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Introduction
Imagine a 60-year-old patient with metabolic syndrome (obesity, 
hypertension, insulin resistance, and dyslipidemia) who is taking 
a statin and has an LDL-cholesterol (LDL-C) level of 70 mg/dL but 
also has elevated triglycerides (TGs; 200 mg/dL) and low HDL-cho-
lesterol (HDL-C; 30 mg/dL). What could be approaches to reduce 
atherosclerotic cardiovascular disease (CVD) risk in this patient? 
Approaches could first include further efforts to reduce LDL-C by 
maximizing the dose of potent statins, adding the cholesterol absorp-
tion inhibitor ezetimibe, or suppressing the LDL-R–regulating protein 
PCSK9 with monoclonal antibodies. While each of these treatments 
reduces CVD risk, they do not very consistently reduce TG levels and 
they still leave a substantial residue of CVD events (1–3). Treatment 
options for further lowering TGs might include fibrates or fish oils; 
however, the evidence for a beneficial effect of fibrates is not compel-
ling (4), and while some fish oils may reduce CVD (5), the underlying 
mechanisms and impact remain uncertain. Although low HDL-C is 
associated with increased CVD risk, there are currently no effective 
drugs for targeting low HDL, and the whole idea of raising HDL-C 
has been called into question (6). Thus, beyond LDL-C, there are no 
optimal current treatment options to address dyslipidemia, as exem-
plified by this typical patient with metabolic syndrome.

A major theme of this Review is that lowering levels of TG-rich 
lipoproteins (TRLs) by activation of lipolysis and enhanced hepat-
ic clearance of cholesterol-rich TRL remnants is likely to be bene-
ficial for CVD (Figure 1). Activation of lipolysis leads to reduction 
in the levels of atherogenic TRL as well as increased levels of HDL: 
both effects may reduce atherosclerosis. While diet, exercise, and 
weight loss can have an important role in lowering TGs and raising 
HDL-C (7–10), the emphasis here will be on treatments using nov-
el technologies to target new pathways that have been uncovered 
through genetic studies.

Trends in residual risk
CVD, including myocardial infarction and stroke, is the lead-
ing cause of death in the United States and accounts for 28% of 
overall mortality (11). CVD risk factors include age, sex, hyperten-
sion, diabetes, smoking, body mass index, and increased levels 
of LDL-C or TGs or reduced HDL-C levels (1, 12). Current ther-
apies for prevention of ischemic events focus on controlling risk 
factors, as well as suppressing thrombosis in at-risk individuals, 
and this approach has contributed to decades of improvement in 
CVD mortality (13). This trend has stalled in recent years, in part 
because of the rise of obesity, diabetes, and their associated dys-
lipidemias. The metabolic syndrome has become more prevalent 
in all sociodemographic groups in the United States, and now 
occurs in more than one-third of adults (14).

Both fasting and nonfasting TG levels associate with CVD 
risk. In a European population, 27% of adults had nonfasting 
TGs greater than 176 mg/dL, a level that was associated with an 
approximately 1.9-fold increase in risk of CVD (15). In individ-
uals with TGs greater than 580 mg/dL, the risk was increased 
even further to 5.1-fold for myocardial infarction and 3.2-fold for 
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diabetic with alloxan, but the particles penetrate the artery rel-
atively poorly, and diabetic rabbits have less atherosclerosis 
than nondiabetic rabbits with smaller, more penetrant lipopro-
teins (20). Deletion of either lipoprotein lipase (LPL; ref. 21) or 
glycosylphosphatidylinositol-anchored HDL-binding protein 1 
(GPIHBP1; ref. 22) causes severe hypertriglyceridemia, but mice 
only develop early atherosclerotic lesions at an advanced age. In 
mouse models of atherosclerosis regression, conditional knock-
out of LPL induced hypertriglyceridemia, reflecting increased 
nascent TRL but not VLDL-C or remnants, and did not affect 
atherosclerotic burden or morphology (23). Overall these obser-
vations suggest that while lowering TRL or more specifically 
remnant cholesterol levels is likely to reduce coronary athero-
sclerosis and CVD, many patients are inadequately treated by 
current medications, highlighting the need for new approaches 
to reduce TRL remnant levels.

