decision tree were used as the input variables; 48 indices with few-
er than 10 missing values (across the total of 60 patients with severe 
COVID-19 and deceased COVID-19 patients in the initial cohort of 
127 patients) were further reserved to construct the LASSO model, 
with the missing values imputed using the imputeMissing function 
(42). The classification accuracy of the LASSO model was determined 
by 10-fold cross-validation.

Study approval. This retrospective study initially analyzed 127 
plasma samples from patients hospitalized at Stony Brook from 
January 2020 to July 2020. This study was approved by the central 
IRB at Stony Brook University (IRB 2020-00423). For the second 
independent cohort, we analyzed 154 plasma samples from patients 
at Stony Brook (n = 98) and Banner (n = 56), who were hospital-
ized from January 2020 to November 2020. The Banner study was 
approved by the University of Arizona Human Subjects Protection 
Program (IRB 2007847180).

Author contributions
FHC conceived and designed the study. JKY, RRK, MDP, JMS, AJS, 
YAH, and SS prepared IRB documentation, coordinated the col-
lection of samples, and handled the logistics of sample transfers 
between Stony Brook University Medical Center and the University 

EC-C18 1.9 μm (2.1 × 50 mm) with mobile phases composed of water 
containing 2 mM ammonium formate/0.1% formic acid (A) and meth-
anol containing 1 mM ammonium formate/0.1% formic acid. Chro-
matographic gradient elution began at 40% A and remained there for 
the first minute, proceeding to 1% A at 6 minutes and remaining there 
for 10.5 minutes, before returning to 40% MPA over 1.5 minutes and 
remaining there until the end of the 20-minute run.

Determination of sPLA2-IIA concentrations. sPLA2-IIA levels in 
plasma were determined by ELISA (Cayman Chemical). Plasma sam-
ples were diluted (1:20–1:800) and assayed in duplicate. sPLA2-IIA 
concentrations in plasma were calculated using standard curves.

Proteomics analysis. Plasma samples from 82 Banner patients (21 
non–COVID-19 patients, 30 patients with severe COVID-19, and 
31 deceased COVID-19 patients) were analyzed using multiplexed 
SomaScan and Selex processing technology by SomaLogic. The 
aptamer-based SomaScan assay (44) and its performance character-
istics (45, 46) have been previously described and were used for the 
targeted analysis of nearly 7000 proteins, one of which was sPLA2-IIA.

Enzymatic assay for sPLA2-IIA activity. A subset of 34 patients’ 
samples from the initial Stony Brook cohort (n = 127) was selected 
for PLA2 activity analysis. sPLA2 activity was assayed by modifying 
techniques from Kramer and Pepinsky (47). Hydrolytic activity was 
determined in plasma samples from 34 patients (9 non–COVID-19 
patients, 8 patients with mild COVID-19, 7 patients with severe 
COVID-19, and 10 deceased COVID-19 patients) representing a wide 
range of sPLA2-IIA levels. Assays were performed using 5 μL plasma 
in a final volume of 400 μL containing 50 mM Tris/NaCl, pH 8.5, 
with 5 mM CaCl2 and 5 nmol 3H-oleate–labeled E. coli phospholip-
ids, and the plasma was mixture incubated for 30 minutes at 37°C. 
Lipids were extracted using a modified Bligh and Dyer method (48), 
and hydrolyzed fatty acids were separated from phospholipids using 
thin-layer chromatography (Silica Gel G) and a mobile phase of hex-
ane/ether/formic acid (90:60:6, v/v/v), followed by visualization by 
iodine vapor relative to cold standards.

mtDNA quantification. mtDNA was quantified in the same 34 
patients’ samples used in the enzymatic assay. mtDNA was quan-
tified by adapting methods from Scozzi et al (18). Using genes for 
human MT-CYB and MT-COX3, mtDNA was quantified in plasma 
samples from the same 34 patients (9 non–COVID-19 patients, 8 
patients with mild COVID-19, 7 patients with severe COVID-19, and 
10 deceased COVID-19 patients) as in the sPLA2 activity assay using 
an ABI  7900HT real-time PCR instrument (Applied Biosystems)  in a 
384-well format. Synthetic oligonucleotide copies of the MT-CYB and 
MT-COX3 genomic sequences (gBlock Gene Fragments from Inte-
grated DNA Technologies) were included to generate a standard curve 
at 105, 104, 103, and 102 copies/μL. The following primer sequences 
were used: MT-CYB forward, 5′– ATGACCCCAATACGCAAAA-3′, 
MT-CYB reverse, 5′–CGAAGTTTCATCATGCGGAG-3′; and 
MT-COX3 forward, 5′–ATGACCCACCAATCACATGC-3′, MT-COX3 
reverse, 5′–ATCACATGGCTAGGCCGGAG-3′.

Each diluted serum sample was compared with a control reaction 
of a gBlock standard, and the ΔCt was used to correct the calculated 
concentrations from triplicate reactions.

Statistics. Untargeted lipidomics data were transformed, normal-
ized, and analyzed using MetaboAnalyst 4.0. The Benjamini-Hoch-
berg procedure was used to control the FDR, and the molecules with a 
FDR of 0.1 or less and an absolute log2 fold change (FC) of 1.5 or great-
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