Insights from lipid trait genetics
While observational studies have linked HDL-C and TGs to CVD 
risk (24), such studies have a limited role in elucidating the caus-
al risk conferred by these lipid fractions because of confounding 
by correlated metabolic syndrome traits and artifacts introduced 
by differential variability of these analytes (25). Human genetic 
variation in lipid trait–modifying genes has provided key insights 
into mechanisms and therapeutic opportunities in atherosclerosis. 
Rare mutations increasing LDL-C are consistently associated with 
increased CVD risk proportionate to the level of LDL-C elevation, 
and the study of common variants in LDL-C–modifying genes 
recapitulates this observation (26, 27). In contrast, genetic associ-
ations of HDL-C and TGs with CVD risk based on rare variants do 
not unambiguously identify the culprit lipoprotein, in part because 
of concurrent effects on multiple lipoprotein traits. With the avail-
ability of large genome-wide association studies of lipid traits and 
CVD, common variants in HDL-C– and TG-modifying genes have 
been used to model the causal effects of changes in HDL-C and 
TGs on CVD through the Mendelian randomization approach (28). 
Since the genotype is randomly allocated in the population being 
studied, it can be inferred that the CVD effect derives from either 
the lipid trait effect or cosegregating pleiotropic effects of the 
genetic variant. Multiple variants can be simultaneously analyzed 
by meta-analysis to increase power and reduce bias conferred by 
isolated pleiotropic effects of single variants (29–31).

Early Mendelian randomization studies confirmed the role of 
LDL-C in CVD and suggested that levels of TGs, but not HDL-C, 
causally contribute to CVD risk (30, 32). Subsequently, the appli-
cation of meta-analysis in Mendelian randomization, which 
accounted for differences in measurement error between variants, 
suggested causal effects of both HDL-C and TGs (31, 33). Further 
analyses using methods robust to pleiotropy, e.g., Egger regression, 
called into question the causal effects of HDL-C and TGs in CVD 
(31, 34). The TG effects on CVD were attenuated by adjustment 
for apolipoprotein B (APOB) levels, suggesting that TG levels are 
a biomarker for a variable summarized by APOB levels, e.g., the 
cholesterol content of TRL (35). Studies conducted in the Icelandic 
population also suggested that the deleterious effect of TG-raising 
genetic variants is accounted for by the non–HDL-C lipid fraction 
and mediated by the atherogenic effect of TRL-C (36, 37).

ischemic stroke in comparison with subjects with low TG levels. 
The calculated remnant cholesterol level (total cholesterol minus 
LDL-C minus HDL-C) appears to provide comparable informa-
tion on risk. Statins can moderately lower fasting and postpran-
dial TG levels in hypertriglyceridemic patients (16), likely via 
enhanced hepatic LDL receptor–mediated (LDLR-mediated) 
remnant clearance. TG lowering is associated with reduced CVD 
risk in statin trials (1, 17), and elevated TG levels associate with 
residual risk in statin-treated patients, particularly in those with 
diabetes (18). Moreover, marked reductions in non-HDL choles-
terol and to a lesser extent TGs associate with plaque regression 
as determined by intravascular ultrasound of coronary arteries 
(19). Several animal studies suggest that large minimally metab-
olized TRLs have reduced atherogenic potential compared with 
smaller TRL remnants or LDL. Such particles become the major 
circulating lipoproteins when cholesterol-fed rabbits are made 

Figure 1. Lipoprotein modulation of atherosclerosis, beyond LDL. Circulat-
ing lipoproteins other than LDL modulate the development of atheroscle-
rosis. Animal and human data show that cholesteryl ester–rich lipoproteins 
derived from the partial catabolism of TRLs, referred to as remnants, are 
taken up by macrophage foam cells in arteries, promoting development of 
atherosclerotic plaques. The catabolism of TRLs also mediates enrichment 
of HDL with phospholipids, increasing their ability to promote efflux of 
cholesterol from foam cells and thus ameliorating atherosclerosis. The 
interchange of lipids between HDL and TRL is mediated by cholesteryl ester 
transfer protein (CETP) and phospholipid transfer protein (not shown). CE, 
cholesteryl ester; LPL, lipoprotein lipase; PL, phospholipids.
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SNP in LIPG encoding the N396S mutation confers a large increase 
in HDL-C. In Mendelian randomization based on CAD data from 
20,913 CAD cases and 95,407 controls, a null association of LIPG 
N396S with CAD was reported (32). In a subsequent CAD genome-
wide association study comprising 60,801 CAD cases and 123,504 
controls (47), LIPG N396S was associated with a possible CAD effect 
with an odds ratio of 0.90 (P = 0.05). In our recent CAD meta-anal-
ysis of 122,733 CAD cases and 424,528 controls, LIPG N396S was 
associated with a CAD effect with an odds ratio of 0.90 (95% CI 
0.86–0.95; P = 8.8 × 10–5) (38). Consequently, univariable Mendelian 
randomization on this single SNP reveals a causal protective effect of 
increased HDL-C conferred by LIPG activity. In contrast, HDL-C–
raising variants in genes that regulate the cholesteryl ester content 
of HDL particles, such as LCAT (encoding lecithin-cholesterol acet-
yltransferase), actually increase CVD risk. Likewise, TG-raising 
variants in genes that regulate the catabolism of TRLs such as LPL 
or ANGPTL4 increased CVD risk, whereas TG-raising variants in 
genes that regulate hepatic TG biosynthesis such as MLXIPL (encod-
ing carbohydrate-responsive element–binding protein [ChREBP]) 
or FADS1 (encoding fatty acid desaturase 1) had no causal effect on 
CVD. Thus, while our meta-analysis adjusted for pleiotropy showed 
overall causal effects of TG and HDL-C levels on CAD, Mendelian 
randomization at loci with well-established direct effects on HDL-C 
and TG levels indicates locus- and mechanism-specific causal effects 
of these factors on CAD (38).

Recently, our multivariable analysis using very large data sets 
and adjustment for widespread pleiotropic effects of lipid trait 
variants on metabolic syndrome traits revealed independent caus-
al effects of HDL-C and TGs on CVD albeit of smaller magnitude 
than the well-known LDL-C effect (38). Our finding that LDL-C, 
HDL-C, and TGs are independently associated with coronary artery 
disease (CAD) by Mendelian randomization (38) builds on three 
recent reports showing independent Mendelian randomization 
associations of LDL-C, HDL-C, and TGs with abdominal aortic 
aneurysm (34, 39, 40), suggesting that each of these factors is biolog-
ically active at the level of the arterial wall. Our study suggested that 
some, but not all, mechanisms of HDL-C raising and TG lowering 
are associated with protective CAD effects. These mechanism-spe-
cific effects may have been missed in prior studies because of both 
effect heterogeneity and statistical power limitations related to sam-
ple size, which were magnified by the intrinsic power limitations 
of pleiotropy-adjusted Mendelian randomization techniques (41), 
but are concordant with the results of other recent studies in large 
cohorts identifying a causal CAD effect for subsets of HDL-C vari-
ants (42–44). HDL-C–raising variants in genes such as LIPG (encod-
ing endothelial lipase) that regulate HDL catabolism and may have 
downstream effects on macrophage cholesterol efflux had causal 
protective effects on CVD (38). LIPG activity leads to catabolism of 
HDL phospholipids and may cause the resulting phospholipid-poor 
HDL to be a poorer cholesterol acceptor (45, 46). The rs77960347 

Figure 2. Lipolysis and TRL metabolism. (A) 
Lipolysis of circulating TRLs. Chylomicrons 
assembled in the small intestine and VLDL 
assembled in the liver contain proteins that 
control their intravascular metabolism. APOC2 is 
the activator of LPL. APOA5 also acts to enhance 
lipolysis, while APOC3 inhibits lipolysis. LPL is 
predominantly synthesized in adipose tissue, 
skeletal muscle, and heart. LPL transfers to the 
capillary lumen, where it associates with glyco-
sylphosphatidylinositol-anchored HDL-binding 
protein 1 (GPIHBP1), releases free fatty acids 
from TRLs, and creates chylomicron remnants 
and intermediate-density lipoproteins (IDLs). (B) 
Lipolysis reaction. TRLs associate with LPL in the 
capillary lumen, a process thought to be assisted 
by APOA5. APOC2 activates LPL; APOC3 inhibits 
LPL. ANGPTLs also inhibit LPL. ANGPTL3, 
primarily produced in the liver, is most active in 
complex with ANGPTL8. ANGPTL4, though wide-
ly expressed, modulates LPL activity especially in 
adipose tissue.
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fashion (55, 56). ANGPTL8 is also synthesized in adipose tissue 
and acts in a juxtacrine or paracrine fashion to block the inhibi-
tory effect of ANGPTL4 on adipose LPL through formation of 
ANGPTL4/ANGPTL8 complexes (56, 57). ANGPTL8 is induced 
in both liver and adipose tissue in the postprandial state, thus lead-
ing to increased uptake of fatty acids in adipose tissue and reduced 
uptake in muscle (56, 57). The complex posttranslational regula-
tion of LPL activity by ANGPTLs therefore controls the tissue dis-
tribution of TG-derived fatty acids during feeding and fasting.

Tissue uptake of lipids from chylomicrons differs from that of 
lipids from VLDL in part because of differences in the movement 
of lipoprotein lipids across the endothelial cell barrier. This might 
reflect the local concentrations of fatty acids, which likely are much 
greater after lipolysis of chylomicrons versus VLDL. Although endo-
thelial cells can internalize and degrade TRLs in lysosomes (58, 59), 
uptake of TRL TGs primarily occurs after LPL generation of non-
esterified fatty acids (NEFAs). Studies of the fatty acid transporter 
CD36 in endothelial cells (60) implicate this receptor in fatty acid 
uptake when NEFA levels are low (61). Therefore, CD36 might be 
most important during fasting or perhaps VLDL hydrolysis; with 
higher NEFA levels, the receptor plays a less important role. Con-
sistent with this, chylomicron-derived NEFAs and cholesteryl esters 
do not require CD36 for their movement into the heart (62, 63), and 
likely either other organs use other receptors or chylomicron-de-
rived NEFAs cross the endothelial barrier via a paracellular route. 
In contrast, uptake of VLDL-derived lipids into the heart (62) and 
brown adipose tissue (64) is reduced by CD36 deficiency.

Potential mechanisms of benefit from lowering 
of TRLs
The cholesterol-rich remnants of chylomicrons or VLDL accumu-
late in the arterial intima, promoting macrophage foam cell for-
mation and inflammatory changes in atherosclerotic plaques (Fig-

Recent developments in understanding of TRL 
metabolism
TRLs transfer TGs from the diet or liver to tissues such as muscle and 
adipose for energy or fuel storage. Chylomicrons and VLDL require 
a lipolysis step to break the ester bond between fatty acids and glyc-
erol (Figure 2A); luminal endothelial cell–associated LPL mediates 
this reaction. LPL is a member of a gene family that includes hepat-
ic lipase and LIPG; the primary substrates of the latter enzymes are 
remnant lipoproteins and HDL. LPL binds to GPIHBP1 (48), which 
protects it from inactivation by angiopoietin-like 4 (ANGPTL4) (Fig-
ure 2B and ref. 49). Activity of LPL is also modulated by fatty acids 
that inhibit its catalytic activity and release it from endothelial cells.

The protein cargo of circulating TRLs regulates their intra-
vascular metabolism (Figure 2A). The APOC proteins are com-
ponents of TRLs and HDL and transfer from HDL to TRL in the 
postprandial state (50). APOC2 is the obligate activator of LPL, 
and APOC2 deficiency leads to familial chylomicronemia syn-
drome. A recent study has shown that an APOC2 analog that also 
reduces APOC3 increases lipolysis and reduces circulating TG 
levels (51). LPL activity is inhibited by APOC3, perhaps because it 
shields TGs or blocks association of LPL and APOC2. APOC3 also 
inhibits remnant clearance (see below). APOA5 deficiency leads 
to hypertriglyceridemia, which may reflect its role in the efficient 
association of TRL with LPL or GPIHBP1 on endothelial cells (52), 
possibly because APOA5 interferes with an inhibitory effect of 
ANGPTL3/ANGPTL8 on this association (53).

ANGPTL3 and ANGPTL4 bind to the C-terminal region of 
LPL, disrupting its tertiary structure and canceling its activity 
in a tissue-specific fashion (Figure 2B and ref. 49). ANGPTL4 is 
induced in adipose tissue during fasting, inhibiting the lipolytic 
uptake of fatty acids (54). ANGPTL3 is primarily synthesized in 
the liver and associates with circulating ANGPTL8 to enhance 
its LPL-inhibitory actions in muscle, thus acting in an endocrine 

Figure 3. Two potential new therapies to reduce TRLs. (A) APOC3 depletion via knockdown in the liver or antibody inhibition in the circulation reduces 
circulating TG levels via two mechanisms: (i) removal of APOC3 releases its inhibition of LPL and increases intravascular lipolysis, and (ii) loss of APOC3 
promotes uptake of TRL in the liver. (B) ANGPTL3 depletion reduces TRLs and LDL via (i) reduced liver TG secretion; (ii) increased intravascular lipolysis; 
and increased hepatic removal via either (iii) LDLR-dependent, non–endothelial lipase–dependent or (iv) non–LDLR-dependent, endothelial lipase–depen-
dent processes. HDL levels decrease with ANGPTL3 loss as a result of activation of endothelial lipase. EL, endothelial lipase; FFA, free fatty acid.
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to be buttressed with antiinflammatory therapies. A recent study 
showed that antiinflammatory therapies that lowered CVD risk 
were associated with reductions in the neutrophil/lymphocyte 
ratio, a global marker of inflammation; however, lipid lowering 
with statins or PCSK9 inhibitors did not affect this ratio (85). Thus, 
targeting antiinflammatory therapies to susceptible populations 
identified by genetic risk factors or by appropriate biomarkers may 
be an important addition to controlling dyslipidemia.

Emerging targets in dyslipidemia based on 
genetic studies
APOC3. It has long been known that plasma APOC3 concentra-
tions correlate with TG levels (86), are elevated in patients with 
diabetes, and associate with increased coronary atherosclerosis 
and CVD risk (87, 88). The causal role of APOC3 in increased TG 
levels was first shown by overexpression of APOC3 in transgenic 
mice (89), and the pro-atherogenic role of APOC3 was demon-
strated in APOC3-transgenic, LDLR-deficient mice (90). Animal 
and cell studies suggest that APOC3 deficiency has two main 
TG-lowering effects: activation of LPL-mediated lipolysis and 
promotion of the hepatic clearance of TRL remnants (Figure 3A). 
APOC3 inhibits the hepatic clearance of TRL remnants via the 
LDLR and LDLR-related protein (LRP) (91). The effects of APOC3 
inhibition on hepatocyte clearance of TRL remnants are not seen 
in the absence of APOE and likely reflect reduced masking of 
APOE by APOC3 rather than reduced displacement of APOE (92). 
However, APOC3 deficiency or inhibition lowers TG levels in the 
absence of APOE likely as result of increased LPL activity and 
uptake of fatty acids in adipose tissue (92).

The translational importance of these studies in animals and 
cells was illuminated by human genetic findings. Shuldiner and 
colleagues (93) showed that loss-of-function APOC3 variants in the 
Amish associated with reduced TG levels and decreased coronary 
atherosclerosis. These findings were extended in large population 
studies in the National Heart, Lung, and Blood Institute Exome 
Sequencing Project (94) and in two other European population 
studies (95). Four different APOC3 variants were found: three non-
sense mutations and one missense mutation with an overall fre-
quency of 1 in 150. In heterozygotes, there was a 39% lowering of 
TGs, a 46% lowering of APOC3 levels, a 25% increase in HDL-C, 
and a 40% reduction in CVD risk (94). In a smaller study in the 
Icelandic population, the most common APOC3 loss-of-function 
variant did not associate significantly with CVD, consistent with 
a more modest effect size (36). Homozygous APOC3 deficiency is 
associated with markedly reduced fasting and postprandial TG lev-
els and appears not to have adverse health effects (96).

The impact of heterozygous loss-of-function APOC3 mutations 
on LDL-C is minimal (–4%) (95), suggesting the importance of low-
ered remnant cholesterol and possibly increased HDL in the ben-
eficial effects of APOC3 deficiency. Lipoprotein turnover studies 
in small groups of subjects with homozygous (93) or heterozygous 
(97) deficiencies of APOC3 showed increased fractional clearance 
of VLDL TG and APOB, and increased conversion of VLDL to LDL 
without clearly increased hepatic clearance of remnants. However, 
in large population studies, APOC3 deficiency was associated with 
reduced VLDL and non-HDL cholesterol levels that appeared to be 
largely responsible for the CVD benefit (98). APOC3 might have 

ure 1). However, as with LDL, it is not completely clear what are 
the most important toxic molecules in TRL remnants; candidates 
include cholesterol, phospholipids or their oxidation products, 
fatty acids derived from lipolysis, and immunogenic APOB. The 
strongest evidence suggests an atherogenic role of TRL remnant 
cholesterol (15). Cholesterol-rich remnant particles carry a bigger 
load of cholesterol, are more effective at inducing macrophage 
foam cells than LDL, and do not need to be modified by oxida-
tion in order to be taken up by macrophages (18). Free fatty acids 
liberated during lipolysis of TRL on the endothelial surface also 
can exert proinflammatory effects on endothelial cells and mac-
rophages (65, 66).

Despite the correlation of atherosclerosis risk with VLDL or 
LDL cholesterol, recent immune cell profiling of atherosclerotic 
plaques by single-cell RNA sequencing studies has introduced a 
conundrum: Trem2-high cholesteryl ester–laden foam cells have 
lower expression of inflammatory genes compared with other 
populations of macrophages in plaques (67). Glass and colleagues 
have shown that cholesterol-laden foam cells suppress inflamma-
tory pathways as a result of accumulation of desmosterol, a ligand 
of liver X receptor (LXR) (68); LXR activation reduces expression 
of inflammatory genes by cis-repression and other mechanisms 
(69). Recent evidence also highlights the atherogenic role of lipo-
protein-derived oxidized phospholipids (70). Together these stud-
ies suggest that oxidative or other modifications of remnant par-
ticles or LDL that produce danger-associated molecular patterns 
to activate Toll-like receptor signaling may be more important in 
inducing inflammatory responses than macrophage cholesterol 
loading per se. However, excessive cholesterol loading that is not 
compensated by cholesterol esterification or cholesterol efflux 
may lead to ER stress and cell death (71), as well as to activation 
of the NLRP3 inflammasome and formation of neutrophil extra-
cellular traps (72, 73), contributing to the formation of unstable 
plaques, plaque erosion, and thrombosis (74).

Dyslipidemia and vascular inflammation
Recent human CVD outcome trials using IL-1β antibodies (75) or 
colchicine (76) have demonstrated reduced CVD. This underlines 
the role of inflammation in the clinical complications of athero-
sclerosis and opens a new vista on antiinflammatory therapies 
as potential treatments for atherosclerotic CVD. However, these 
studies should not be viewed in isolation, because, as indicated 
above, the inflammatory component of atherosclerosis is inti-
mately connected to the dyslipidemia that promotes the accumu-
lation of atherogenic lipoproteins in the artery wall. Accordingly, 
elevated levels of remnant cholesterol are associated with higher 
CRP levels, a biomarker of inflammation (77). Moreover, dyslip-
idemia activates hematopoiesis and myelopoiesis, promoting 
formation of increased numbers of inflammatory monocytes and 
neutrophils that are poised to enter the artery wall and promote 
atherothrombosis (78–81). Thus, dyslipidemia contributes to the 
inflammatory risk of atherosclerosis. In some patients, vigorous 
control of dyslipidemia may adequately reduce inflammatory risk, 
obviating the need for potentially immunosuppressive antiinflam-
matory treatments. However, in others genetic inflammatory risk 
may be increased (e.g., as in clonal hematopoiesis of indetermi-
nate potential; refs. 82–84) and control of dyslipidemia may need 
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additional atherogenic effects. LDL enriched with APOC3 associ-
ates strongly with CVD risk (99), perhaps because APOC3 increas-
es LDL affinity for proteoglycans (100), and as mentioned above, 
APOC3 may increase vascular inflammation.

An antisense oligonucleotide (ASO) to APOC3 (volanesors-
en) very effectively lowered TG levels in patients with familial 
chylomicronemia syndrome (FCS), including those with LPL-null 
mutations (101). Volanesorsen lowered TG levels in patients with 
moderately severe hypertriglyceridemia (mean TGs = 580 mg/
dL), but also resulted in significant LDL-C elevations and no over-
all change in non-HDL cholesterol or APOB levels (102). Volane-
sorsen treatment was subsequently found to induce clinically sig-
nificant thrombocytopenia in a few patients with FCS (103). The 
use of hepatocyte-targeted ASOs to lower APOC3 is still under 
investigation as a therapeutic for FCS and recurrent pancreatitis 
(101). RNAi approaches have recently been introduced to reduce 
hepatic PCSK9, producing sustained LDL lowering after only two 
doses (104). RNAi lowering of APOC3 has also been reported 
with potent TG and APOC3 lowering, increased HDL-C, and pro-
longed effects of more than 10 weeks (105). Monoclonal antibody 
approaches to APOC3 lowering have also been described (106). 
A potential advantage of the antibody approach is their ability 
to inhibit APOC3 produced both in the liver and in the intestine, 
while a challenge is that APOC3 is an abundant plasma protein.

ANGPTL3. ANGPTL3 deficiency causes pan-hypolipidemia 
(107) and reduces CVD risk (108). Relative to individuals with 
functional ANGPTL3, subjects with various rare heterozygous 
loss-of-function mutations had mean TGs decreased by 27%, 
LDL-C by 9%, and HDL-C by 4% with an odds ratio for CVD of 
0.61. ANGPTL3 antibodies (evinacumab) and ASOs (vupanors-
en) (109) are being developed as potential treatments of CVD. 
ANGPTL3 antibodies lower LDL-C independently from LDLR 
activity, and, notably, evinacumab lowers LDL-C by about 50% 
in familial hypercholesterolemia homozygotes (110). In addition 
to inhibiting LPL, ANGPTL3 also inhibits activity of LIPG, and 
this accounts for the HDL-lowering effect of ANGPTL3 inhibi-
tion (111, 112). Two recent studies (113, 114) have shown that in 
the absence of LDLRs, VLDL/LDL-lowering effects of ANGPTL3 
inhibition are mediated through increased LIPG activity. Howev-
er, ANGPTL3 inhibition does lower LDL-C in Lipg–/– mice lacking 
LIPG but with functioning LDLR (113). Thus, ANGPTL3 reduc-
tion appears to increase two pathways of LDL-C reduction, one 
via the LDLR independent of LIPG and a second requiring LIPG 
but not the LDLR (Figure 3B).

An LIPG reduced-function variant that increases HDL-C 
and to a much lesser extent non-HDL cholesterol is associated 
with reduced CVD (38). Lipg–/– mouse models have shown either 
reduced (115) or unchanged atherosclerosis (116).Together these 
studies suggest that in the presence of functioning LDLR the ben-
efit of ANGPTL3 inhibition may be attenuated by increased LIPG 
activity as a result of reduced HDL-C and reduced cholesterol 
efflux capacity (117). While evinacumab is being developed for 
treatment of familial hypercholesterolemia, the potential for wid-
er application in dyslipidemia could be limited by HDL-C–lower-
ing effects. A beneficial effect of ANGPTL3 inhibition on insulin 
resistance and fatty liver has been suggested (109, 118); however, 
liver-targeted antisense inhibition of ANGPTL3 with vupanorsen 

in subjects with fasting hypertriglyceridemia and increased liv-
er fat, while lowering TG levels by about 60%, did not result in 
reduced steatosis or improved glycemic parameters (119).

ANGPTL4. Reduced-function variants of ANGPTL4 have been 
associated with lower TG levels, increased HDL-C, and reduced 
CVD risk (120). This suggested that, like targeting of ANGTPL3, 
targeting of ANGPTL4 could lower TGs and CVD risk. However, 
in mice, homozygous Angptl4 deficiency resulted in lipogranu-
lomatous lesions of the intestines and their draining lymphatics, 
probably reflecting premature lipolysis of chylomicrons and mac-
rophage inflammation (121, 122). These adverse effects, although 
not reported in humans, appear to have impeded the clinical devel-
opment of ANGPTL4 inhibitors. However, deletion of ANGPTL4 
in hepatocytes resulted in reduced TG levels and protected against 
diet-induced obesity, glucose intolerance, liver steatosis, and ath-
erosclerosis, without the previously described complications of 
whole-body Angptl4 deficiency (123).

Fish oils (n-3 long-chain polyunsaturated fatty acids). Marine 
oils lower plasma TG levels in humans and have been extensively 
assessed for potential CVD benefit. The TG-lowering mechanism 
of n-3 fatty acids is related to decreased hepatic VLDL production 
(124). Four grams per day of icosapent ethyl (Vascepa, an ester of 
eicosapentaenoic acid [EPA]) substantially reduced TG levels and 
CVD events in statin-treated patients with elevated TGs (135 to 499 
mg/dL) in the REDUCE-IT trial (5); this is reminiscent of the results 
of an earlier open-label trial using 1.8 g/d EPA in hypercholesterol-
emic Japanese patients (125, 126). TG lowering is unlikely to be the 
full explanation for the CVD benefit of icosapent ethyl, as benefits 
were similar irrespective of the degree of TG lowering in subjects 
receiving icosapent ethyl. In contrast, a lower dose of 1 g combined 
EPA/docosahexaenoic acid (DHA) failed to show a CVD benefit in 
diabetics (127), and 4 g/d of a mixture of EPA/DHA versus corn oil 
failed to show a benefit in statin-treated subjects with high CVD risk 
in the STRENGTH trial (128). The apparent CVD benefit of icos-
apent ethyl may be related to the dose of EPA, differences between 
EPA and DHA, the targeting of a susceptible population with elevat-
ed TGs over 150 mg/dL, and the long duration of the trial (5 years). 
However, concerns have been raised regarding the use of mineral oil 
as a control, which could potentially have decreased statin absorp-
tion, as control subjects experienced an increase in LDL-C and CRP 
(129). Modeling of the predicted CVD effects of observed plasma lip-
id and CRP changes resulting from administration of mineral oil or 
EPA suggests that a considerable part of the apparent CVD benefit in 
REDUCE-IT was related to adverse effects of mineral oil in the con-
trol group, while about 13% of the CVD benefit was related to effects 
of EPA or mineral oil not mediated by lipid and CRP changes (124, 
130–132). Increased formation of inflammation resolution media-
tors could be part of the benefit derived from EPA; failed inflamma-
tion resolution can impair regression of atherosclerosis (133). Fur-
ther studies on fish oils may help to provide a clearer understanding 
of the mechanisms and magnitude of their CVD benefit.

Challenges in the development of new  
TG-lowering agents
In contrast to LDL lowering, it is unlikely that all modes of TG 
lowering will have similar impact on CVD. Our Mendelian ran-
domization studies suggest that genetic variants that cause acti-
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vation of lipolysis may have beneficial effects on CVD, while some 
variants that decrease VLDL production do not associate with 
reduced CVD (38). Decreasing VLDL production, e.g., by APOB 
ASO treatment, may also lead to nonalcoholic fatty liver disease 
(134). Fibrates lower TG levels by decreasing APOC3 and increas-
ing lipolysis; however, fibrates have pleiotropic effects, and the 
lack of clear-cut benefits has impeded their acceptance. A new 
class of fibrates is being evaluated in patients with high TGs and 
low HDL (135).

The amount of TG lowering in clinical trials that is likely to 
produce benefit is unclear. As with LDL-C, the reduction in CVD 
risk from TG or remnant-cholesterol lowering appears to be pro-
portional to the absolute reduction in TRL levels, and thus for a 
given percentage reduction in TGs, the impact will be larger when 
baseline TG levels are higher (17, 136). This emphasizes the impor-
tance in clinical trials of targeting populations with substantial ele-
vation in TG levels at baseline, as was done in the more successful 
trials of fibrates (4, 136) and of icosapent ethyl (135).

Potential benefits of increasing reverse 
cholesterol transport
Activation of lipolysis of TRL leads to an increase in HDL levels as 
a result of the transfer of surface phospholipids and APOA1 from 
TRL into HDL as well as reduced cholesteryl ester transfer pro-
tein–mediated (CETP-mediated) exchange of TRL TG for HDL 
cholesteryl ester (Figure 1). The enrichment of HDL with phos-
pholipids and APOA1 is likely to increase its ability to promote 
efflux of cholesterol from macrophages and endothelial cells 
in atheromatous plaques via ABCA1 and ABCG1 transporter– 
dependent and other cholesterol efflux pathways (137, 138). A 
number of studies indicate that the ability of HDL to promote 
efflux of cholesterol from macrophages is inversely correlated 
with CVD risk (139). Although cholesterol efflux is correlated 
with HDL-C levels, multivariate analysis has shown a strong 
effect of cholesterol efflux on CVD independent of HDL-C lev-
els. Higher levels of cholesterol efflux capacity may be related 
to an increased content of phospholipids in HDL (140), which 
could also explain the apparent CVD benefit of the LIPG N396S 
reduced-function variant (38). The cholesterol mass efflux 
capacity of HDL shows an inverse relationship to coronary 
artery disease but not to thrombotic stroke (141) or peripheral 
artery disease (142), indicating a differential effect of HDL-me-
diated macrophage cholesterol efflux in different vascular beds. 
A recent study has shown that the ability of HDL to suppress 
inflammatory responses in cultured endothelial cells is inverse-
ly correlated with incident CVD and apparently independent of 
macrophage cholesterol efflux capacity (143).

LXR activators appear to be ideal drugs for increasing 
reverse cholesterol transport and suppressing plaque inflamma-
tion (144). They are potently and consistently anti-atherogenic 
in animal models. However, clinical development in humans was 
halted because of adverse effects on hepatic steatosis and liver 
function tests and an increase in LDL-C levels that likely reflects 
a mechanism-related suppression of hepatic LDLR (145, 146). As 
an alternative, plaque macrophage–targeted nanoparticles con-
taining LXR activators might represent an attractive option for 
LXR therapeutics (147).

HDL-directed therapeutics
The results of clinical trials of agents that raise HDL-C have been 
disappointing (6). In particular, CETP inhibitors markedly increased 
HDL-C levels and moderately reduced LDL-C levels. While the larg-
est and longest trial of CETP inhibition using anacetrapib showed a 
highly significant 9% reduction in CVD endpoints (148), anacetrapib 
has not been marketed for CVD, probably owing to the moderate 
effect size and the long-term accumulation of the drug in adipose 
tissue. Moreover, this CVD reduction might primarily reflect the 
LDL-C reduction that occurred (149). HDL infusions and overex-
pression of APOA1 in animal models consistently reduce atheroscle-
rosis (150–152), suggesting a direct anti-atherogenic action. This has 
led to clinical trials of infused reconstituted HDL (rHDL) particles 
consisting of phospholipids and APOA1. In animals, such prepa-
rations have anti-atherogenic (153) and antiinflammatory effects 
(154). Although proinflammatory effects of such preparations have 
been described, these largely occurred under conditions of extreme 
cholesterol depletion as a result of an ER stress response and do not 
occur in atherosclerotic plaques (154).

Infusions of early formulations of rHDL such as CSL-111 
improved the characteristics of coronary artery plaques in imaging 
studies but also caused significant elevation of liver function tests 
(155). A new formulation of rHDL, CSL-112, containing reduced 
phospholipids relative to APOA1, produced lower levels of choles-
terol efflux but did not induce elevations in alanine transaminase 
(a potential biomarker of liver injury) when infused into mice or 
humans (156–158). Four infusions of CSL-112 are currently being 
assessed as a treatment to prevent recurrent CVD in patients with 
severe coronary disease. Although this study represents a direct 
test of the anti-atherogenicity of HDL in humans, it remains to be 
seen whether the dose and duration of rHDL treatment will be suf-
ficient to reduce CVD.

Summary and perspective
Goldstein et al. reported in this journal more than 40 years ago 
that hypertriglyceridemia was commonly found in patients with 
coronary artery disease (159). Zilversmit proposed that cholester-
ol-rich remnants of TRL might be atherogenic (160), and over the 
last 40 years epidemiological and genetic evidence has accrued 
to support the hypothesis that remnants increase CVD risk, while 
reduction of remnant levels by statins or other treatments may 
be beneficial. However, we still are uncertain as to the optimal 
lipid-modifying therapies for targeting TGs in the 60-year-old 
metabolic syndrome patient discussed in the introduction. There 
is hope that a new class of therapeutics based on rare mutations 
affecting TG levels will activate lipolysis, promote remnant 
clearance, and reduce CVD. To determine whether these new 
therapies reduce CVD will require large clinical outcome stud-
ies. That any CVD benefit derives directly from lowering TG or 
remnants is unlikely to be revealed because, like fibrates and fish 
oils before them, these newer TG-reducing medicines will have 
multiple effects on lipoproteins and other atherosclerosis risk fac-
tors. Nonetheless, while as a research community we continue to 
work toward a clearer understanding of the complicated biology 
associated with circulating lipoproteins and CVD, based on new 
approaches to lowering TRL and increasing HDL-C, clinical medi-
cine will likely advance toward improved patient outcomes.
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